Reading Chapter 1, CTDL, pages 9-39, 50-56, 60-85

Last time: 1. 1-D infinite box
$\mathrm{E}_{\mathrm{n}}=\mathrm{n}^{2}\left[\frac{\mathrm{~h}^{2}}{8 \mathrm{~mL}^{2}}\right]$
continuity of $\psi(x), \frac{d \psi}{d x}, \frac{d^{2} \psi}{d x^{2}}$
$\psi_{\mathrm{n}}=(2 / \mathrm{L})^{1 / 2} \sin (\mathrm{n} \pi \mathrm{x})$
confinement \rightarrow quantization
2. δ-function well one bound level

$$
\begin{aligned}
& \mathrm{E}=\frac{-\mathrm{ma}^{2}}{2 \hbar^{2}} \\
& \psi= \pm\left(\frac{\mathrm{ma}}{\hbar^{2}}\right)^{1 / 2} \mathrm{e}^{-\mathrm{mal} \mid / / \hbar^{2}} \quad \text { (what happens to } \psi \text { as a increases?) }
\end{aligned}
$$

Why do we know there is only one bound level?
What do we know about $\bar{\psi}(p)$? How does this depend on \underline{a} ?
what about $<\mathrm{p}>$?

TODAY and WEDNESDAY:

1. motion \rightarrow time dependent Schr. Eq.
2. motion of constant phase point on $\Psi(x, t)$-- phase velocity
3. motion of $|\Psi(\mathrm{x}, \mathrm{t})|^{2}$ requires non-sharp E
4. encode $\Psi(x, t)$ for $\mathrm{x}_{0}, \Delta \mathrm{x}, \mathrm{p}_{0}, \Delta \mathrm{p}$
5. $\mathrm{p}_{0}, \Delta \mathrm{p}$ from $|\mathrm{g}(\mathrm{k})|$
6. $\mathrm{x}_{0}, \Delta \mathrm{x}$ from stationary phase argument
7. moving, spreading wavepacket $|\Psi(\mathrm{x}, \mathrm{t})|^{2}$
8. group velocity \neq phase velocity -- see CTDL, pages 28-31
9. Motion
time dependent Schr. Eq. $i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi$
if $\mathrm{V}(\mathrm{x})$ is time independent, then
$\Psi_{n}(x, t)=\psi_{n}(x) e^{-\mathrm{iE}_{n} t / \hbar}$
satisifies TDSE?

$$
\begin{aligned}
& \Psi(x, 0)=\sum a_{n} \psi_{n}(x) \quad \text { superposition of eigenstates } \\
& \Psi(x, t)=\sum a_{n} \psi_{n}(x) e^{-i \omega_{n} t} \quad \omega_{\mathrm{n}}=\mathrm{E}_{\mathrm{n}} / \hbar
\end{aligned}
$$

can use this form of Ψ to describe time dependence of any non-eigenstate initial
go back to free particle to really see motion of QM systems

$$
\begin{aligned}
\psi_{|\mathrm{k}|}(\mathrm{x}) & =A \mathrm{e}^{\mathrm{ikx}}+\mathrm{Be}^{-\mathrm{ikx}} \\
\mathrm{E}_{\mathrm{k}}-\mathrm{V}_{0} & =\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}}=\frac{\mathrm{p}^{2}}{2 \mathrm{~m}} \\
\omega_{\mathrm{k}} & =\left(\mathrm{E}_{\mathrm{k}}-\mathrm{V}_{0}\right) / \hbar=\frac{\hbar \mathrm{k}^{2}}{2 \mathrm{~m}} \geq 0
\end{aligned}
$$

