Lecture \#4: Stationary Phase and Gaussian Wavepackets

Last time:

tdSE \rightarrow motion, motion requires non-sharp E
phase velocity
began Gaussian Wavepacket
goal: $\langle\mathrm{x}\rangle, \Delta \mathrm{x},\langle\mathrm{p}\rangle=\hbar\langle\mathrm{k}\rangle, \Delta \mathrm{p}=\hbar \Delta \mathrm{k}$ by construction or inspection
$\Psi(\mathrm{x}, \mathrm{t})$ is a complex function of real variables. Difficult to visualize.
What are we trying to do here?
techniques for solving series of increasingly complex problems illustrate
philosophical points along the way to solving problems.
So far: \(\left.\begin{array}{l}free particle

infinite well

\delta -function\end{array}\right\}\) very artificial | * nothing particle-like |
| :--- |
| |
| |
| |
| |
| |
| |
| |

Minimum Uncertainty (Gaussian) Wavepacket -- QM version of particle. We are going to construct a $\Psi(x, t)$ for which $|\Psi(x, t)|^{2}$ is a Gaussian in x and the FT of $\Psi(x, t)$, gives $\Phi(k, t)$, for which $|\Phi(k, t)|^{2}$ is a Gaussian in k.
center of wavepacket follows Newton's Laws
extra stuff: spreading
interference
tunneling
Today: (improved repeat of material in pages 3-4 through 3-1
$\begin{aligned} & \text { infer } \Delta \mathrm{k} \text { by comparing } \mathrm{g}(\mathrm{k}) \text { to std. } \mathrm{G}\left(\mathrm{x} ; \mathrm{x}_{0}, \Delta \mathrm{x}\right) \\ & \mathrm{g}(\mathrm{k})=|\mathrm{g}(\mathrm{k})| \mathrm{e}^{\mathrm{i} \alpha(\mathrm{k})} \quad \text { for } \mathrm{k} \text { near } \mathrm{k}_{0}\end{aligned}$
$\begin{array}{ll}\left.\frac{\mathrm{d} \alpha}{\mathrm{dk}}\right|_{\mathrm{k}=\mathrm{k}_{0}} \equiv-\mathrm{x}_{0} & \text { STATIONARY PHASE }\end{array}$
$|\Psi(\mathrm{x}, \mathrm{t})|^{2} \quad \begin{aligned} & \text { moving, spreading wavepacket }\end{aligned}$
$\mathrm{v}_{\mathrm{G}} \neq \mathrm{v}_{\phi}$$\quad \begin{aligned} & \text { how is it possible that the center of the wavepacket } \\ & \text { moves at a different velocity than its center } \mathrm{k} \text { - component }\end{aligned}$

Here is a normalized Gaussian (see Gaussian Handout)

$$
\left.\begin{array}{l}
\qquad G\left(x ; x_{0}, \Delta x\right)=(2 \pi)^{-1 / 2} \frac{1}{\Delta x} \mathrm{e}^{-\left(x-x_{0}\right)^{2}} /\left[2(\Delta x)^{2}\right] \\
{\left[\text { normalized } \int_{-\infty}^{\infty} G\left(x ; x_{0}, \Delta x\right) \mathrm{dx}=1\right]} \\
\text { center } \quad\langle\mathrm{x}\rangle=\mathrm{x}_{0} \\
\text { std. dev. } \quad \Delta \mathrm{x} \equiv\left[\left\langle\mathrm{x}^{2}\right\rangle-\langle\mathrm{x}\rangle^{2}\right]^{1 / 2}
\end{array}\right\} \text { by construction }, ~ l
$$

