Continuum Normalization

Last time: Gaussian Wavepackets

```
How to encode \(\langle\mathrm{x}\rangle\) in \(\int g(k) e^{i k x} d k=\psi(x)\)
\[
\text { or }\langle k\rangle \text { in } \int \bar{g}(x) e^{-i k x} d x=\bar{\psi}(k)
\]
```

stationary phase: good for cooking or inspecting wiggly functions and for crudely evaluating integrals of wiggly integrands.
$\mathrm{v}_{\text {group }} \neq \mathrm{v}_{\text {phase }}$

Today: Normalization of eigenfunctions which belong to continuously (as opposed to discretely) variable eigenvalues.
convenience of ortho-normal basis sets
we often talk about "density of states", but in order to do
that we need to define "state"
computation of absolute probabilities - cannot depend on how we choose to define "state".

1. Identities for δ-functions.
2. $\psi_{\delta \mathrm{k}}, \psi_{\delta \mathrm{p}}, \psi_{\delta \mathrm{E}}$ for eigenfunctions corresponding to continuously variable eigenvalues.
3. finite box with countable discrete states taken to the limit $\mathrm{L} \rightarrow \infty$.

Normalization independent quantity:

$$
\left(\frac{\# \text { states }}{\delta \theta}\right)\left(\frac{\# \text { particles }}{\delta \mathrm{x}}\right)
$$

$\delta \theta$ is the argument of the delta-function. So if we integrate over a region of θ and x, we have the absolute probability.
4. two examples - "predissociation" rate and smoothly varying spectral density.

In Quantum Mechanics, there are two very different classes of systems.

T: classical period of oscillation

$$
\begin{aligned}
& \text { * \# of encounters / sec: } \frac{1}{\mathrm{~T}} \\
& \text { * fraction of time in region of length } \mathrm{L}: \frac{\mathrm{L} / \mathrm{v}}{\mathrm{~T}} \\
& \hline
\end{aligned}
$$

[^0]- can ask what is the absolute probability of finding the system between $\mathrm{E}, \mathrm{E}+\mathrm{dE}$ and $\mathrm{x}, \mathrm{x}+\mathrm{dx}$ For confined systems, we can express ortho-normalization in terms of Kronecker- δ

$$
\begin{array}{llll}
\delta_{\mathrm{ij}}=\int_{-\infty}^{\infty} \psi_{\mathrm{i}}^{*} \psi_{\mathrm{j}}^{\mathrm{d} x} & \delta_{\mathrm{ij}}=0 & \mathrm{i} \neq \mathrm{j} & \text { orthogonal } \\
\delta_{\mathrm{ij}}=1 & \mathrm{i}=\mathrm{j} & \text { normalized }
\end{array}
$$

For unconfined systems, we are going to ortho-normalize states to Dirac δ-functions

In order to do this we need to know better what a δ-function is and what some of its mathematical properties are.

One of several equivalent definition of δ - function:

$$
\delta\left(x-x^{\prime}\right)=\delta\left(x, x^{\prime}\right)=\frac{1}{2 \pi} \int e^{-i u\left(x-x^{\prime}\right)} d u
$$

What is it good for?

$$
\int \delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \psi(\mathrm{x}) \mathrm{dx}=\psi\left(\mathrm{x}^{\prime}\right)
$$

shifts a function evaluated at x to the same function evaluated at x^{\prime}.

Prove some useful Identities

We do this so that we will be able to transform between $\delta \mathrm{k}, \delta \mathrm{p}$, and $\delta \mathrm{E}$ (where $E=f(k)$) normalization schemes.

1. $\delta\left(a x, a x^{\prime}\right)=\frac{1}{|a|} \delta\left(x, x^{\prime}\right) \quad$ e.g., $\delta\left(\mathrm{p}-\mathrm{p}^{\prime}\right)=\delta\left(\hbar\left(\mathrm{k}-\mathrm{k}^{\prime}\right)\right)=\frac{1}{\hbar} \delta\left(\mathrm{k}-\mathrm{k}^{\prime}\right)$
nonlecture proof