WHAT ABOUT ARBITRARY
ZERO OF E?
add a phase factor which expresses the
arbitrariness of the zero of energy :

$$
\begin{aligned}
\Psi_{|\mathrm{k}|}(\mathrm{x}, \mathrm{t}) & =\mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}} \mathrm{t}}\left[\mathrm{Ae}^{\mathrm{i} \mathrm{kx}}+\mathrm{Be}^{-\mathrm{i} k \mathrm{x}}\right] \mathrm{e}^{-\mathrm{i} V_{0} \mathrm{t} / \hbar} \\
& =\left[\mathrm{Ae}^{\mathrm{i}\left(\mathrm{kx}-\omega_{\mathrm{k}} \mathrm{t}\right)}+\mathrm{Be}^{-\mathrm{i}\left(\mathrm{kx}+\omega_{\mathrm{k}} \mathrm{t}\right)}\right] \mathrm{e}^{-\mathrm{i} V_{0} \mathrm{t} / \hbar}
\end{aligned}
$$

2. How does point of constant $\left[\begin{array}{c}\text { argument } \\ \text { phase }\end{array}\right]$ move?

$$
\begin{aligned}
& \text { const }=\mathrm{kx}_{\phi}-\omega_{\mathrm{k}} \mathrm{t} \\
& \mathrm{x}_{\phi}(\mathrm{t})=+\frac{\omega_{\mathrm{k}} \mathrm{t}}{\mathrm{k}}+\mathrm{x}_{\phi}(0) \quad \begin{array}{l}
\text { moves in }+\mathrm{x} \\
\text { direction if } \mathrm{k}>0
\end{array}
\end{aligned}
$$

$\mathrm{v}_{\phi}=\frac{\mathrm{dx}_{\phi}}{\mathrm{dt}}=\frac{\omega_{\mathrm{k}} \leftarrow \frac{\hbar \mathrm{k}^{2}}{2 \mathrm{~m}} \quad \quad \text { phase velocity } \quad \mathrm{v}_{\phi}=\frac{\hbar \mathrm{k}}{2 \mathrm{~m}}=\frac{\mathrm{p}}{\frac{2 \mathrm{~m}}{?}}=\frac{\mathrm{v}}{2} \quad \begin{array}{l}\text { (half as fast as we } \\ \text { naively expect) }\end{array}}{\text { ne }}$
first term in $\Psi(x, t)$ moves to $+x$ (right), second to $-x$ (left).
But if we treat the $\mathrm{e}^{-\mathrm{i} \mathrm{V}_{0} \mathrm{t} / \hbar}=\mathrm{e}^{-\mathrm{i} \omega_{0} \mathrm{t}}$ term explicitly,
we get $\mathrm{v}_{\phi}=\frac{\omega_{\mathrm{k}}+\omega_{0}}{\mathrm{k}}$! Any velocity we want! IS THIS A PROBLEM? WHY NOT?
(compare v_{ϕ} for a +k , -k pair of free particle states)
3. But what about the probability distribution, $\mathbf{P}(x, t)$?

$$
\begin{aligned}
\mathbf{P}(\mathrm{x}, \mathrm{t})=\Psi *(\mathrm{x}, \mathrm{t}) \Psi(\mathrm{x}, \mathrm{t})=|\mathrm{A}|^{2}+|\mathrm{B}|^{2} & +2 \operatorname{Re}(\mathrm{~A} * \mathrm{~B}) \cos 2 \mathrm{kx} \\
& +2 \operatorname{Im}(\mathrm{~A} * \mathrm{~B}) \sin 2 \mathrm{kx}
\end{aligned}
$$

no time dependence! lose all t-dependence because cross terms (+k , $-\mathrm{k})$ still belong to same E_{k} ! The wiggles in $\Psi^{*} \Psi$ are standing waves, not traveling waves. No ambiguity about V_{0} either?

What is the expectation value of $\hat{\mathrm{p}}<\mathrm{p}\rangle=\frac{\int \Psi * \hat{\mathrm{p}} \Psi \mathrm{dx}}{\int \Psi * \Psi \mathrm{dx}}$?

$$
\langle\mathrm{p}\rangle=\hbar \mathrm{k} \frac{|\mathrm{~A}|^{2}-|\mathrm{B}|^{2}}{|\mathrm{~A}|^{2}+|\mathrm{B}|^{2}}
$$

This is an interesting result that suggests something that is always true and a very useful inspection tool. Whenever the wavefunction is pure real or pure imaginary, $\langle\mathrm{p}\rangle=0$.