Now compare this special form against

$$
\Psi(x, 0)=\frac{\mathrm{a}^{1 / 2}}{(2 \pi)^{3 / 4}} \int_{-\infty}^{\infty} \underbrace{\mathrm{e}^{-\left(\mathrm{a}^{2} / 4\right)\left(\mathrm{k}-\mathrm{k}_{0}\right)^{2}}}_{\mathrm{g}(\mathrm{k})} \underbrace{\mathrm{e}^{\mathrm{i} k x}}_{\text {free particle }} \mathrm{dk} \quad \underset{\text { Gaussian in } \mathrm{k}}{\text { a Gaussian in } \mathrm{k}, \text { but }} \begin{array}{l}
\text { what width and }\langle\mathrm{k}\rangle ?
\end{array})
$$

by analogy

$$
\mathrm{G}\left(\mathrm{k} ; \mathrm{k}_{0}, \Delta \mathrm{k}\right)=(2 \pi)^{-1 / 2} \underbrace{\left(\frac{\mathrm{a}}{2^{1 / 2}}\right)}_{1 / \Delta \mathrm{k}} \mathrm{~g}(\mathrm{k})
$$

$$
\begin{aligned}
& \frac{\mathrm{a}^{2}}{4}=\frac{1}{2(\Delta \mathrm{k})^{2}} \\
& \therefore \quad \Delta \mathrm{k}=\frac{2^{1 / 2}}{\mathrm{a}}
\end{aligned} \quad \text { by analogy with } \mathrm{G}\left(\mathrm{x} ; \mathrm{x}_{0}, \Delta \mathrm{x}\right)
$$

So casual inspection of this form of $\Psi(x, 0)$ gives us $\langle k\rangle$ and Δk. Not quite so easy to get $\langle\mathrm{x}\rangle$ and $\Delta \mathrm{x}$.
If we actually carry out the F.T. specified in the definition of $\Psi(x, 0)$ above (see bottom of page 3-4), we get

$$
\begin{array}{lc}
\Psi(\mathrm{x}, 0)=\left(\frac{2}{\pi \mathrm{a}^{2}}\right)^{1 / 4} \mathrm{e}^{\mathrm{ik} \mathrm{k}_{0} \mathrm{x}} \mathrm{e}^{-\mathrm{x}^{2} / \mathrm{a}^{2}} & \frac{1}{2(\Delta \mathrm{x})^{2}}=\frac{1}{\mathrm{a}^{2}} \\
\langle\mathrm{x}\rangle=\mathrm{x}_{0}=0 & \Delta \mathrm{x}=\mathrm{a} / 2^{1 / 2} \\
\Delta \mathrm{x}=2^{-1 / 2} \mathrm{a}, & \text { previously }\langle\mathrm{k}\rangle=\mathrm{k}_{0}, \Delta \mathrm{k}=\frac{2^{1 / 2}}{\mathrm{a}} ;
\end{array}
$$

But the square of a Gaussian is a Gaussian and its $\Delta \mathrm{x}$ or $\Delta \mathrm{k}$ is a factor of $2^{-1 / 2}$ smaller than the original value.
Δx for $\Psi(x, 0)$ is $2^{-1 / 2} a, \Delta x$ for $|\Psi(x, 0)|^{2}$ is $\frac{\mathrm{a}}{2}$.
Δk for $\Phi(k, 0)$ is $\frac{2^{1 / 2}}{a}, \Delta \mathrm{k}$ for $|\Phi(k, 0)|^{2}$ is $\frac{1}{\mathrm{a}}$.
$\Delta x \Delta k=\frac{a}{2} \frac{1}{a}=\frac{1}{2}$
See CTDL, p. 231 [$\Delta \mathrm{x}, \Delta \mathrm{k}$ are defined rigorously in contrast to treatment on p. 23.]

