Handouts: 1. administrative structure
2. narrative
3. Last year's lecture titles (certain to be modified)
4. Gaussian and FT
5. PS \#1 Due $9 / 13$

Read CTDL, pages 9-39, 50-56, 60-85

Administrative Structure

$20 \% \quad$ In-class 5 minute Quizzes.
Exercise concepts immediately after they are introduced.
~10 Problem Sets
40\%
Difficult, mostly computer based problems
group consultation encouraged

TAs (grade problem sets)
some help with computer programs
I WILL DEAL WITH THE QM, NOT THE COMPUTER PROGRAMS!
Optional Recitation! R. Field - answer questions about Problem Sets
How about: Wednesdays, 5:00PM
40\% Take home Exam
no group consultation about methods of solution,
OK for clarification of meaning of the questions.

CTDL - formal, elegant, analytic
Handouts - other texts and Herschbach
Lecture Notes - provide tools for solving increasingly complex problems

Course Outline

increasingly complex, mostly time-independent problems
1D in $\psi(x)$ picture

- spectrum $\left\{\mathrm{E}_{\mathrm{n}}\right\} \leftrightarrow$ potential $\mathrm{V}(\mathrm{x})$
central problem in Physical Chemistry until recently

- femtochemistry: wavepackets exploring $\mathrm{V}(\mathrm{x})$, information about $\mathrm{V}(\mathrm{x})$ from timing experiments.
How is a wavepacket encoded for $\mathrm{x}_{\mathrm{c}}, \Delta \mathrm{x}, \mathrm{p}_{\mathrm{c}}, \Delta \mathrm{p} ?(\mathrm{c}=$ center $)$ stationary phase $\begin{aligned} & \text { evaluate integrals } \\ & \text { interpret information contained in } \psi(\mathrm{x}) \text { with respect } \\ & \text { to expectation values and transition probabilities }\end{aligned}$ to expectation values and transition probabilities

Confidence to draw cartoons of $\psi(x)$, even for problems you have solved once but no longer remember the details.

* Matrix Picture

- $\psi(x)$ replaced by collections of numbers called "matrix elements"
- tools: perturbation theory
* small distortions from exactly solved problems
* f (quantum numbers) $\leftrightarrow \mathrm{F}$ (potential parameters)

of spectrum

of potential

Vibration-Rotation Energy Levels:

$\underset{\text { Expansion }}{\text { e.g. Dunham }}$

$$
E_{v J}=\sum_{\ell, m} Y_{\ell!}\left(v+\frac{1}{2}\right)^{\ell}[J(J+1)]^{m}
$$

$$
\mathrm{V}(\xi)=\sum_{\mathrm{n}=0} \searrow_{\mathrm{a}_{\mathrm{n}}} \xi^{\mathrm{n}} \quad \xi \equiv \frac{\mathrm{R}-\mathrm{R}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}}
$$

Linear Algebra:"Diagonalization" \rightarrow Eigenvalues and Eigenvectors

- How to set up and "read" a matrix.
- Density Matrices: specify general state of system (ρ) vs. an operator ($\mathbf{O p}$) that corresponds to a specific type of measurement, "populations" and "coherences".

3D Central Force - 1 particle

ANGULAR MOMENTUM
map one problem surprisingly onto others symmetry classification of operators \rightarrow matrix elements "reduced matrix elements"

* Many Particle Systems
- many electron atoms
- Slater determinants satisfy antisymmetrization requirement for Fermions
- Matrix elements of Slater determinantal wavefunctions
- orbitals \rightarrow configurations \rightarrow states ("terms")
- spectroscopic constants for many electron systems \leftrightarrow orbital integrals
* Many-Boson systems: coupled vibrations:

Intramolecualr Vibrational Redistribution (IVR)

* Periodic Lattices -band structure of metals

Some warm-up exercises
Hamiltonian $\quad H=T+V=\frac{p^{2}}{2 m}+V(x)$
special QM prescription $\quad \hat{\mathrm{p}}_{\mathrm{x}}=\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}$

$$
\hat{\mathrm{H}}=-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\partial^{2}}{\partial \mathrm{x}^{2}}+\mathrm{V}(\mathrm{x})
$$

Schr. Eqn. $\quad(\mathrm{Pf}-\mathrm{E}) \psi=0$

1. Free particle $V(x)=$ const. $=V_{0}$

Schr. Eqn. $\quad\left(-\frac{\hbar^{2}}{2 \mathrm{~m}} \frac{\mathrm{~d}^{2}}{\mathrm{dx}^{2}}+\mathrm{V}_{0}-\mathrm{E}\right) \psi=0$

$$
\frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}= \pm \underset{\text { call this } \mathrm{k}^{2}}{\hbar^{2}} \psi
$$

