Last Time: free particle
$$V(x)=V_0$$
 general solution
 $\psi = Ae^{ikx} + Be^{-ikx}$

A,B are complex constants, determined by "boundary conditions"

 $\begin{aligned} k &= \frac{p}{\hbar} \quad \left(\text{from } e^{ikx}, \text{ eigenfunction of } \not p, \text{ and the real number, } p, \text{ is the eigenvalue} \right) \\ k &= \left[\left(E - V_0 \right) \frac{2m}{\hbar^2} \right]^{1/2} \quad \text{ for } E \geq V_0 \end{aligned}$

probability
distribution
$$P(x) = \psi^* \psi = \underbrace{|A|^2 + |B|^2}_{\text{const.}} + \underbrace{2Re(A^*B)\cos 2kx + 2\operatorname{Im}(A^*B)\sin 2kx}_{\text{wiggly}}$$

only get wiggly stuff when 2 or more different values of k are superimposed. In this special case we had +k and -k.

TODAY

- 1. infinite box
- 2. $\delta(x)$ well
- 3. $\delta(x)$ barrier

What do we know about $\psi(x)$ for physically realistic V(x)?

 $\psi(\pm\infty) = ?$ $\psi^*(x)\psi(x) \text{ for all } x?$ $\int_{-\infty}^{\infty} \psi^*(x)\psi(x)dx?$ Continuity of ψ and $d\psi/dx$?

Computationally convenient potentials have steps and flat regions.

 $\begin{array}{l} \psi \quad {\rm continuous} \\ \frac{d\psi}{dx}, \frac{d^2\psi}{dx^2} \quad {\rm not \ continuous \ for \ infinite \ step, \ and \ not \ for \ \delta-function} \\ \frac{d\psi}{dx} \quad {\rm is \ continuous \ for \ finite \ step} \end{array}$

 $\psi(x) = Ae^{ikx} + Be^{-ikx} = C\cos kx + D\sin kx$

[C=A+B, D=iA-iB]

$$\begin{split} \psi(0) &= 0 \Rightarrow C = 0 \\ \psi(L) &= 0 \Rightarrow kL = n\pi & n = 1, 2, \dots & (\text{why not } n = 0?) \end{split}$$

2 - 3

left or right in x? up or down in E?

Infinite well was easy: 2 boundary conditions plus normalization requirement.

Generalize to stepwise constant potentials: in each V(x)=constant region, need to know 2 complex coefficients and, if the particle is confined within a finite range of x, there is quantization of energy.

* boundary and joining conditions

- * normalization
- * overall phase arbitrariness

So next step is to deal with case where boundary conditions are not so obvious. $\delta(x)$ well and barrier.

 $V(x) = -a \underbrace{|\delta(x)|}_{= 0} a > 0$ units of reciprocal length) $units of the \delta-function well$

Schrödinger Equation

$$\frac{d^2 \psi}{dx^2} = -\left(\underbrace{(E + a\delta(x))}_{E - V(x)}\right) \frac{2m}{\hbar^2} \psi$$

Integrate:

$$\lim_{\varepsilon \to 0} \int_{-\varepsilon}^{+\varepsilon} \frac{d^2 \psi}{dx^2} dx = -\lim_{\varepsilon \to 0} \left[\int_{-\varepsilon}^{+\varepsilon} dx \left(\frac{2mE}{\hbar^2} \psi(x) + \frac{2ma}{\hbar^2} \delta(x) \psi(x) \right) \right]$$

LHS = $\frac{d\psi}{dx} \Big|_{x=+\varepsilon} \pm \frac{d\psi}{dx} \Big|_{x=-\varepsilon} =$ size of discontinuity in
 $\frac{d\psi}{dx}$ at $x = 0$

$$RHS = \begin{bmatrix} 0 & - \end{bmatrix}$$

 $\frac{2\mathrm{ma}}{\mathbf{h}^2}\psi(0)$

because $\frac{2mE}{\hbar^2}\psi(0)$ is finite and integral over region of length $2\epsilon \blacklozenge 0$. because, by the definition of a $\delta\!\!-\!\!{\rm fn}$