SO HOW DO WE ENCODE $\Psi(x, t)$ for both spatial localization and temporal motion? need several k components, not just $+\mathrm{k},-\mathrm{k}$
$*^{*} 4$. Recipe for encoding Gaussian Wavepacket for $\mathrm{x}_{0}, \Delta \mathrm{x}, \mathrm{p}_{0}, \Delta \mathrm{p}$
Start with $\Psi(x, 0)$ and later build in correcte $\mathrm{e}^{-\mathrm{i} \omega_{k} t}$ dependence for each k component.

$$
\int_{-\infty}^{\infty} G\left(x ; x_{0}, \Delta x\right) d x=1
$$

$$
\begin{aligned}
\langle x\rangle & =x_{0} \\
\left\langle x^{2}\right\rangle= & (\Delta x)^{2}+x_{0}^{2} \quad(\Delta x)^{2} \text { is called the variance in } x \\
& {\left[\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right]^{1 / 2} \equiv \Delta x }
\end{aligned}
$$

5.73 Lecture \#3

$4 \mathrm{~A} . \underline{\mathrm{k}}_{0}, \Delta \mathrm{k}$.
Now what can we say about $g(k)$ in $\Psi(x, 0)$ above?

$$
\begin{gathered}
G\left(\mathrm{k} ; \mathrm{k}_{0}, \Delta \mathrm{k}\right)=(2 \pi)^{-1 / 2}\left(\frac{\mathrm{a}}{2^{1 / 2}}\right) \mathrm{g}(\mathrm{k}) \\
\therefore \frac{\mathrm{a}^{2}}{4} \longleftrightarrow \frac{1}{2(\Delta \mathrm{x})^{2}} \quad \begin{array}{c}
\mathrm{g}(\mathrm{k})=\mathrm{e}^{-\left(\mathrm{a}^{2} / 4\right)\left(\mathrm{k}-\mathrm{k}_{0}\right)^{2}} \\
\text { compared to }
\end{array} \\
\therefore \frac{\mathrm{a}}{2^{1 / 2} \longleftrightarrow \frac{1}{\Delta \mathrm{x}}} \quad \begin{array}{c}
\mathrm{G}\left(\mathrm{x} ; \mathrm{x}_{0}, \Delta \mathrm{x}\right)=(2 \pi)^{-1 / 2} \frac{1}{\Delta \mathrm{x}} \mathrm{e}^{-\left(\mathrm{x}-\mathrm{x}_{0}\right)^{2} /\left[2(\Delta \mathrm{x})^{2}\right]} \\
\therefore \quad\langle\mathrm{k}\rangle=\mathrm{k}_{0} \\
\Delta \mathrm{k}=\left(2^{1 / 2} / \mathrm{a}\right)
\end{array} \begin{array}{l}
\begin{array}{l}
\text { you can verify } \\
\text { by doing } \\
\text { relevant } \\
\text { integrals }
\end{array}
\end{array}
\end{gathered}
$$

So we already know, by inspection (rather than integration), the $\mathrm{k}_{0}, \Delta \mathrm{k}$ parts for $\psi(\mathrm{x}, 0)$.