(classically forbidden region)
$\psi(x)=A e^{i k x}+B e^{-i k x} \quad$ general solution
Complex Numbers: $\quad i^{2}=-1$

$$
\begin{aligned}
& z=x+i y, z^{*}=x-i y \\
& e^{ \pm i k x}=\cos k x \pm i \sin k x
\end{aligned}
$$

What is k ? $\quad k=\left[\left(E-V_{0}\right) \frac{2 m}{\hbar^{2}}\right]^{1 / 2} \quad$ but
What happens when we apply \hat{p} to $e^{i k x}$?

$$
\begin{aligned}
& \phi \mathrm{e}^{\mathrm{ikx}}=\frac{\hbar}{\mathrm{i}} \frac{\mathrm{~d}}{\mathrm{dx}} \mathrm{e}^{\mathrm{ikx}}=\hbar \mathrm{k} \mathrm{e}_{\text {eigenvalue }}^{\text {ikx }} \underbrace{\text { eigenfunction }}_{\text {of } \mathrm{p}} \\
& \hbar \mathrm{k}=\mathrm{p} \\
& \text { a number, not an operator }
\end{aligned}
$$

This suggests (based on what we know from classical mechanics about momentum) that if $\mathrm{k}>0$ something is "moving" to right (+x direction) and if $\mathrm{k}<0$ moving to left How do we really know that something is moving? We need to resort to time dependent Schr. Eqn.
k is wave vector (or wave number). Why is it called wave vector?

- in $3-D$ get $e^{i \vec{k} \cdot \vec{r}}$ where \vec{k} points in direction of motion
- $e^{i(k x+2 \pi)}=e^{i k x} \quad$ periodic
- $\mathrm{e}^{\mathrm{ik}(\mathrm{x}+\lambda)} \equiv \mathrm{e}^{\mathrm{ikx}} \quad \therefore \quad \mathrm{k} \lambda=2 \pi \quad \mathrm{k}=\frac{2 \pi}{\lambda}$
advance x by one full oscillation cycle $\equiv \lambda \quad$ wavelength
k is \# of waves per 2π unit length
ψ is probability amplitude $\quad \psi=\mathrm{Ae}^{\mathrm{ikx}}+\mathrm{Be}^{-\mathrm{ikx}} \overbrace{}^{\text {travels to left? }}$
probability distribution
$\psi^{*} \psi=|\mathrm{A}|^{2}+|\mathrm{B}|^{2}+\mathrm{A} * \mathrm{Be}^{-2 \mathrm{ikx}}$ $+A B * e^{2 i k x}$
simplify:

$$
\begin{aligned}
\mathrm{x} & =\operatorname{Re}(\mathrm{x})+\mathrm{i} \operatorname{Im}(\mathrm{x}) \\
2 \operatorname{Re}\left(\mathrm{~A}^{*} \mathrm{~B}\right) & =\mathrm{A}^{*} \mathrm{~B}+\mathrm{AB}{ }^{*} \\
2 \mathrm{i} \operatorname{Im}\left(\mathrm{~A}^{*} \mathrm{~B}\right) & =\mathrm{A}^{*} \mathrm{~B}-\mathrm{AB}{ }^{*} \\
\mathrm{e}^{ \pm \mathrm{i} \alpha} & =\cos \alpha \pm \mathrm{i} \sin \alpha
\end{aligned}
$$

$\psi * \psi=\underset{\substack{\text { constant } \\ \text { (delocalized particle) }}}{|A|^{2}+|B|^{2}}+\underset{\substack{\text { wiggly - only present if both } \\ \text { A and B are nonzero }}}{2 \operatorname{Re}(A * B) \cos 2 k x+2 \operatorname{Im}(A * B) \sin 2 k x}$

standing wave, real not complex or imaginary
A, B determined by specific boundary conditions.

- Can't really see any motion unless we go to time dependent Schr. Eq.
- Need superposition of +k and -k parts to get wiggles.
- Wiggles $=$ superpositon of waves with different values of k $=$ another kind of superposition (wave packet)
- Motion becomes really clear when we do two things:
* time dependent $\Psi(x, t)$
* create localized states called wavepackets by superimposing several $\mathrm{e}^{\mathrm{ikx}}$ with different |k|'s.
[NEXT LECTURE: CTDL, pages 21-24, 28-31 (motion, infinite box, δ-function potential, start wavepackets).]

Dave Lahr to talk here about use of computers.