This is a very special Gaussian wavepacket

$$
\begin{aligned}
& * \text { minimum uncertainty } \\
& * x_{0}=0
\end{aligned}
$$

What about more general Gaussian wavepackets.?

$$
\mathrm{g}(\mathrm{k}) \text { is a complex function of } \mathrm{k} \text { sharply peaked near } \mathrm{k}=\mathrm{k}_{0}
$$

$$
g(k)=|g(k)| e^{i \alpha(k)} \quad \text { amplitude, argument form }
$$

If $|\mathrm{g}(\mathrm{k})|$ is sharply peaked near $\mathrm{k}=\mathrm{k}_{0}$, then the only relevant part of $\alpha(\mathrm{k})$ is the part for k near k_{0}

$$
\begin{aligned}
& \operatorname{Expand} \alpha(\mathrm{k})=\underbrace{\alpha\left(\mathrm{k}_{0}\right)}_{\alpha_{0}}+\left.\left(\mathrm{k}-\mathrm{k}_{0}\right) \frac{\mathrm{d} \alpha}{\mathrm{dk}}\right|_{\mathrm{k}=\mathrm{k}_{0}}+\quad \begin{array}{l}
\text { higher terms } \\
\text { neglected }
\end{array} \\
& \Psi(\mathrm{x}, 0)=\frac{\mathrm{a}^{1 / 2}}{(2 \pi)^{3 / 4}} \int_{-\infty}^{\infty} \underbrace{|g(\mathrm{k})| \mathrm{e}^{\mathrm{i} \alpha(\mathrm{k})} \mathrm{e}^{\mathrm{ikx}}} \mathrm{dk} \\
& \left.\left\lvert\, \mathrm{g}(\mathrm{k}) \mathrm{e}^{\mathrm{i} \alpha_{0}} \mathrm{e}^{\left.\mathrm{i}\left(\mathrm{k}-\mathrm{k}_{0}\right) \frac{\mathrm{d} \alpha}{\mathrm{dk}}\right|_{\mathrm{k}=k_{0}}}+\mathrm{kx}\right.\right]
\end{aligned}
$$

We want to "cook" $\Psi(\mathrm{x}, 0)$ so that it is localized near $\mathrm{x}=\mathrm{x}_{0}$. In order for this to happen, the factor $\left[\left.\left(k-k_{0}\right) \frac{\mathrm{d} \alpha}{\mathrm{dk}}\right|_{\mathrm{k}=\mathrm{k}_{0}}+\mathrm{kx}\right]$, must be indpendent of k near $\mathrm{k}=\mathrm{k}_{0}$. Stationary Phase!

How does integral of a wiggly function accumulate?
e.g.,
$I(k)=\int_{-\infty}^{k} e^{i k^{\prime} x} d k^{\prime}$

but if phase factor stops wiggling near $\mathrm{k}=\mathrm{k}_{0}$

where $\delta \mathrm{k}$ is range of k over which the phase factor changes by π.
So, arrange for phase factor to become stationary near $k=k_{0}$

$$
\begin{aligned}
& 0=\frac{\mathrm{d}}{\mathrm{dk}}\left[\left(\mathrm{k}-\mathrm{k}_{0}\right) \frac{\mathrm{d} \alpha}{\mathrm{dk}}+\mathrm{kx}\right] \\
& 0=\frac{\mathrm{d} \alpha}{\mathrm{dk}}+\mathrm{x} \quad \text { satisfied if }\left.\quad \frac{d \alpha}{d k}\right|_{k=k_{0}} \equiv-x_{0}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& -\left.\frac{\mathrm{d} \alpha}{\mathrm{dk}}\right|_{\substack{\mathrm{k}=\mathrm{k}_{0} \\
\downarrow}} \\
& \Psi(x, 0)=\frac{a^{1 / 2}}{(2 \pi)^{3 / 4}} e^{i \alpha_{0}} \int_{-\infty}^{\infty} \underbrace{e^{-\left(a^{2} / 4\right)\left(k-k_{0}\right)^{2}}}_{|g(k)|} \underbrace{e^{-i\left(k-k_{0}\right) x_{0}} e^{i k x}}_{e^{i k\left(x-x_{0}\right)} e^{i k_{0} x_{0}}} d k \\
& \binom{\text { insertion of } \mathrm{e}^{ \pm \mathrm{i}\left(\mathrm{k}-\mathrm{k}_{0}\right) \mathrm{x}_{0}} \text { phase factor }}{\text { to center w.p. at } \mathrm{x}_{0} .} \\
& \delta\left(\mathrm{x}_{\mathrm{x}} \mathrm{x}_{0}\right) \begin{array}{l}
\text { shifts } \Psi \text { to any } \\
\text { desired } \mathrm{x}_{0}
\end{array}
\end{aligned}
$$