$$
\begin{gathered}
\delta\left(a x, a x^{\prime}\right)=\frac{1}{2 \pi} \int \mathrm{e}^{-\mathrm{iu}\left(a \mathrm{ax-ax}^{\prime}\right)} \mathrm{du} \quad \text { change variables } \\
v=a u \\
d v=a d u \\
\delta\left(a x, a x^{\prime}\right)=\frac{1}{2 \pi} \frac{1}{\mathrm{a}} \int \mathrm{e}^{-\mathrm{iv}\left(x-x^{\prime}\right)} \mathrm{dv}=\frac{1}{\mathrm{a}} \delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \\
\text { but, since } \delta\left(a x, a x^{\prime}\right)=\delta\left(a x-a x^{\prime}\right)=\delta\left(a x^{\prime}-a x\right)=\delta\left([-a]\left(x-\mathrm{x}^{\prime}\right)\right) \\
(\delta \text { is an even function }), \delta\left(a x, a x^{\prime}\right)=\frac{1}{|\mathrm{a}|} \delta\left(x, x^{\prime}\right)
\end{gathered}
$$

2. $\delta(\mathrm{g}(\mathrm{x}))=\underbrace{\sum_{\mathrm{i}}}_{\text {zeros }}\left|\frac{\mathrm{dg}\left(\mathrm{x}_{\mathrm{i}}\right)}{\mathrm{dx}}\right|^{-1} \delta\left(\mathrm{x}, \mathrm{x}_{\mathrm{i}}\right) \quad \begin{array}{r}\text { provided that } \\ \frac{\mathrm{dg}\left(\mathrm{x}_{\mathrm{i}}\right)}{\mathrm{dx}} \neq 0\end{array}$
expand $g(x)$ in the region near each 0 of $g(x)$,

$$
\text { i.e., } x \text { near } x_{i}
$$

$$
\left.g(x) \cong \frac{d g}{d x}\right|_{x=x_{i}}\left(x-x_{i}\right)
$$

If there is only 1 zero, then identity $\# 1$ above gives the required result. It is clear that $\delta(\mathrm{g}(\mathrm{x}))$ will only be nonzero when $\mathrm{g}(\mathrm{x})=0$. Otherwise we need to carry out the sum in identity \#2.

EXAMPLES

A. $\mathrm{g}(\mathrm{x})=(\mathrm{x}-\mathrm{a})(\mathrm{x}-\mathrm{b})$ This has zeroes at $\mathrm{x}=\mathrm{a}$, and $\mathrm{x}=\mathrm{b}$.

You should show that $\delta(g(x))=\frac{1}{|a-b|}[\delta(x, a)+\delta(x, b)]$.
B. $\delta\left(\mathrm{E}^{1 / 2}, \mathrm{E}^{1 / 2}\right)$
$g(E)=E^{1 / 2}-E^{1 / 2} \quad$ has one zero at $E=E^{\prime}$, expand $g(E)$ about $E=E^{\prime}$, thus for E near E^{\prime} $g(E) \neq \frac{1}{2} E^{\prime-1 / 2}\left(E-E^{\prime}\right)$.
you should show that $\delta\left(\mathrm{E}^{1 / 2}, \mathrm{E}^{1 / 2}\right)=2\left|\mathrm{E}^{1 / 2}\right| \delta\left(\mathrm{E}, \mathrm{E}^{\prime}\right)$
This is useful because $\mathrm{k} \propto \mathrm{E}^{1 / 2}$

$$
\delta\left(\mathrm{E}-\mathrm{E}^{\prime}\right)=\left(\frac{\mathrm{m}}{2 \hbar^{2}\left(\mathrm{E}^{\prime}-\mathrm{V}_{0}\right)}\right)^{1 / 2} \delta\left(\mathrm{k}-\mathrm{k}^{\prime}\right)
$$

Another property of δ - functions: $\quad \frac{\mathrm{d}}{\mathrm{dx}} \delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$
$\delta\left(x, x^{\prime}\right)$ is an even function:
\therefore expect $\left.\frac{\mathrm{d}}{\mathrm{dx}} \delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \equiv \delta^{\prime}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \right\rvert\,$
This is useful because $\frac{d}{d x} \delta\left(x, x^{\prime}\right)$ is capable of picking out $\frac{\mathrm{df}}{\mathrm{dx}}$ evaluated at x^{\prime}.