4B. What about $\mathrm{x}_{0}, \underline{\mathrm{x}}$ for $\mathrm{G}\left(\mathrm{k} ; \mathrm{k}_{\underline{0}}, \Delta \mathrm{k}\right)$?
To do this, perform the FT implicit in defn. of $\Psi(x, 0)$ [CTDL, pages 61-62]
$\Psi(x, 0)=\frac{a^{1 / 2}}{(2 \pi)^{3 / 4}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\mathrm{a}^{2} / 4\right)\left(\mathrm{k}-\mathrm{k}_{0}\right)^{2}+\mathrm{ikx}} \mathrm{dk}$
complete the squares in the exponent (because Gaussian integrals are easy)

result $\quad \Psi(\mathrm{x}, 0)=\left(\frac{2}{\pi \mathrm{a}^{2}}\right)^{1 / 4} \mathrm{e}^{\mathrm{ik} \mathrm{k}_{0} \mathrm{e}^{-\mathrm{x}^{2} / \mathrm{a}^{2}}} \begin{aligned} & \text { FT of a Gaussian is a } \\ & \text { Gaussian! }\end{aligned}$

$$
\begin{gathered}
\langle\mathrm{x}\rangle=\left\langle\mathrm{x}_{0}\right\rangle=0 \\
\left(2^{1 / 2} / \mathrm{a}\right) \\
\begin{array}{l}
\Delta \mathrm{x}=2^{-1 / 2} \mathrm{a} \\
\left(\text { for } \Psi * \Psi, \Delta \mathrm{x}=\mathrm{a} / 2, \Delta \mathrm{k}=\frac{1}{\mathrm{a}}, \text { and } \Delta \mathrm{x} \Delta \mathrm{k}=1 / 2\right)
\end{array}
\end{gathered}
$$

ALL OF THE $\mathrm{k}_{0}, \Delta \mathrm{k}$ INFORMATION IS
HIDDEN
$\Delta \mathrm{x} \Delta \mathrm{k}=1 \quad \Delta \mathrm{x} \Delta \mathrm{p}=\hbar \quad$ minimum uncertainty!

This wavepacket: 1. minimum uncertainty
2. centered at $x_{0}=0$

5,6 . How to build a w.p. (not necessarily Gaussian) centered at arbitrary x_{0} with arbitrary $\Delta \mathrm{x}$?

* Start again with a new $g(k)$

$$
\left.\Psi(\mathrm{x}, 0)=\frac{\mathrm{a}^{1 / 2}}{(2 \pi)^{3 / 4}} \underbrace{\int_{-\infty}^{\infty}}_{\begin{array}{l}
\text { complex } \mathrm{g}(\mathrm{k}) \text { written } \\
\text { in amplitude, } \\
\text { argument form }
\end{array}} \mathrm{g}(\mathrm{k}) \right\rvert\, \mathrm{e}^{\mathrm{i} \alpha(\mathrm{k})} \mathrm{e}^{\mathrm{ikx}} \mathrm{dk}
$$

5. let $|g(k)|$ be sharply peaked near $k=k_{0}$. [It could be $e^{-\left(a^{2} / 4\right)\left(k-k_{0}\right)^{2}}$ and then we already know k_{0} and $\Delta \mathrm{k}=2^{1 / 2} / \mathrm{a}$.]
6. Thus we really only need to look at $\alpha(\mathrm{k})$ near k_{0} in order to find info about $\langle x\rangle$ and Δx. This is a very important simplification (or focussing of attention)!

Expand in $\alpha(k)$ in power series in $\left(k-k_{0}\right)$

$$
\alpha(\mathrm{k}) \cong \underbrace{\approx \alpha\left(\mathrm{k}_{0}\right)}_{\alpha_{0}}+\left.\left(\mathrm{k}-\mathrm{k}_{0}\right) \frac{\mathrm{d} \alpha}{\mathrm{dk}}\right|_{\mathrm{k}=\mathrm{k}_{0}}
$$

Thus the exponential in integral becomes

$$
\mathrm{e}^{\mathrm{i} \alpha_{0} \mathrm{e}_{\substack{\mathrm{i} \\ \text { very wiggly function of } \mathrm{x} \text { except at a special region } \\ \text { of } \mathrm{x}}}^{\left[\left(\mathrm{k}-\mathrm{k}_{0}\right) \frac{\mathrm{d} \alpha}{\mathrm{dk}}+\mathrm{kx}\right]}}
$$

