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5.73 Lecture #4 4 - 1 

Lecture #4: Stationary Phase and Gaussian Wavepackets 

Last time: 

tdSE → motion, motion requires non-sharp E 
phase velocity 
began Gaussian Wavepacket 

goal: 〈x〉, ∆x, 〈p〉 = h〈k〉, ∆p = h∆k by construction or inspection 

Ψ(x,t) is a complex function of real variables. Difficult to visualize. 

What are we trying to do here? 
techniques for solving series of increasingly complex problems illustrate 
philosophical points along the way to solving problems. 

free particle  
So far: infinite well  very artificial 
δ - function  * nothing particle-like 

* nothing molecule-like 
* no spectra 

Minimum Uncertainty (Gaussian) Wavepacket -- QM version of particle. We are going 
to construct a Ψ(x,t) for which | Ψ(x,t)|2 is a Gaussian in x and the FT of Ψ(x,t), gives 
Φ(k,t), for which |Φ(k,t)|2 is a Gaussian in k. 

center of wavepacket follows Newton’s Laws 
extra stuff: spreading 

interference 

tunneling 

Today: (improved repeat of material in pages 3–4 through 3–1 

infer ∆k by comparing g(k) to std. G(x;  x0, ∆x) 

g k  α ( )g k  =| ( ) | ei k  for k near k0 

dα 
≡ −x0 STATIONARY PHASE 

dk 
=k k 0 

2
x tΨ( ,  ) moving, spreading wavepacket 

how is it possible that the center of the wavepacket 
vG ≠ vφ  

moves at a different velocity than its center k- component 
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Here is a normalized Gaussian (see Gaussian Handout) 

G x;x0 , ∆x) = (2π)−1/2 

∆ 
1
x 

e−(x −x0 )2 [2(∆x)2 ]( 

∞normalized ∫−∞ 
G(x; x0 , ∆x)dx = 1 

 	 
 

center x = x0 by construction 
 

std. dev. ∆x ≡ [ x2 − x 2 ]1/2 
 
 

Now compare this special form against 

a1/2 ∞ −(a2 4)(k −k0 )2 

eikx F.T. of aΨ(x,0) = 
(2π)3/4 ∫−∞ 

e1 2
g(k) free particle 

a Gaussian in k, but 
what width and 〈k〉? 

444 3 { dk 
Gaussian in k 

by analogy 

( a  a2 1 
G k;k0 , ∆k) = (2π)−1/2 


 

21/2  g(k) 4 
= 

2(∆k)2 by analogy with G(x;x0,∆x) 

123 21/2 

∴ ∆k = 
a 

1 ∆k 

So casual inspection of this form of Ψ(x,0) gives us 〈k〉 and ∆k. Not quite so easy to get 
〈x〉 and ∆x. 

If we actually carry out the F.T. specified in the definition of Ψ(x,0) above (see bottom of 
page 3–4), we get 

1 4  

Ψ( ,0) = 

 

π 
2

a2 
 / 

eik0xe−x a2 2 

2(∆ 
1
x)2 = 

a
1
2

x 

x = x0 = 0 ∆x = a 21/2 

/ 
x /∆ =  2−1 2a, previously k = k0, ∆k = 2

1 2
; 

a 

revised 9/4/02 2:33PM 



∆ ∆  

g k  

  

  
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But the square of a Gaussian is a Gaussian and its ∆x or ∆k is a factor of 2-1/2 

smaller than the original value. 

a 
x x∆x for Ψ( , 0) is 2-1/2 a, ∆x for Ψ( , 0) 2 is . 

2 
1/2 

k k∆k for Φ( , 0) is 
2 

, ∆k for Φ( , 0) 2 is 
1

. 
a a 

a 1 1
x k  = = See CTDL, p. 231 [∆x,∆k are defined 

2 a 2 rigorously in contrast to treatment on p. 23.] 

This is a very special Gaussian wavepacket 

* minimum uncertainty 

* x0 = 0 

What about more general Gaussian wavepackets.? 

g(k) is a complex function of k sharply peaked near k = k0 

g(k) =|g(k)|eiα(k) amplitude, argument form 

If |g(k)| is sharply peaked near k = k0, then the only relevant part of α(k) is 
the part for k near k0 

− higher termsExpand α(k) = α(k0 ) + (k k0 ) dα + neglected123 dk k k0 = α0 

1 2a / 
kx

2π / 
∞ 

| (  ) | eiα( )eikx dkΨ( ,0) = 
( )3 4  ∫−∞ 1442443 

  
i k  − k0 ) dα + kx  

g(k)eiα 0 e 


( 

dk k=k0  

We want to “cook” Ψ(x,0) so that it is localized near x = x0. In order for this to happen,
  

−the factor 

(k k0 ) dα + kx

 
, must be indpendent of k near k = k0. Stationary Phase! 

