Last Time: free particle $\mathrm{V}(\mathrm{x})=\mathrm{V}_{0}$ general solution

$$
\psi=\mathrm{Ae}^{\mathrm{ikx}}+\mathrm{Be}^{-\mathrm{ikx}}
$$

A,B are complex constants, determined by "boundary conditions"

$$
\begin{aligned}
& \mathrm{k}=\frac{\mathrm{p}}{\hbar} \quad\left(\text { from } \mathrm{e}^{\mathrm{ikx}}, \text { eigenfunction of } \mathrm{p}, \text { and the real number, } p \text {, is the eigenvalue }\right) \\
& \mathrm{k}=\left[\left(\mathrm{E}-\mathrm{V}_{0}\right) \frac{2 \mathrm{~m}}{\hbar^{2}}\right]^{1 / 2} \quad \text { for } \mathrm{E} \geq \mathrm{V}_{0}
\end{aligned}
$$

probability
distribution

$$
P(x)=\psi^{*} \psi=\underbrace{|A|^{2}+|B|^{2}}_{\text {const. }}+\underbrace{2 R e(A * B) \cos 2 k x+2 \operatorname{Im}(A * B) \sin 2 k x}_{\text {wiggly }}
$$

only get wiggly stuff when 2 or more different values of k are superimposed. In this special case we had +k and -k .

TODAY

1. infinite box
2. $\delta(\mathrm{x})$ well
3. $\delta(\mathrm{x})$ barrier

What do we know about $\psi(\mathrm{x})$ for physically realistic $\mathrm{V}(\mathrm{x})$?

$$
\begin{aligned}
& \psi(\pm \infty)=? \\
& \psi^{*}(x) \psi(x) \text { for all } x ? \\
& \int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x ?
\end{aligned}
$$

Continuity of ψ and $d \psi / d x$?
Computationally convenient potentials have steps and flat regions.

infinite step

finite step

infinitely high but infinitely thin step," δ-function"

$$
\psi \text { continuous }
$$

$\frac{d \psi}{d x}, \frac{d^{2} \psi}{d x^{2}}$ not continuous for infinite step, and not for δ-function $\frac{d \psi}{d x}$ is continuous for finite step
More warm up exercises

1. Infinite box

$\psi(x)=A e^{i k x}+B e^{-i k x}=C \cos k x+D \sin k x$

$$
[\mathrm{C}=\mathrm{A}+\mathrm{B}, \mathrm{D}=\mathrm{iA}-\mathrm{iB}]
$$

$\psi(0)=0 \Rightarrow C=0$
$\psi(\mathrm{L})=0 \Rightarrow \mathrm{~kL}=\mathrm{n} \pi$

$$
\mathrm{n}=1,2, \ldots \quad(\text { why not } \mathrm{n}=0 \text { ? })
$$

recall $\mathrm{k}^{2}=\left(\mathrm{E}-\mathrm{V}_{0}\right) \frac{2 \mathrm{~m}}{\hbar^{2}}=\frac{\mathrm{n}^{2} \pi^{2}}{\mathrm{~L}^{2}} \quad \mathrm{~V}_{0}=0 \quad$ here.
Insert $\mathrm{kL}=\mathrm{n} \pi$ boundary condition.
$\mathrm{E}_{\mathrm{n}}=\mathrm{n}^{2} \frac{\hbar^{2} \pi^{2}}{2 \mathrm{~mL}^{2}}=\mathrm{n}^{2}\left[\frac{\mathrm{~h}^{2}}{8 \mathrm{~mL}^{2}}\right] \quad \begin{aligned} & \mathrm{n}=0 \text { would be } \\ & \text { empty box }\end{aligned} \quad \begin{aligned} & \mathrm{E}_{\mathrm{n}} \text { is integer multiple } \\ & \text { of common factor } \mathrm{E}_{1}\end{aligned}$ of common factor, E_{1}. Important for ∞ \# of bound levels wavepackets!
normalization ($\mathrm{P}=1$ for 1 particle in well)