Now what we want to know is the value of x (for k near k_{0}) where the phase factor becomes independent of k . This is because, when we integrate over k , if the wiggly factor in the integrand stops wiggling, the integral accumulates to its final value near this value of k !
plot I(k) vs. k
$\mathrm{I}(\mathrm{k})=\int_{-\infty}^{\mathrm{k}}($ integrand $) \mathrm{dk}$

The value of the integral evaluated at this special value of x (that we do not yet know) $\mathrm{x}=\mathrm{x}_{0}(\mathrm{t})$ is $\sim \mathrm{g}\left(\mathrm{k}_{0}\right) \delta \mathrm{k}$ where $\delta \mathrm{k}$ is the change in k required to cause the phase factor to change by π.

MOST
IMPORTANT
IDEA IN THE
ENTIRE
LECTURE!

Solve for value of x where the phase factor stops changing, i.e.

$$
\frac{\mathrm{d}}{\mathrm{dk}}\left[\left(\mathrm{k}-\mathrm{k}_{0}\right) \frac{\mathrm{d} \alpha}{\mathrm{dk}}+\mathrm{kx}\right]=0
$$

phase factor

stationary phase requirement

$$
\therefore \text { want } \frac{\mathrm{d} \alpha}{\mathrm{dk}}+\mathrm{x}=0
$$

$$
\text { If we let }\left.\frac{\mathrm{d} \alpha}{\mathrm{dk}}\right|_{\mathrm{k}=\mathrm{k}_{0}} \equiv-\mathrm{x}_{0} \text {, then the phase factor is stationary when } \mathrm{x} \text { is near } \mathrm{x}_{0}
$$

$$
\Psi(\mathrm{x}, 0)=\frac{\mathrm{a}^{1 / 2}}{(2 \pi)^{3 / 4}} \int_{-\infty}^{\infty} \mathrm{e}^{-\left(\mathrm{a}^{2} / 4\right)\left(\mathrm{k}-\mathrm{k}_{0}\right)^{2}} \underbrace{\underbrace{\mathrm{e}^{-\mathrm{i}\left(\mathrm{k}-\mathrm{k}_{0}\right) \mathrm{x}_{0}} \mathrm{e}^{\mathrm{ikx}}} \mathrm{dk}}_{\begin{array}{c}
\text { shifts } \Psi \text { to be sharply } \\
\text { peaked at any } \mathrm{x}_{0}
\end{array}} \underset{\delta\left(\mathrm{x}, \mathrm{x}_{0}\right)}{\mathrm{e}^{-\mathrm{ik}\left(x-x_{0}\right)} \mathrm{e}^{i \mathrm{k}_{0} x_{0}}}
$$

This $|\Psi|^{2}$ is localized at $\mathrm{x}_{0}, \mathrm{k}_{0}$, and has widths $\Delta \mathrm{x}, \Delta \mathrm{k}$,

$$
\begin{array}{ll}
\Delta \mathrm{k}=? & \text { (easy: by inspection) } \\
\Delta \mathrm{x}=? & \text { (must perform Fourier transform) }
\end{array}
$$

This prescription does not permit free specification of $\Delta \mathrm{x} . \Delta \mathrm{x}$ must still be $\Delta \mathrm{x}=2^{-1 / 2} \mathrm{a}$ if $|\mathrm{g}(\mathrm{k})|$ is a Gaussian [shortcut: $\Delta \mathrm{x} \Delta \mathrm{k}=1$].
[N.B. We are talking about the shape of $\Psi(x, 0)$, not the QM Δx and Δp associated with a particular Ψ.]

