5.73 Lecture #4 4-1

Lecture #4: Stationary Phase and Gaussian Wavepackets

Last time:

tdSE — motion, motion requires non-sharp E
phase velocity
began Gaussian Wavepacket

goal: (x), Ax, (p) = k), Ap = hiAk by construction or inspection

Y(x,t) is a complex function of real variables. Difficult to visualize.

What are we trying to do here?

techniques for solving series of increasingly complex problems illustrate
philosophical points along the way to solving problems.

free particle
So far: infinite well } very artificial

8- function * nothing particle-like

* nothing molecule-like
* no spectra

Minimum Uncertainty (Gaussian) Wavepacket -- QM version of particle. We are going

to construct a ¥(x,t) for which | W(x,?) |2 is a Gaussian in x and the FT of ¥(x,?), gives
®(k,t), for which |®(k,t)|? is a Gaussian in k.

center of wavepacket follows Newton’s Laws
extra stuff: spreading

interference

tunneling

Today: (improved repeat of material in pages 3—4 through 3—1

infer Ak by comparing g(k) to std. G(x; x,, AX)

g(k) = g(k) [ *) for k near k,
4o, STATIONARY PHASE
dkl_,.

wix, 0

moving, spreading wavepacket

how is it possible that the center of the wavepacket
VG # Ve

moves at a different velocity than its center k- component
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Here is a normalized Gaussian (see Gaussian Handout)

. _ -1/ 1 —(x=xq 2
G(x,xO,Ax)—(Zn) ! zge (x=x0) /[Z(Ax)z]

[normalized Ji G(x; XO,AX)dX = 1}

center (x) =X, by construction
1/2

std. dev. Ax = [<x2> - <x>2]

Now compare this special form against

1/2 ) )
a o _(a2/a)(k-k -
‘I’(x,0)=—3/4j € [2*/4)(k k) e dk FT.ofa
(2m) —ee T (k) free particle Gaussian in k
a Gaussian in k, but
what width and (k)?
by analogy
2
-1/2 a a = # .
G(k;ko, Ak) =(2m) 177 g(k) 4 2(Ak)? | Dby analogy with G(x;x,,Ax)
\ 1/2
1/Ak o oAk=2C
a

So casual inspection of this form of W(x,0) gives us (k) and Ak. Not quite so easy to get
(x) and Ax.

If we actually carry out the F.T. specified in the definition of W(x,0) above (see bottom of
page 3—4), we get

1/4
. 2/.2
Y(x,0)= ( - ) eikoxex"/a 1 =2
na 2(Ax)*  a’
(x)=x09=0 Ax=a/2'"?
U 21/2
Ax=2""%a, previously (k) =k, Ak =—;

a
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But the square of a Gaussian is a Gaussian and its Ax or Ak is a factor of 22
smaller than the original value.

Ax for W(x,0) is 272 a, Ax for [¥(x,0) is %

21/2 5 1
Ak for ®(k,0) is =——, Ak for |@(k,0) is —.
a a

AxAk = ﬁl =— See CTDL, p. 231 [Ax,Ak are defined

2a 2 rigorously in contrast to treatment on p. 23.]

This is a very special Gaussian wavepacket

* minimum uncertainty

* —

What about more general Gaussian wavepackets.?

g(k) is a complex function of k sharply peaked near k =k,

g(k) =lg(k)le'*® amplitude, argument form

If |g(k)| is sharply peaked near k = k,, then the only relevant part of ou(k) is
the part for k near k,

EXpand ouk) = 0((](0) + (k _ kO ) do n Eégg}llggtz?irms
—— dk k=k0
0o
a? e iou(k) ikx
Y(x,0)0=——7]  lgk)le™Pe™dk

-

do
k-kq)—— k
( O)dk Keko + xj|

Ig(k)le“’“’e{

We want to “cook” ¥(x,0)_so that it is localized near x = x,. In order for this to happen,

the factor {(k—ko)jl(: +kx| , must be indpendent of k near k = k,. Stationary Phase!

k=kq
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How does integral of a wiggly function accumulate?

\ %

e.g., I(k) = J.Ex) eik,xdk’ 1(k) vr\vnuhv/\

x~

but if phase factor stops wiggling near k =k,

JAVAVAVAVAVAV —

~ S F(k,)5k

\/\/\/\/l —_

k,

where 0k is range of k over which the phase factor changes by .

So, arrange for phase factor to become stationary near k =k

0= i[(k— ko) 9% 4 kx}
dk dk
do
0=""+x satisfied if | 9% —_
dk dk |, Xo !
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Thus
_da
dk i(:ko
a’? o —(a®/4)(k=ko)® _—i(k—kg)xq Likx
‘I’(x,O):We OJ. e e 070 dk
n —_00 e g
\g(k)\ eik(x—xo)eikoxo (stops wiggling only when
. . +i(k—ko)x, X = Xo)
insertion of e phase factor 5 shifts ¥ to any
to center w.p. at x,. (X ~ %o desired x,
Now put in time-dependence by adding
21,2
it E, (h*32)\1
e '“k" factor Wy = hk =( > )%
m
NS
Pk = 2m

1/2 . . .
Wi = —rr [ eoje (R0 )Mo gl iont gy
(271:) (k) eigenstate of H

revised 9/4/02 2:33PM



5.73 Lecture #4

This FT is evaluated and simplified in CTDL, page 64

2
2(, _Tkg )
) 2) 1/2 4h2t2 2a (X o t
|\P(X,t)| = (—2) 1+ Y 4 CXp— )
ma m-a 4 4nh-t
%f_j
time dependent m2
normalization - —
Gaussian with time
dependent width and
center position

Maximum of Gaussian occurs when numerator of exp —[ ] is 0.

) k k
MOTION: = _ ko, xo(0) = Ko ¢
m
d hk p
VG = aXO(t) =—0="0_ Veclassical

This is 2x larger than v,.

Classically expect free particle to move at constant v = P

WIDTH: compare coefficient of (x - xo(t))2 in exp —t 1 to standard G(x;X(,Ax) in haTout
1/2
a* +4n°t* / m? a nt 1 2a°
Ax = 3 =3 + — 2 - 2.2
ma

4a 2 o 2Ax)" 4, A
minimum width increases m’
widthat  linearly in t at long

t=0 time (quadratically

at early time).

(x) and Ax are time dependent, but what about (k) and Ak?

recall original definition of W(x,0) (page 4-2), where ¥(x,0)

1s written as the FT of a Gaussian in k

g(k,t) = e 1Pklg(k,0)
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(k)=ko
~|®d(k, ) has A ] time independent

a
We know free particle must have time independent k, and Ak
(no forces — divide w.p. into Ak slices)

1 . . . . .
AxAk = 5[1 +—F minimum uncertainty att = 0 (and linearly increasing at long t).

For free particle, build w.p. with any desired x,, k,, Ak starting from

oo ikx _—it nk?
Yx,0=[" gk e Kdk o =—
e 2m
find x from _da
k=k0
Xo(t)=X0 +VGt VG =hk—0
m
1/2
al  4n’t®
Ax=—|1+ 5 4
2 m-a

if we want a value of Ax other than a/2 at t =0, replace x by X’ =x + 9

such that when the w.p. reaches x, at t = 0 it has the desired width.

Could have started with ¥(k,0)= J- B g(x) e ™ dx

inverse

Gaussian
inx F.T.
. do
and then encoded k in g(x) thru — =+k,
X X=X
iou(x)

where ou(x) is the argument of g(x) =|g(x)le

For next class read C-TDL pages 103-107, 1468-1476.
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