Now put in time-dependence by adding

$$
\begin{array}{r}
\mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}}^{\mathrm{t}}} \text { factor } \omega_{\mathrm{k}}=\frac{\mathrm{E}_{\mathrm{k}}}{\hbar}=\left(\frac{\hbar^{2} \mathrm{k}^{2}}{2 \mathrm{~m}}\right) \frac{1}{\hbar} \\
\omega_{\mathrm{k}}=\frac{\hbar \mathrm{k}^{2}}{2 \mathrm{~m}} \\
\Psi(\mathrm{x}, \mathrm{t})=\frac{\mathrm{a}^{1 / 2}}{(2 \pi)^{3 / 4}} \int_{-\infty}^{\infty} \underbrace{|g(\mathrm{k})| \mathrm{e}^{-i\left(\mathrm{k}-\mathrm{k}_{0}\right) \mathrm{x}_{0}}}_{\mathrm{g}(\mathrm{k})} \underbrace{e^{i k x}}_{\text {eigenstate of } \mathbf{H}} \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}} \mathrm{t}} \mathrm{dk}
\end{array}
$$

This FT is evaluated and simplified in CTDL, page 64

$$
\mathrm{I} \Psi(\mathrm{x}, \mathrm{t}) \mathrm{I}^{2}=\left(\frac{2}{\pi \mathrm{a}^{2}}\right)^{1 / 2} \underbrace{\left(1+\frac{4 \hbar^{2} \mathrm{t}^{2}}{\mathrm{~m}^{2} \mathrm{a}^{4}}\right)}_{\begin{array}{c}
\text { time dependent } \\
\text { normalization }
\end{array}} \exp -\underbrace{\left[\frac{2 \mathrm{a}^{2}\left(\mathrm{x}-\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}} \mathrm{t}\right)^{2}}{\mathrm{a}^{4}+\frac{4 \hbar^{2} \mathrm{t}^{2}}{\mathrm{~m}^{2}}}\right]}_{\begin{array}{c}
\text { Gaussian with time } \\
\text { dependent width and } \\
\text { center position }
\end{array}}
$$

Maximum of Gaussian occurs when numerator of exp -[] is 0 .
MOTION: $0=\mathrm{x}-\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}} \mathrm{t} \quad \mathrm{x}_{0}(\mathrm{t})=\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}} \mathrm{t}$

$$
\mathrm{v}_{\mathrm{G}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{x}_{0}(\mathrm{t})=\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}}=\frac{\mathrm{p}_{0}}{\mathrm{~m}}=\mathrm{v}_{\text {classical }}
$$

This is $2 \times$ larger than v_{ϕ}.
Classically expect free particle to move at constant $\mathrm{v}=\frac{\mathrm{p}}{\mathrm{m}}$
WIDTH:
compare coefficient of $\left(\mathrm{x}-\mathrm{x}_{0}(\mathrm{t})\right)^{2}$ in $\exp -\mathrm{r} 1$ to standard $\mathrm{G}\left(\mathrm{x} ; \mathrm{x}_{0}, \Delta \mathrm{x}\right)$ in handout

$$
\Delta \mathrm{x}=\left[\frac{\mathrm{a}^{4}+4 \hbar^{2} \mathrm{t}^{2} / \mathrm{m}^{2}}{4 \mathrm{a}^{2}}\right]^{1 / 2} \approx \underbrace{\frac{\mathrm{a}}{2}}_{\substack{\text { minimum } \\
\text { width at } \\
\mathrm{t}=0}}+\underbrace{\left|\frac{\hbar \mathrm{t}}{\mathrm{ma}}\right|}_{\begin{array}{c}
\text { widdhearl increases } \\
\text { linearly in long } \\
\text { tquadratically } \\
\text { at early time). }
\end{array}}
$$