 $\int \delta(x)\psi(x)dx = \psi(0)$

or, more generally

$$\int_{+\infty}^{\infty} \delta(x \pm a) \psi(x) dx = \psi(a)$$

Since the potential has even symmetry wrt $x \rightarrow -x$, $\psi(x)$ must be even or odd (not a mixture) with respect to $x \rightarrow -x$, thus $\psi(x) = \pm \psi(-x)$. If $\psi(x)$ is even, there must be a cusp in $\psi(x)$ at x = 0

since there is + reflection symmetry for an even $\psi(x)$

$$\frac{d\psi(+)}{dx} = \pm \frac{d\psi(\pm)}{dx}$$
$$\frac{d\psi(\pm)}{dx} = \pm \frac{ma}{\hbar^2}\psi(0)$$

Now find the eigenfunctions and eigenvalues. Standard procedure: divide space into regions and match ψ and $d\psi/dx$ across boundaries.

2 - 5

2 - 6

required discontinuity in
$$d x = 0$$
.

$$\frac{\mathrm{d}\psi_{\mathrm{R}}(+)}{\mathrm{d}x} = -\rho \mathrm{A}\mathrm{e}^{-0} = \frac{-\mathrm{ma}}{\hbar^2} \psi_{\mathrm{A}}(0)$$

required discontinuity in
$$d\psi/dx$$

x = 0.

$$\therefore \rho = \frac{ma}{\hbar^2}$$
$$\frac{d\psi_L(-)}{dx} = +\rho A e^{+0} = \frac{+ma}{\hbar^2} \psi A 0$$

again
$$\rho = \frac{\mathrm{ma}}{\hbar^2}$$

Only one acceptable value of $\rho \rightarrow$ one value of E < 0

$$\rho = \frac{\mathrm{ma}}{\hbar^2} \quad |\mathbf{E}| = \frac{\rho^2 \hbar^2}{2\mathrm{m}} = \frac{\mathrm{ma}^2}{2\hbar^2} = \pm \mathbf{E}$$
$$\mathbf{E} = \pm \frac{\mathrm{ma}}{2\hbar^2}$$

Actually, the above solution was specifically for an even $\psi(x)$. What about odd $\psi(x)$? No calculation is needed. Why?

Normalization of ψ

$$1 = \int_{-\infty}^{\infty} |\psi|^{2} dx$$

$$\psi_{R} = Ae^{-\max/\hbar^{2}}$$

$$1 = 2\int_{0}^{\infty} |A|^{2} e^{-(2\max/\hbar^{2})x} dx = 2 |A|^{2} \left(\frac{\hbar^{2}}{2\max}\right)$$

$$A = \pm \left(\frac{\max}{\hbar^{2}}\right)^{1/2}$$

see Gaussian
Handout

 $\psi_{\delta} = \pm \left(\frac{ma}{\hbar^2}\right)^{1/2} e^{-ma|x|/\hbar^2} \qquad \begin{array}{c} \text{only one bound} \\ \text{level, regardless} \\ \text{of magnitude of a} \end{array}$

large a, narrower and taller $\boldsymbol{\psi}$

There is a continuum of ψ 's possible for E > 0. Since the particle is free for E > 0, specific form of ψ must reflect specific problem:

e.g., particle probability incident from x < 0 region. It is even more interesting to turn this into the simplest of all barrier scattering problems. See Non-Lecture pp. 2-8, 9, 10.

Nonlecture

Consider instead scattering off $V(x) = + \alpha \delta(x)$ a > 0

 $V(x) = +\alpha\delta(x)$ 0 $W_{L} = A_{L}e^{ikx} + B_{L}e^{-ikx}$ $\psi_{R} = A_{R}e^{ikx} + B_{R}e^{-ikx}$ $k = \left(\frac{2mE}{\hbar^{2}}\right)^{1/2}$

In this problem we have flux entering exclusively from left. The entering probability flux is $|\,A_L^{}\,|^{\,2}.$

Two things can happen:

1.	transmit through barrier	$\propto \mathbf{A}_{\mathbf{R}} ^2$
2.	reflect at barrier	$\propto \mathbf{B}_{\mathrm{L}} ^2$

There is no way that $|\mathbf{B}_{R}|^{2}$ can become different from 0. Why?