Non-lecture:
Use definition of derivative to prove that

$$
\begin{gathered}
\int_{-\infty}^{\infty} \delta^{\prime}\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{f}(\mathrm{x}) \mathrm{dx}=-\mathrm{f}^{\prime}\left(\mathrm{x}^{\prime}\right) \\
\frac{\mathrm{d}}{\mathrm{dx}} \delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right)=\lim _{\varepsilon \rightarrow 0} \frac{\left.\mathrm{~L} \delta\left(\mathrm{x}+\varepsilon, \mathrm{x}^{\prime}\right)-\delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right]}{\varepsilon} \\
\int \delta\left(\mathrm{x}+\varepsilon, \mathrm{x}^{\prime}\right) \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{f}\left(\mathrm{x}^{\prime}-\varepsilon\right) \\
\int \delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \mathrm{f}(\mathrm{x}) \mathrm{dx}=\mathrm{f}\left(\mathrm{x}^{\prime}\right) \\
\therefore \int \lim _{\varepsilon \rightarrow 0} \frac{\left[\delta\left(\mathrm{x}+\varepsilon, \mathrm{x}^{\prime}\right)-\delta\left(\mathrm{x}, \mathrm{x}^{\prime}\right)\right]}{\varepsilon} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\lim _{\varepsilon \rightarrow 0} \frac{\mathrm{f}\left(\mathrm{x}^{\prime}-\varepsilon\right)-\mathrm{f}\left(\mathrm{x}^{\prime}\right)}{\varepsilon}=-\mathrm{f}^{\prime}\left(\mathrm{x}^{\prime}\right)
\end{gathered}
$$

$\boldsymbol{\delta} \mathbf{k}$ * Our goal is to create ortho-normalized ψ 's that look like e $\mathrm{e}^{\mathrm{ikx}: ~}$
"normalized to a δ-function in k"
std. defn. of δ-function in k

$$
\therefore \quad \psi_{\delta \mathrm{k}, \mathrm{k}} \equiv(2 \pi)^{-1 / 2} \mathrm{e}^{\mathrm{ikx}} \quad \text { for } \mathrm{V}(\mathrm{x})=\text { constant }
$$

$\psi_{\delta \mathrm{k}, \mathrm{k}}$ is said to be "normalized to $\delta\left(\mathrm{k}, \mathrm{k}^{\prime}\right)$ ".
What is the probability of finding the system, which
is described by $\psi_{\delta \mathrm{k}, \mathrm{k}}$, to be located between $0 \leq \mathrm{x} \leq \mathrm{L}$?

$$
\int_{0}^{\mathrm{L}} \psi_{\delta \mathrm{k}, \mathrm{k}}^{*} \psi_{\delta \mathrm{k}, \mathrm{k}} \mathrm{dx}=\frac{1}{2 \pi} \int_{0}^{\mathrm{L}} \mathrm{~d} x=\frac{\mathrm{L}}{2 \pi}=\mathrm{P}_{\delta \mathrm{k}}(\mathrm{~L})
$$

probability grows without limit as $\mathrm{L} \rightarrow \infty$

But, more interestingly, what is the probability of finding a system in a $\delta \mathrm{k}$-normalized state within a region of length equal to one de Broglie λ ?

$$
\lambda=\mathrm{h} / \mathrm{p}=\frac{2 \pi}{\mathrm{k}} \quad \mathrm{P}_{\mathrm{\delta k}}(\lambda)=\frac{\lambda}{2 \pi}=\frac{1}{\mathrm{k}}
$$

$\delta \mathrm{k}$ normalized states $($ for $\mathrm{V}(\mathrm{x})=$ constant) have: $1 / \mathrm{k}$ particle per λ of Δx
(or $\frac{1}{2 \pi}$ particle per unit length)

What about ordinary space normalization?

$$
\begin{aligned}
& \psi_{\mathrm{k}}=\mathrm{N}_{\mathrm{k}} \mathrm{e}^{\mathrm{ikx}} \\
& \psi_{\mathrm{k}^{\prime}}=\mathrm{N}_{\mathrm{k}} \mathrm{e}^{\mathrm{ik} \mathrm{k}^{\prime} \mathrm{x}} \\
& \int \psi_{\mathrm{k}}^{*} \psi_{\mathrm{k}} \mathrm{dx}=\left|\mathrm{N}_{\mathrm{k}}\right|^{2} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i}\left(\mathrm{k}^{\prime}-\mathrm{k}\right) \mathrm{x}} \mathrm{dx} \quad<\substack{0 \text { if } \mathrm{k} \neq \mathrm{k}^{\prime} \\
\Uparrow \text { if } \mathrm{k}=\mathrm{k}^{\prime}}
\end{aligned}
$$