=dk k k0 
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How does integral of a wiggly function accumulate? 

k ′ e.g., I(k) = ∫−∞ eik xdk′ I(k) 

but if phase factor stops wiggling near k = k0 

k0 

F(k0)δk 

where δk is range of k over which the phase factor changes by π. 

So, arrange for phase factor to become stationary near k = k0 

0 = d 
(k − k0 ) dα + kx

 
dk dk 
dα

0 = + x satisfied ifdk 
d

dk 
x 

k k

α 
=

≡ −  
0 

0 ! 

k 
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Thus 

− dα 
dk k = k 0 

↓ 
a1/2 ∞ −(a2 /4)(k − k0 )2 (Ψ(x,0) = 

(2π)3/4 e
iα 0 ∫−∞ 

e144244 e− i k  −k0 )x0 eikx 
3144244 dk3 

g(k) eik(x − x0 )eik0x0 (stops wiggling only when 

( insertion of e±i k  − k 0 )x 0 phase factor 
↓ x ≈ x0) 


 

to center w.p. at x0. 
 δ(x − x0 )	 shifts Ψ to any 

desired x0 

Now put in time-dependence by adding 

e−iωkt  factor ωk = Ek =  h2k2  1 
h  2m  h 

hk2 
ωk = 2m 

x t  
1 2  ∞ 

g k  e 
−i k  − k0 )x0 ikxa / (Ψ( , ) = 

( )3 4  ∫−∞ 1442443
e{e −iω k tdk

2π / 
g k  

eigenstate of H 
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This FT is evaluated and simplified in CTDL, page 64 

 

 
4m2a4  exp−  mΨ(x, t) 2 = ( π

2 
a2 )1/ 2 1 +  4h2t2  2a2(x − hk0 t)2 


 

1 243  a4 + 4h2t2
 

time dependent  
42444normalization 144 m2  

Gaussian with time 
dependent width and 

center position 

Maximum of Gaussian occurs when numerator of exp –[ ] is 0. 

MOTION: 0 =  x − hk0 t x0 (t) = hk0 t 
m m 

= d
x0 (t) = hk0 = p0 = vclassicalvG dt m m 

This is 2× larger than vφ. 
Classically expect free particle to move at constant v = p 

m 
WIDTH: compare coefficient of (x - x0(t))2  in exp – 

1 2/ 

∆ =

 
a4 + 4h2t2 / m2 

 ≈ a + ht 
x 

2 ma 4a2  { { 
minimum width increases 
width at linearly in t at long 

t = 0 time (quadratically 
at early time). 

[ ] to standard G(x;x0 , ∆x) in handout 

1 

2

2

42 

2 

4 
2 2  

2 
∆( )

= 
+ x 

a 

a 
t 

m 

h 

〈x〉 and ∆x are time dependent, but what about 〈k〉 and ∆k? 

recall original definition of Ψ(x,0) (page 4-2), where Ψ(x,0) 

is written as the FT of a Gaussian in k 

g(k, t) = e−iωktg(k, 0) 
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k = k0 ∴ Φ k t) 2 has 1 time independent
∆ =  k 

a  

We know free particle must have time independent k0 and ∆k 

(no forces — divide w.p. into ∆k slices) 

1  4h2 2  1/2 
t

x k  = 1 + 2 4    minimum uncertainty at t =  0 (and linearly increasing at long t).
2  m a   

For free particle, build w.p. with any desired x0, k0, ∆k starting from 

∞ 
x tΨ( , ) = ∫−∞ g(k)eikxe −iω k tdk ω k = hk2 

2m 
dα

find x0 from – 
dk k k0 = 

x t0( )  = x0 + vGt vG = hk0 

m 
/ 

a  4h2 2  1 2  
t 

x∆ =  
2 

1 + 2 4  
 

m a  

if we want a value of ∆x other than a/2 at t = 0, replace x by x′ = x + δ 

such that when the w.p. reaches x0 at t = 0 it has the desired width. 

∞ 
e− ikxCould have started with Ψ(k,0) = ∫-∞ 

g(x) {dx
{ 

Gaussian inverse 

in x F.T. 

and then encoded k0 in g(x) thru 
dα = +k0 

=dx x x0 

x ( )  = g x α( )where α( ) is the argument of g x ( ) ei x  

For next class read C-TDL pages 103-107, 1468-1476. 
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