$$
\begin{array}{ll}
1=|D|^{2} \int_{0}^{L} d x \sin ^{2}(n \pi x) \\
\Psi_{n}(x)=(2 / L)^{1 / 2} \sin (n \pi x)
\end{array} \Rightarrow \quad \begin{aligned}
& |D|=(2 / L)^{1 / 2} \quad \text { because } \int_{0}^{L} \sin ^{2}(n \pi x) d x=L / 2 \\
& D=(2 / L)^{1 / 2} \underbrace{e^{i \alpha \alpha}}_{\substack{\text { arbitrary } \\
\text { phase } \\
\text { factor }}}
\end{aligned}
$$

cartoons of $\psi_{n}(x)$: what happens to $\left\{\psi_{n}\right\}$ and $\left\{E_{n}\right\}$ if we move well:
left or right in x ?
up or down in E ?

Infinite well was easy: 2 boundary conditions plus normalization requirement.

Generalize to stepwise constant potentials: in each $\mathrm{V}(\mathrm{x})=$ constant region, need to know 2 complex coefficients and, if the particle is confined within a finite range of x, there is quantization of energy.

* boundary and joining conditions
* normalization
* overall phase arbitrariness

So next step is to deal with case where boundary conditions are not so obvious. $\delta(\mathrm{x})$ well and barrier.

$\longrightarrow \mathrm{V}(\mathrm{x})$
$\mathrm{V}(\mathrm{x})=-\mathrm{a}\|\delta(\mathrm{x})\|$

$\begin{aligned} & \text { Schrödinger } \\ & \text { Equation }\end{aligned} \quad \frac{\mathrm{d}^{2} \psi}{\mathrm{dx}^{2}}=-(\underbrace{(\mathrm{E}+\mathrm{a} \delta(\mathrm{x})}_{\mathrm{E}-\mathrm{V}(\mathrm{x})}) \frac{2 \mathrm{~m}}{\hbar^{2}} \psi$

Integrate:

$$
\left.\begin{array}{r}
\lim _{\varepsilon \rightarrow 0} \int_{-\varepsilon}^{+\varepsilon} \frac{d^{2} \psi}{d x^{2}} d x=-\lim _{\varepsilon \rightarrow 0}\left[\int_{-\varepsilon}^{+\varepsilon} \mathrm{dx}\left(\frac{2 \mathrm{mE}}{\hbar^{2}} \psi(x)+\frac{2 \mathrm{ma}}{\hbar^{2}} \delta(\mathrm{x}) \psi(\mathrm{x})\right)\right.
\end{array}\right] \quad \begin{aligned}
& \text { LHS }=\left.\frac{\mathrm{d} \psi}{\mathrm{dx}}\right|_{\mathrm{x}=+\varepsilon} \pm\left.\frac{\mathrm{d} \psi}{\mathrm{dx}}\right|_{\mathrm{x}=-\varepsilon}=\begin{array}{c}
\text { size of discontinuity in } \\
\frac{d \psi}{\mathrm{dx}} \text { at } \mathrm{x}=0
\end{array} \\
& \mathrm{RHS}=\left[0-\quad-\quad \frac{2 \mathrm{ma}}{\mathbf{h}^{2}} \psi(0)\right.
\end{aligned}
$$

because
$\frac{2 \mathrm{mE}}{\hbar^{2}} \psi(0)$
is finite and integral over region of length $2 \varepsilon \bullet 0$.
because, by the definition of a $\delta-\mathrm{fn}$

$$
\int \delta(x) \psi(x) \mathrm{dx}=\psi(0)
$$

or, more generally

$$
\int_{ \pm \infty}^{\infty} \delta(x \pm a) \psi(x) d x=\psi(a)
$$

Since the potential has even symmetry wrt $\quad \mathrm{x} \rightarrow-\mathrm{x}, \psi(\mathrm{x})$ must be even or odd (not a mixture) with respect to $x \rightarrow-x$, thus $\psi(x)= \pm \psi(-x)$. If $\psi(x)$ is even, there must be a cusp in $\psi(x)$ at $x=0$

since there is + reflection symmetry for an even $\psi(x)$

$$
\frac{\mathrm{d} \psi(+)}{\mathrm{dx}}= \pm \frac{\mathrm{d} \psi(\pm)}{\mathrm{dx}}
$$

$$
\frac{\mathrm{d} \psi(\pm)}{\mathrm{dx}}=\mp \frac{\mathrm{ma}}{\hbar^{2}} \psi(0)
$$