GENERALIZE

$$
\begin{aligned}
& \delta\left(\mathrm{k}, \mathrm{k}^{\prime}\right) \equiv \frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{iu}\left(\mathrm{k}-\mathrm{k}^{\prime}\right) \mathrm{du}=\int_{-\infty}^{\infty} \psi_{\delta \mathrm{k}, \mathrm{k}}^{*} \psi_{\delta \mathrm{k}, \mathrm{k}^{\prime} \mathrm{dx}}} \begin{array}{l}
\text { where } \psi_{\delta \mathrm{k}, \mathrm{k}} \equiv(2 \pi)^{-1 / 2} \mathrm{e}^{\mathrm{ikx}}, \text { thus } \delta\left(\mathrm{k}, \mathrm{k}^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{e}^{\mathrm{i}\left(\mathrm{k}^{\prime}-\mathrm{k}\right) \mathrm{x}} \mathrm{dx} \\
\text { notation } \delta\left(\mathrm{k}, \mathrm{k}^{\prime}\right)=\delta\left(\mathrm{k}-\mathrm{k}^{\prime}\right)=\delta\left(\mathrm{k}-\mathrm{k}^{\prime}, 0\right)
\end{array}
\end{aligned}
$$

when $\delta\left(\mathrm{k}, \mathrm{k}^{\prime}\right)$ is multiplied onto $\mathrm{f}(\mathrm{k})$ and integrated over all k , we get $f\left(k^{\prime}\right)$

$$
\int_{-\infty}^{\infty} \delta\left(\mathrm{k}, \mathrm{k}^{\prime}\right) \mathrm{f}(\mathrm{k}) \mathrm{dk}=\mathrm{f}\left(\mathrm{k}^{\prime}\right)
$$

$$
\delta\left(k, k^{\prime}\right) \text { is "zero" when } k \neq k^{\prime} \text { and is "one" when } k=k^{\prime}
$$

[^1]Other normalization schemes for free particle

$$
\begin{aligned}
\delta \mathbf{p} * \quad \psi_{\delta \mathrm{p}, \mathrm{p}} & =\mathrm{N}_{\mathrm{p}} \mathrm{e}^{\mathrm{ipx} / \hbar \quad \quad \text { what is value of } \mathrm{N}_{\mathrm{p}} ?} \\
\delta\left(\mathrm{p}, \mathrm{p}^{\prime}\right) & =\mathrm{N}_{\mathrm{p}^{\prime}}^{*} \mathrm{~N}_{\mathrm{p}} \int \exp \left[\mathrm{ix}\left(\mathrm{p} / \hbar-\mathrm{p}^{\prime} / \hbar\right)\right] \mathrm{dx} \\
& =\mathrm{N}_{\mathrm{p}^{\prime}}^{*} \mathrm{~N}_{\mathrm{p}} 2 \pi \underbrace{\operatorname{sidentity} \# 1}_{\left|\frac{1}{\hbar}\right|^{-1} \delta\left(\mathrm{p}, \mathrm{p}^{\prime}\right) \text { using }} \mathrm{p} / \hbar, \mathrm{p}^{\prime} / \hbar) \\
& \therefore \psi_{\delta \mathrm{p}, \mathrm{p}}=(2 \pi \hbar)^{-1 / 2} \mathrm{e}^{\mathrm{ipx} / \hbar}
\end{aligned}
$$

$$
\int_{0}^{\mathrm{L}} \psi_{\delta \mathrm{p}, \mathrm{p}}^{*} \psi_{\delta \mathrm{p}, \mathrm{p}} \mathrm{dx}=\frac{\mathrm{L}}{2 \pi \hbar}
$$

$\boldsymbol{\delta E} * \psi_{\delta \mathrm{E}}^{ \pm}=\mathrm{N}_{\mathrm{E}}\left(\mathrm{e}^{(\mathrm{ikx} x} \pm \mathrm{p}_{\text {degenerate pair of }}^{ \pm-\mathrm{ikx}}\right)$ states
you show that

$$
\begin{aligned}
& \psi_{\delta \mathrm{E}, \mathrm{E}}^{+}=\left[\frac{\mathrm{m}}{2 \mathrm{E} \pi^{2} \hbar^{2}}\right]^{1 / 4} \cos \left[\left(\frac{2 \mathrm{mE}}{\hbar^{2}}\right)^{1 / 2} \mathrm{x}\right] \\
& \psi_{\delta \mathrm{E}, \mathrm{E}}^{-}=\left[\frac{\mathrm{m}}{2 \mathrm{E} \pi^{2} \hbar^{2}}\right]^{1 / 4} \sin \left[\left(\frac{2 \mathrm{mE}}{\hbar^{2}}\right)^{1 / 2} \mathrm{x}\right]
\end{aligned}
$$

$$
\psi_{\overline{B E}, \mathrm{E}}^{+} \text {is orthogonal to } \psi_{\bar{B}, \mathrm{E}}^{-}
$$

