Handouts: 1. administrative structure

- 2. narrative
- 3. Last year's lecture titles (certain to be modified)
- 4. Gaussian and FT
- 5. PS #1 Due 9/13

Read CTDL, pages 9-39, 50-56, 60-85

Administrative Structure

20%	In-class 5 minute Quizzes.	
	Exercise concepts immediately after they are introduced.	
40%	~10 Problem Sets	
	Difficult, mostly <u>computer based</u> problems	
	group consultation encouraged	
	TAs (grade problem sets)	

some help with computer programs

I WILL DEAL WITH THE QM, NOT THE COMPUTER PROGRAMS!

Optional Rec	itation! R. Field -	answer questions about Problem Sets	
How about: We		nesdays, 5:00PM	
40%	Take home Exam		
no group consultation about methods of solution,			
	OK for clarification of meaning of the questions.		
	CTDL	- formal, elegant, analytic	
	Handouts	- other texts and Herschbach	
	Lecture Notes	- provide tools for solving increasingly complex problems	

NO PHILOSOPHY, NO PREACHING TO THE CONVERTED

Course Outline

increasingly complex, mostly time-independent problems

- * <u>1D in $\psi(x)$ picture</u> • spectrum $\{E_n\} \leftrightarrow$ potential V(x) <u>central problem in Physical</u> <u>control</u> • femtochemistry: wavepackets exploring V(x) information about V(x) from
- femtochemistry: <u>wavepackets</u> exploring V(x), information about V(x) from timing experiments. How is a wavepacket encoded for x_c , Δx , p_c , Δp ?(c = center)

evaluate integrals

• stationary phase

interpret information contained in $\psi(x)$ with respect to expectation values and transition probabilities

Confidence to draw cartoons of $\psi(x)$, even for problems you have solved once but no longer remember the details.

* <u>Matrix Picture</u>

- * $\psi(x)$ replaced by collections of numbers called "matrix elements"
- tools: perturbation theory
 * small distortions from exactly solved problems
 * f(quantum numbers) ↔ F(potential parameters)
 * f(quantum numbers) ↔ F(quantum numbers)
 * f(quantum numbers) ↔ F(quantum numbers)
 *
- · Linear Algebra: "Diagonalization" \rightarrow Eigenvalues and Eigenvectors
- How to <u>set up</u> and <u>"read"</u> a matrix.
- Density Matrices: specify general state of system (ρ) vs. an operator (Op) that corresponds to a specific type of measurement, "populations" and "coherences".
 - * <u>3D Central Force 1 particle</u>

radial, angular factorization specific _____ universal, exactly soluble

ANGULAR MOMENTUM

map one problem surprisingly onto others

symmetry classification of operators \rightarrow matrix elements

"reduced matrix elements"

* Many Particle Systems

- many electron atoms
- Slater determinants satisfy antisymmetrization requirement for Fermions
- Matrix elements of Slater determinantal wavefunctions
- orbitals \rightarrow configurations \rightarrow states ("terms")
- spectroscopic constants for many electron systems \leftrightarrow orbital integrals
- * Many-Boson systems: coupled vibrations:

Intramolecualr Vibrational Redistribution (IVR)

* Periodic Lattices -band structure of metals

Some warm-up exercises

Hamiltonian
$$H = T + V = \frac{p^2}{2m} + V(x)$$
special QM prescription
$$\hat{p}_x = \frac{\hbar}{i} \frac{\partial}{\partial x}$$

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x)$$
Schr. Eqn.
$$(Pf - E)\psi = 0$$
1. Free particle V(x) = const. = V_0

Schr. Eqn.
$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V_0 - E\right)\psi = 0$$

$$\mathbf{p}\mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{x}} = \frac{n}{\mathbf{i}} \frac{\mathbf{d}}{\mathbf{d}\mathbf{x}} \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{x}} = \hbar \mathbf{k} \mathbf{e}^{\mathbf{i}\mathbf{k}\mathbf{x}}$$

This suggests (based on what we know from classical mechanics about momentum) that if k > 0 something is "moving" to right (+x direction) and if k < 0 moving to left

How do we really know that something is moving? We need to resort to time dependent Schr. Eqn.

k is wave vector (or wave number). Why is it called wave vector?

• in 3 - D get $e^{i\vec{k}\cdot\vec{r}}$ where \vec{k} points in direction of motion • $e^{i(kx+2\pi)} = e^{ikx}$ periodic • $e^{ik(x+\lambda)} \equiv e^{ikx}$ \therefore $k\lambda = 2\pi$ $k = \frac{2\pi}{\lambda}$

advance x by one full oscillation cycle $\equiv \lambda$ wavelength

k is # of waves per 2π unit length

$$\begin{split} \psi \text{ is probability amplitude} \qquad & \psi = Ae^{ikx} + Be^{-ikx} \qquad \downarrow^{\text{travels to left?}} \\ \text{probability distribution} \qquad & \psi^* \psi = |A|^2 + |B|^2 + A^* Be^{-2ikx} \\ & + AB^* e^{2ikx} \\ & + AB^* e^{2ikx} \\ & + AB^* e^{2ikx} \\ & \downarrow^{\text{travels to}} \\ & 2 \operatorname{Re}(A^*B) = A^*B + AB^* \\ & 2i \operatorname{Im}(A^*B) = A^*B - AB^* \\ & e^{\pm i\alpha} = \cos \alpha \pm i \sin \alpha \end{split}$$

 $\psi * \psi = |A|^2 + |B|^2 + 2\operatorname{Re}(A * B)\cos 2kx + 2\operatorname{Im}(A * B)\sin 2kx$

(delocalized particle)

wiggly - only present if both

A and B are nonzero

standing wave, real not complex or imaginary

A,B determined by specific boundary conditions.

- Can't really see any motion unless we go to time dependent Schr. Eq.
- Need superposition of +k and -k parts to get wiggles.
- Wiggles = superpositon of waves with different values of k

= another kind of superposition (wave packet)

• Motion becomes really clear when we do two things:

* time dependent $\Psi(x,t)$

* create localized states called wavepackets by superimposing several e^{ikx} with *different* |k|'s.

[NEXT LECTURE: CTDL, pages 21-24, 28-31 (motion, infinite box, δ -function potential, start wavepackets).]

Dave Lahr to talk here about use of computers.