$\langle\mathrm{x}\rangle$ and $\Delta \mathrm{x}$ are time dependent, but what about $\langle\mathrm{k}\rangle$ and $\Delta \mathrm{k}$?
recall original definition of $\Psi(\mathrm{x}, 0)$ (page 4-2), where $\Psi(\mathrm{x}, 0)$ is written as the FT of a Gaussian in k

$$
\mathrm{g}(\mathrm{k}, \mathrm{t})=\mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}} \mathrm{t}} \mathrm{~g}(\mathrm{k}, 0)
$$

$\therefore|\Phi(\mathrm{k}, \mathrm{t})|^{2}$ has $\left.\begin{array}{rl}\langle\mathrm{k}\rangle & =\mathrm{k}_{0} \\ \Delta \mathrm{k} & =\frac{1}{\mathrm{a}}\end{array}\right\}$ time independent

We know free particle must have time independent k_{0} and $\Delta \mathrm{k}$ (no forces - divide w.p. into $\Delta \mathrm{k}$ slices)
$\Delta \mathrm{x} \Delta \mathrm{k}=\frac{1}{2}\left[1+\frac{4 \hbar^{2} \mathrm{t}^{2}}{\mathrm{~m}^{2} \mathrm{a}^{4}}\right]^{1 / 2}$ minimum uncertainty at $\mathrm{t}=0$ (and linearly increasing at long t).

For free particle, build w.p. with any desired $\mathrm{x}_{0}, \mathrm{k}_{0}, \Delta \mathrm{k}$ starting from

$$
\begin{aligned}
& \Psi(\mathrm{x}, \mathrm{t})=\int_{-\infty}^{\infty} \mathrm{g}(\mathrm{k}) \mathrm{e}^{\mathrm{ikx}} \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{k}} \mathrm{t}} \mathrm{dk} \quad \omega_{\mathrm{k}}=\frac{\hbar \mathrm{k}^{2}}{2 \mathrm{~m}} \\
& \text { find } \mathrm{x}_{0} \text { from }-\left.\frac{\mathrm{d} \alpha}{\mathrm{dk}}\right|_{\mathrm{k}=\mathrm{k}_{0}} \\
& \mathrm{x}_{0}(\mathrm{t})=\mathrm{x}_{0}+\mathrm{v}_{\mathrm{G}}^{\mathrm{t}} \quad \mathrm{v}_{\mathrm{G}}=\frac{\hbar \mathrm{k}_{0}}{\mathrm{~m}} \\
& \Delta \mathrm{x}=\frac{\mathrm{a}}{2}\left[1+\frac{4 \hbar^{2} \mathrm{t}^{2}}{\mathrm{~m}^{2} \mathrm{a}^{4}}\right]^{1 / 2}
\end{aligned}
$$

if we want a value of Δx other than $a / 2$ at $t=0$, replace x by $x^{\prime}=x+\delta$ such that when the w.p. reaches x_{0} at $t=0$ it has the desired width.

Could have started with $\bar{\Psi}(k, 0)=\int_{-\infty}^{\infty} \underbrace{\bar{g}(x)}_{\substack{\text { Gaussian } \\ \text { in } x}} \underbrace{\mathrm{e}^{-i k x}}_{\substack{\text { inverse } \\ \text { F.T }}} d x$

and then encoded k_{0} in $\overline{\mathrm{g}}(\mathrm{x})$ thru $\left.\frac{\mathrm{d} \alpha}{\mathrm{dx}}\right|_{\mathrm{x}=\mathrm{x}_{0}}=+\mathrm{k}_{0}$
where $\alpha(\mathrm{x})$ is the argument of $\overline{\mathrm{g}}(\mathrm{x})=|\overline{\mathrm{g}}(\mathrm{x})| \mathrm{e}^{\mathrm{i} \alpha(\mathrm{x})}$

For next class read C-TDL pages 103-107, 1468-1476.