5.73 Lecture \#5

Thus there are $\frac{1}{\mathrm{E}}$ particles per λ for a $\delta \mathrm{E}$ - normalized state.

$$
\left[\text { or } \frac{2}{\mathrm{~h}}\left(\frac{\mathrm{~m}}{2 \mathrm{E}}\right)^{1 / 2} \text { particles per unit length }\right]
$$

So we have assembled all the basic stuff we will need, at least for $\mathrm{V}(\mathrm{x})=$ constant problems. Now use it to examine a problem we understand perfectly.

$$
\begin{array}{r}
\Psi_{\mathrm{E}_{\mathrm{n}}}=\left(\frac{2}{\mathrm{~L}}\right)^{1 / 2}\left\{\begin{array}{c}
\sin \\
\cos
\end{array}\right\}\left[\left(\frac{2 \mathrm{mE}_{\mathrm{n}}}{\hbar^{2}}\right)^{1 / 2} \mathrm{x}\right]_{\mathrm{n} \text { odd }}^{\mathrm{n} \text { even }} \\
\mathrm{k}_{\mathrm{n}}=\left(\frac{2 \mathrm{mE}_{\mathrm{n}}}{\hbar^{2}}\right)^{1 / 2} \\
\mathrm{E}_{\mathrm{n}}=\left(\frac{\mathrm{h}^{2}}{8 \mathrm{~mL}^{2}}\right) \mathrm{n}^{2}
\end{array}
$$

1 particle per box of length L
$\left.\begin{array}{c}\frac{1}{\mathrm{~L}} \text { particle per unit length } \\ \frac{\lambda}{\mathrm{L}} \text { particle per } \lambda\end{array}\right\} \rightarrow 0$ as $\mathrm{L} \rightarrow \infty$

4 normalization schemes ($\delta \mathrm{k}, \delta \mathrm{p}, \delta \mathrm{E}$, box): each gives different \#/L or \#/ λ.
Why - because each scheme defines "state" differently.

Why? Because the probability of finding a system between $\mathrm{x}, \mathrm{x}+\mathrm{dx}$ AND $\theta, \theta+\mathrm{d} \theta$ is observable. We have completely specified what counts as an observation.

Normalization-Independent Quantity for general V(x):

$$
\lim _{\mathrm{L} \rightarrow \infty} \underbrace{\left(\frac{\mathrm{dn}}{\mathrm{~d} \theta}\right)}_{\begin{array}{c}
\text { density of } \\
\text { states } \\
\text { (\# states per } \\
\text { unit } \theta
\end{array}}\left[\frac{1}{\mathrm{~L}} \int_{-\mathrm{L} / 2}^{\mathrm{L} / 2} \psi_{\delta \theta}^{*} \psi_{\delta \theta} \mathrm{dx}\right]=\left(\frac{\# \text { states }}{\delta \theta}\right)\left(\frac{\# \text { particles }}{\delta \mathrm{x}}\right)
$$

The infallible way to get the invariant reference density is to box normalize (so that one can count states) and then take limit $\mathrm{L} \rightarrow \infty$. Why? Because most realistic potentials become smooth and flat at large enough x.

x_(E) - inner turning point

Procedure: 1. Box normalize $\psi_{E_{n}}$ (E is quantized)
2. Compute $\frac{d n}{d E}$ from $E(n)$
3. take limit $\mathrm{L} \rightarrow \infty\left(\frac{\mathrm{dn}}{\mathrm{dE}} \rightarrow \infty\right)\left(\right.$ but $\frac{1}{\mathrm{~L}} \frac{\mathrm{dn}}{\mathrm{dE}}$ remains finite $)$
example:

$$
\begin{aligned}
& \prod_{0}^{\infty} \psi_{\mathrm{L}}=\left(\frac{2}{\mathrm{~L}}\right)^{1 / 2} \sin \left[\left(\frac{2 m E_{\mathrm{n}}}{\hbar^{2}}\right)^{1 / 2} \mathrm{x}\right] \\
& \int_{0}^{\mathrm{L}} \psi_{\mathrm{E}_{\mathrm{n}}}^{*} \psi_{\mathrm{E}_{\mathrm{n}}} \mathrm{dx}=1 \text { by construction (for box normalization) }
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{E}_{\mathrm{n}}=\mathrm{n}^{2} \frac{\mathrm{~h}^{2}}{8 \mathrm{~mL}^{2}} \quad \frac{\mathrm{dE}}{\mathrm{dn}}=\frac{\sqrt{\mathrm{nh}^{2}}}{8 \mathrm{~mL}^{2}} \quad \mathrm{n}=\left[\frac{8 \mathrm{mE}_{\mathrm{n}} \mathrm{~L}^{2}}{\mathrm{~h}^{2}}\right]^{1 / 2} \\
\rho_{\mathrm{E}}(\mathrm{E})=\frac{\mathrm{dn}}{\mathrm{dE}}=\frac{2 \mathrm{~L}}{\mathrm{~h}}\left(\frac{\mathrm{~m}}{2 \mathrm{E}}\right)^{1 / 2}
\end{gathered}
$$

REFERENCE DENSITY

$$
\lim _{\mathrm{L} \rightarrow \infty}(\underbrace{\frac{\mathrm{dn}_{\mathrm{L}}^{\mathrm{dE}}}{\frac{1}{\mathrm{~L}}} \int_{0}^{\mathrm{L}} \psi_{\mathrm{E}}^{* *} \psi_{\mathrm{E}}^{\mathrm{dx}}}_{\frac{7}{\frac{7}{\mathrm{E}}}})=\frac{2}{\mathrm{~h}}\left(\frac{\mathrm{~m}}{2 \mathrm{E}}\right)^{1 / 2}=\underbrace{\left[\frac{2 \mathrm{~m}}{\mathrm{~h}^{2} \mathrm{E}}\right]^{1 / 2}}_{\text {indep. of } \mathrm{L}}=\frac{\mathrm{P}(\mathrm{x}, \mathrm{x}+\delta \mathrm{x} ; \mathrm{E}, \mathrm{E}+\delta \mathrm{E})}{\delta \mathrm{x} \delta \mathrm{E}}
$$

THIS SECTION TO BE REPLACED

These results are only valid for $\square \rightarrow \infty$ problem. They ilhustrate all continuun normalization problems where it is desired to calculate probabilities.

2 Schematic Examples

* Bound \rightarrow free transition probabilities
* Constant spectral density across a dissociation or ionization limit.

Bound-Free Transition (predissociation)

at $\mathrm{t}=0$ system is prepared in $\Psi(\mathrm{x}, 0)=\psi_{\text {bound }}(\mathrm{x})$
Fermi's Golden Rule:

$$
\begin{aligned}
& \text { Rate }=\Gamma_{\text {bound } \rightarrow \text { free }}=\frac{2 \pi}{\hbar}\left|\int \psi_{\delta \mathrm{E}}^{\text {free }}(\mathrm{E}) \hat{\mathbf{H}} \psi_{\mathrm{E}}^{\text {bound }} \mathrm{dx}\right|^{2} \rho_{\delta \mathrm{E}}(\mathrm{E}) \\
& \rho_{\delta \mathrm{E}}=\frac{\mathrm{n}_{\delta \mathrm{E}}(\mathrm{E})}{\mathrm{dE}} \quad \begin{array}{l}
\text { derive this key quantity by box normalizing } \\
\text { repulsive state and taking } \lim _{\mathrm{L} \rightarrow \infty}\left(\frac{1}{\mathrm{~L}} \frac{\mathrm{dn}}{\mathrm{dE}}\right)
\end{array}
\end{aligned}
$$

Then compute the $\hat{\mathbf{H}}$ integral using two box normalized functions.

[^0]: * SPATIALLY UNCONFINED: • E continuously variable
 - e con't count states, so how to compute $\frac{\mathrm{dn}}{\mathrm{dE}}$?

[^1]: $\psi_{\partial k, k_{0}}$ is eigenfunction of $\hat{\mathrm{k}}=\frac{1}{\mathrm{i}} \frac{\partial}{\partial \mathrm{x}}$ with eigenvalue $\mathrm{k}_{0}: \hat{\mathrm{k}} \psi_{\partial \mathrm{k}, \mathrm{k}_{0}}=\mathrm{k}_{0} \psi_{\partial k, \mathrm{k}_{0}}$ $\psi_{\delta, x_{0}}$ is eigenfunction of $\hat{\mathrm{x}}=\mathrm{x} \quad$ with eigenvalue x_{0}