Now find the eigenfunctions and eigenvalues. Standard procedure: divide space into regions and match ψ and $d \psi / d x$ across boundaries.

$$
\begin{aligned}
& \frac{d \psi_{\mathrm{R}}(+)}{\mathrm{dx}}=-\rho \mathrm{Ae}^{-0}=\frac{-\mathrm{ma}}{\hbar^{2}} \psi \mathcal{A}^{(0)} \\
& \therefore \rho=\frac{\mathrm{ma}}{\hbar^{2}} \\
& \frac{\mathrm{~d} \psi_{\mathrm{L}}(-)}{\mathrm{dx}}=+\rho \mathrm{Ae}^{+0}=\frac{+\mathrm{ma}}{\hbar^{2}} \psi(\mathbb{A} 0) \\
& \text { again } \\
& \quad \rho=\frac{\mathrm{ma}}{\hbar^{2}}
\end{aligned}
$$

Only one acceptable value of $\rho \rightarrow$ one value of $E<0$

$$
\begin{aligned}
\rho=\frac{\mathrm{ma}}{\hbar^{2}} \quad|\mathrm{E}|=\frac{\rho^{2} \hbar^{2}}{2 \mathrm{~m}}=\frac{\mathrm{ma}^{2}}{2 \hbar^{2}}= \pm \mathrm{E} \\
\mathrm{E}= \pm \frac{\mathrm{ma}}{2 \hbar^{2}}
\end{aligned}
$$

Actually, the above solution was specifically for an even $\psi(x)$. What about odd $\psi(\mathrm{x})$? No calculation is needed. Why?

Normalization of ψ

$$
\begin{aligned}
& 1=\int_{-\infty}^{\infty}|\psi|^{2} \mathrm{dx} \\
& \psi_{\mathrm{R}}=\mathrm{Ae}^{-\mathrm{max} / \hbar^{2}} \\
& \left.1=2 \int_{0}^{\infty}|\mathrm{A}|^{2} \mathrm{e}^{-\left(2 \mathrm{ma} / \hbar^{2}\right) \mathrm{x}} \mathrm{dx}=2|\mathrm{~A}|^{2}\left(\frac{\hbar^{2}}{2 \mathrm{ma}}\right) \right\rvert\, \\
& \mathrm{A}= \pm\left(\frac{\mathrm{ma}}{\hbar^{2}}\right)^{1 / 2} \quad \begin{array}{l}
\text { see Gaussian } \\
\text { Handout }
\end{array}
\end{aligned}
$$

$$
\psi_{\delta}= \pm\left(\frac{\mathrm{ma}}{\hbar^{2}}\right)^{1 / 2} \mathrm{e}^{-\mathrm{malx} \mid / \hbar^{2}} \quad \begin{aligned}
& \text { only one bound } \\
& \text { level, regardless } \\
& \text { of magnitude of a }
\end{aligned}
$$

large a, narrower and taller ψ

There is a continuum of ψ 's possible for $\mathrm{E}>0$. Since the particle is free for $\mathrm{E}>0$, specific form of ψ must reflect specific problem:
e.g., particle probability incident from $\mathrm{x}<0$ region. It is even more interesting to turn this into the simplest of all barrier scattering problems. See Non-Lecture pp. 2-8, 9, 10.