Our goal is to determine $\left|A_{R}\right|^{2}$ and $\left|B_{L}\right|^{2}$ vs. E

$$\begin{split} \psi_{L}(0) &= \psi_{R}(0) & \text{continuity of } \psi \\ & \bigvee_{L} \\ A_{L} + B_{L} &= A_{R} + B_{R} & \text{but } B_{R} = 0 & A_{L} + B_{L} = A_{R} \\ & \left[\frac{d\psi_{R}(+0)}{dx} \pm \frac{d\psi_{L}(\pm 0)}{dx} \right] = \pm \frac{2ma}{\hbar^{2}} \psi(0) \\ & \text{ik} A_{R} \pm (\text{ik} A_{L} - \text{ik} B_{L}) = \frac{2ma}{\hbar^{2}} A_{R} & \longleftarrow_{R} \\ & \bigwedge_{A_{R}} = A_{L} + B_{L} & \bigoplus_{A_{R}} = \frac{2ma}{\hbar^{2}} (A_{L} + B_{L}) \\ & \text{ik} (A_{L} + B_{L}) - \text{ik} (A_{L} - B_{L}) = \frac{2ma}{\hbar^{2}} (A_{L} + B_{L}) \\ & \downarrow \downarrow (0) \end{split}$$

$$2ikB_{L} = \frac{2ma}{\hbar^{2}}(A_{L} + B_{L})$$

$$B_{L}\left(2ik - \frac{2ma}{\hbar^{2}}\right) = \frac{2ma}{\hbar^{2}}A_{L}$$

$$\frac{A_{L}}{B_{L}} = \frac{\hbar^{2}}{2ma}\left(2ik - \frac{2ma}{\hbar^{2}}\right) = \frac{ik\hbar^{2}}{ma} - 1 \equiv \alpha$$

$$\alpha + 1 = \frac{ik\hbar^{2}}{ma}$$

$$A_{R} = A_{L} + B_{L} = A_{L}\frac{B_{L}}{B_{L}} + B_{L} = \alpha B_{L} + B_{L} = B_{L}(\alpha + 1)$$

$$A_{R} = B_{L}\left(\frac{ik\hbar^{2}}{ma}\right)$$

$$Transmission is T = \frac{|A_{R}|^{2}}{|A_{L}|^{2}}$$
Reflection is $R = \frac{|B_{L}|^{2}}{|A_{L}|^{2}}$

What is T(E), R(E)?

$$|A_{R}|^{2} = |B_{L}|^{2} \frac{k^{2}\hbar^{4}}{m^{2}a^{2}} = |B_{L}|^{2} \frac{2mE}{\hbar^{2}} \frac{\hbar^{4}}{m^{2}a^{2}} = |B_{L}|^{2} \frac{2\hbar^{2}E}{ma^{2}}$$

$$\left(\frac{A_L}{B_L}\right) \left(\frac{A_L}{B_L}\right)^* = \left(\frac{ik\hbar^2}{ma} - 1\right) \left(-\frac{ik\hbar^2}{ma} - 1\right) \left(\frac{|A_L|^2}{|B_L|^2} = \frac{k^2\hbar^4}{m^2a^2} + 1 = \frac{2\hbar^2E + ma^2}{ma^2} \right)$$

$$R(E) = \frac{ma^2}{2\hbar^2E + ma^2} = \left[\frac{2\hbar^2E}{ma^2} + 1\right]^{-1}$$

$$T(E) = \frac{2\hbar^2E}{2\hbar^2E + ma^2} = \left[\frac{ma^2}{2\hbar^2E} + 1\right]^{-1}$$

$$R(E) + T(E) = 1$$

decreasing to zero as E increases

increasing to one as E increases

Note that: R(E) starts at 1 at E = 0 and goes to 0 at $E \rightarrow \infty$

T(E) starts at 0 and increases monotonically to 1 as E increases.

Note also that, at $E = -\frac{ma^2}{2\hbar^2}$ $R \to \infty$ as E approaches $-ma^2/2\hbar^2$ from above and then changes sign as E passes through $-ma^2/2\hbar^2$!

This is the energy of the bound state in the $\delta(x)\text{-function}$ well

problem.

See CTDL Chapter 1 Problem #3b (page 87) for a related problem