Integral accumulates near $k=k_{0}$ but only when $x \approx x_{0}$.
7. Now we are ready to let $\Psi(x, t)$ evolve in time

$$
\begin{aligned}
\left.\Psi(\mathrm{x}, \mathrm{t})=\frac{\mathrm{a}^{1 / 2}}{(2 \pi)^{3 / 4}} \int_{-\infty}^{\infty} \lg (\mathrm{k}) \right\rvert\, \mathrm{e}^{-\mathrm{i}\left(\mathrm{k}-\mathrm{k}_{0}\right) \mathrm{x}_{0}} \mathrm{e}^{\mathrm{ikx}} \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}} \mathrm{t}} \mathrm{dk} \\
\omega_{\mathrm{k}}=\frac{\mathrm{E}_{\mathrm{k}}}{\hbar}=\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m} \hbar}=\frac{\hbar \mathrm{k}^{2}}{2 \mathrm{~m}} \quad \begin{array}{l}
\text { SPECIAL } \\
\begin{array}{c}
\text { CHOICE OF } \\
\text { ZERO OF E } \\
\mathrm{V}_{0}=0
\end{array}
\end{array}
\end{aligned}
$$

See CTDL, page 64 for evaluation of $\int d k$ integral and simplification of $\Psi(x, t)$ and $|\Psi(x, t)|^{2}$. Arbitrary choice of zero of E drops out of $|\Psi(\mathrm{x}, \mathrm{t})|^{2}$.

$$
\Psi_{C \mathrm{x}, \mathrm{t})^{2}}^{2}=\underbrace{\left(\frac{2}{\pi \mathrm{a}^{2}}\right)^{1 / 2}\left(1+\frac{4 \hbar^{2} \mathrm{t}^{2}}{\mathrm{~m}^{2} \mathrm{a}^{4}}\right)^{-1 / 2}}_{\begin{array}{c}
\text { t-dependent } \\
\text { normalization } \\
\text { factor }
\end{array}} \exp -\underbrace{[\frac{2 \mathrm{a}^{2}(\mathrm{x}-\frac{\overbrace{\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}} \mathrm{t}}^{\mathrm{x}}}{\mathrm{~m}})^{2}}{\mathrm{a}^{4}+\frac{4 \hbar^{2} \mathrm{t}^{2}}{\mathrm{~m}^{2}}}]}_{\text {spreading }}
$$

Complicated: $\quad * \Delta x$ depends on t, reaching minimum value when $t=0$

* $x_{0 t}$, the center of the wavepacket, moves as

$$
\mathrm{x}_{0 \mathrm{t}}=\underbrace{\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}} \mathrm{t}}_{\mathrm{v}_{\text {group }}} \mathrm{v}_{\text {phase }}=\frac{\hbar \mathrm{k}_{0}}{2 \mathrm{~m}}!
$$

${ }^{*}|\mathrm{~g}(\mathrm{k})|$, which is independent of time, contains all info about $\mathrm{p}_{0}, \Delta \mathrm{p}$.
Therefore these quantities do not evolve in time for a free wavepacket. They do evolve if $\mathrm{V}(\mathrm{x})$ is not constant.

Think about chopping up the Fourier transform of $|\Psi(x, t)|^{2}$ into pieces corresponding to different values of p. If there is no force acting on the wavepacket, the $<\mathrm{p}>$ for each piece of the original $|\Psi(\mathrm{x}, \mathrm{t})|^{2}$ remains constant.

Summary

We know how to encode a wavepacket for $\mathrm{p}_{0}, \Delta \mathrm{p}, \mathrm{x}_{0}$ (and since $\Delta \mathrm{x}$ is an explicit function of time, we can let $\Psi(\mathrm{x}, \mathrm{t})$ evolve until it has the desired $\Delta \mathrm{x}$ and then shift $\mathrm{x}_{0 \mathrm{t}}$ back to the desired location where $\Delta \mathrm{x}$ has the now specified value).

We also know how to inspect an arbitrary Gaussian $\Psi(\mathrm{x}, \mathrm{t})$ to reveal its $\mathrm{x}_{0 \mathrm{t}}$, $\Delta \mathrm{x}, \mathrm{p}_{0 \mathrm{t}}, \Delta \mathrm{p}$ without evaluating any integrals.