Nonlecture

Consider instead scattering off $\mathrm{V}(\mathrm{x})=+\alpha \delta(\mathrm{x}) \quad \mathrm{a}>0$

$\mathrm{V}(\mathrm{x})=+\alpha \delta(\mathrm{x})$		
$\begin{array}{cc} 0 & \mathrm{x} \\ \psi_{\mathrm{L}}=\mathrm{A}_{\mathrm{L}} \mathrm{e}^{\mathrm{i} k x}+\mathrm{B}_{\mathrm{L}} \mathrm{e}^{-\mathrm{i} k x} \\ \psi_{\mathrm{R}}=\mathrm{A}_{\mathrm{R}} \mathrm{e}^{\mathrm{i} k x}+\mathrm{B}_{\mathrm{R}} \mathrm{e}^{-\mathrm{ikx}} \end{array} \quad \mathrm{k}=\left(\frac{2 \mathrm{mE}}{\hbar^{2}}\right)^{1 / 2}$		

In this problem we have flux entering exclusively from left.
The entering probability flux is $\left|A_{L}\right|^{2}$.

Two things can happen:

1. transmit through barrier
$\propto\left|\mathrm{A}_{\mathrm{R}}\right|^{2}$
2. reflect at barrier
$\propto\left|B_{L}\right|^{2}$

There is no way that $\left|B_{R}\right|^{2}$ can become different from 0 . Why?

Our goal is to determine $\left|A_{R}\right|^{2}$ and $\left|B_{L}\right|^{2}$ vs. E

$$
\begin{aligned}
& \psi_{L}(0)=\psi_{R}(0) \quad \text { continuity of } \psi \\
& \vartheta \\
& A_{L}+B_{L}=A_{R}+B_{R} \quad \text { but } B_{R}=0 \quad A_{L}+B_{L}=A_{R} \\
& {\left[\frac{\mathrm{~d} \psi_{\mathrm{R}}(+0)}{\mathrm{dx}} \pm \frac{\mathrm{d} \psi_{\mathrm{L}}(\pm 0)}{\mathrm{dx}}\right]=+\frac{2 \mathrm{ma}}{\hbar^{2}} \psi(0)}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{ik}\left(A_{L}+B_{L}\right)-\operatorname{ik}\left(A_{L}-B_{L}\right)=\frac{2 m a}{\hbar^{2}} \underbrace{\left(A_{L}+B_{L}\right)}_{\uparrow}
\end{aligned}
$$

$2 \mathrm{ikB}_{\mathrm{L}}=\frac{2 \mathrm{ma}}{\hbar^{2}}\left(\mathrm{~A}_{\mathrm{L}}+\mathrm{B}_{\mathrm{L}}\right)$
$\mathrm{B}_{\mathrm{L}}\left(2 \mathrm{ik}-\frac{2 \mathrm{ma}}{\hbar^{2}}\right)=\frac{2 \mathrm{ma}}{\hbar^{2}} \mathrm{~A}_{\mathrm{L}}$
$\frac{\mathrm{A}_{\mathrm{L}}}{\mathrm{B}_{\mathrm{L}}}=\frac{\hbar^{2}}{2 \mathrm{ma}}\left(2 \mathrm{ik}-\frac{2 \mathrm{ma}}{\hbar^{2}}\right)=\frac{\mathrm{ik} \hbar^{2}}{\mathrm{ma}}-1 \equiv \alpha$
$\alpha+1=\frac{\mathrm{ik} \hbar^{2}}{\mathrm{ma}}$
$\mathrm{A}_{\mathrm{R}}=\mathrm{A}_{\mathrm{L}}+\mathrm{B}_{\mathrm{L}}=\mathrm{A}_{\mathrm{L}} \frac{\mathrm{B}_{\mathrm{L}}}{\mathrm{B}_{\mathrm{L}}}+\mathrm{B}_{\mathrm{L}}=\alpha \mathrm{B}_{\mathrm{L}}+\mathrm{B}_{\mathrm{L}}=\mathrm{B}_{\mathrm{L}}(\alpha+1)$
$\mathrm{A}_{\mathrm{R}}=\mathrm{B}_{\mathrm{L}}\left(\frac{\mathrm{ik} \hbar^{2}}{}\right)$
$\alpha=\mathrm{A}_{\mathrm{L}} / \mathrm{B}_{\mathrm{L}}$
Transmission is $T=\frac{\left|A_{R}\right|^{2}}{\left|A_{L}\right|^{2}}$
Reflection is $\quad R=\frac{\left|B_{L}\right|^{2}}{\left|A_{L}\right|^{2}}$
What is $T(E), R(E)$?

$$
\left|\mathrm{A}_{\mathrm{R}}\right|^{2}=\left|\mathrm{B}_{\mathrm{L}}\right|^{2} \frac{\mathrm{k}^{2} \hbar^{4}}{\mathrm{~m}^{2} \mathrm{a}^{2}}=\left|\mathrm{B}_{\mathrm{L}}\right|^{2} \frac{2 \mathrm{mE}}{\hbar^{2}} \frac{\hbar^{4}}{\mathrm{~m}^{2} \mathrm{a}^{2}}=\left|\mathrm{B}_{\mathrm{L}}\right|^{2} \frac{2 \hbar^{2} \mathrm{E}}{\mathrm{ma}^{2}}
$$

$$
\left(\frac{\mathrm{A}_{\mathrm{L}}}{\mathrm{~B}_{\mathrm{L}}}\right)\left(\frac{\mathrm{A}_{\mathrm{L}}}{\mathrm{~B}_{\mathrm{L}}}\right)^{*}=\left(\frac{\mathrm{ik} \hbar^{2}}{\mathrm{ma}}-1\right)\left(-\frac{\mathrm{ik} \hbar^{2}}{\mathrm{ma}}-1\right)
$$

$$
\frac{\left|\mathrm{A}_{\mathrm{L}}\right|^{2}}{\left|\mathrm{~B}_{\mathrm{L}}\right|^{2}}=\frac{\mathrm{k}^{2} \hbar^{4}}{\mathrm{~m}^{2} \mathrm{a}^{2}}+1=\frac{2 \hbar^{2} \mathrm{E}+\mathrm{ma}^{2}}{\mathrm{ma}^{2}}
$$

$$
\mathrm{R}(\mathrm{E})=\frac{\mathrm{ma}^{2}}{2 \hbar^{2} \mathrm{E}+\mathrm{ma}^{2}}=\left[\frac{2 \hbar^{2} \mathrm{E}}{\mathrm{ma}^{2}}+1\right]^{-1}
$$

decreasing to zero as E increases

$$
\mathrm{T}(\mathrm{E})=\frac{2 \hbar^{2} \mathrm{E}}{2 \hbar^{2} \mathrm{E}+\mathrm{ma}^{2}}=\left[\frac{\mathrm{ma}^{2}}{2 \hbar^{2} \mathrm{E}}+1\right]^{-1} . \quad \text { increasing to one as E increases }
$$

$$
\mathrm{R}(\mathrm{E})+\mathrm{T}(\mathrm{E})=1
$$

Note that: $\quad R(E)$ starts at 1 at $E=0$ and goes to 0 at $\mathrm{E} \rightarrow \infty$
$\mathrm{T}(\mathrm{E})$ starts at 0 and increases monotonically to 1 as E increases.
Note also that, at $E=-\frac{m a^{2}}{2 \hbar^{2}} \left\lvert\, \begin{aligned} & \mathrm{R} \rightarrow \infty \text { as } \mathrm{E} \text { approaches }-\mathrm{ma}^{2} / 2 \hbar^{2} \text { from above and } \\ & \text { then changes sign as E passes through }-\mathrm{ma}^{2} / 2 \hbar^{2}!\end{aligned}\right.$
This is the energy of the bound state in the $\delta(\mathrm{x})$-function well

See CTDL Chapter 1 Problem \#3b (page 87) for a related problem

