5.73 Lecture #5 5-1
Continuum Normalization

Last time: Gaussian Wavepackets
How to encode (x) in j g(k)e™ dk = y(x)
or (k)in [ g(x)e ™ dx = (k)

stationary phase: good for cooking or inspecting wiggly
functions and for crudely evaluating
integrals of wiggly integrands.

Vgroup # Vphase

Today: Normalization of eigenfunctions which belong to continuously (as opposed to

discretely) variable eigenvalues.

convenience of ortho-normal basis sets

we often talk about “density of states”, but in order to do
that we need to define “state”

computation of absolute probabilities — cannot depend on
how we choose to define “state”.

1. Identities for é-functions.
2. Wi Vs, Wsg for eigenfunctions corresponding to continuously variable
eigenvalues.

3. finite box with countable discrete states taken to the limit I — oo.

Normalization independent quantity:

( #states j( # particles)
00 Ox

00 is the argument of the delta-function. So if we integrate over a

region of 6 and x, we have the absolute probability.

4. two examples — “predissociation” rate and smoothly varying spectral
density.
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In Quantum Mechanics, there are two very different classes of systems.

* SPATIALLY CONFINED: * E quantized

* can count states, easy to compute

density of states < _ P

dE

« can normalize to 1 = LQ YEWgdx

T: classical period of oscillation

1
*# of encounters /sec: —

L/v

* fraction of time in region of length L: T

* SPATIALLY UNCONFINED: - E continuously variable n
- * can’t count states, so how to compute — ?

* can ask what is the absolute probability of finding
the system between E, E + dE and x, x + dx

For confined systems, we can express ortho-normalization in terms of Kronecker-9

o . 0.=0 1#] orthogonal
Bij = J_m Vi V; dx J

o0.=1 1=] normalized

For unconfined systems, we are going to ortho-normalize states to Dirac 6-functions

In order to do this we need to know better what a d- function is and what some
of its mathematical properties are.

One of several equivalent definition of § - function:
d(x—x")=08(x,x") = LJ e gy,
27

What is it good for?

[ 8003 we)dx=yix).
shifts a function evaluated at x to
the same function evaluated at x’.
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Prove some useful Identities

We do this so that we will be able to transform between 8k, op, and 0E
(where E = f(k)) normalization schemes.

1. d(ax,ax’) = 1

= al 3(x,x”) e.g., d(p-p)=8(nlk-Kk))= %S(k ~K’)

nonlecture proof

d(ax,ax”) = ZLJ. e-iu(ax—ax’)q,,  change variables
T

vV —au
dv =adu
’ _Ll —iv(x=x") _l ’
S(ax,ax)—zna e dv—aS(x,x)

but, since §(ax,ax’) =&(ax—ax’) =8(ax’ —ax) = 8([-a](x — x))

(6 is an even function), d(ax,ax’) = %S(X, x")
a

-1
9. O@gxp= 3 ‘M 0(X,X;) provided that
Hif—J dx —dg(xi);to
Zeros dx
of g(x)

expand g(x) in the region near each 0 of g(x),

i.e., X near x; g(x) = j—g (x = x;)-
X

X=X;

If there is only 1 zero, then identity #1 above gives the
required result. It is clear that d(g(x)) will only be nonzero

when g(x) = 0. Otherwise we need to carry out the sum in
1dentity #2.
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5.73 Lecture #5

g(x) = (x—a)(x—b) This has zeroes at x = a, and x = b.
[8(x, a) +8(x, b)].

EXAMPLES
A,
You should show that 8(g(x)) = _| N i b|

has one zero at E = E’, expand g(E) about E = E’, thus for E near E’

B. afE,E"")
1., ,
g(E) ¥ E V2(E—F").
you should show that §(E'/2, E"/2) = 2E"/> |6(E,E’)
1/2
. 1/2 , m ’
This is useful because k o« E S(E-E)= P Y e—— 8(k-Kk")
2r*(E'-V,)
Another property of§ - functions: di 3(x, x")
X
3(x,x’) is an even function:
[0
- /// ‘ \\\‘\ —
/
e
v
/

expect %S(X, xX)=8"(x,x) 1

This is useful because diB(x, x’)d is Vcapabﬂle of }Sicking
X

df
out — evaluated at x’.

Non-lecture:
Use definition of derivative to prove that
f N " (x, x)f(x)dx =—f"(x")
[0(x+&,x")— 0(x,x)N

i5()(,)(’) = lim
dx e—0 &
| (x+e&x)f(x)dx = f(x"—€)
[ 6(x,xHf(x)dx = f(x")
f(x'—e)—f(x')
. =

[8(x+¢,x)-8(x,x)] f(x)dx = lim
e—0

oo im
e—0

—£’(x")
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5.73 Lecture #5 5-5

ok * Our goal is to create ortho-normalized y’s that look like elkx:

“normalized to a d-function in k”

std. defn. of Sk J) =" W5 W dx= %Jio Six(K—K") g
0—function in n

k

= (2m) /2 oikx for V(x) = constant.

Wk, k

Vsk k is said to be “normalized to 6(k,k”)”.

What is the probability of finding the system, which
is described by Vsk k> O be located between 0 < x <L?

| 1 (L L
Jo WSk,kWak,kdX = ﬂj dx=-—="Pg (L)

0 27
probability grows without limit as L —»

But, more interestingly, what is the probability of finding a system
in a dk-normalized state within a region of length equal to one

de Broglie A?

2
7»=h/p=?n Py (A) =

o0k normalized states (for V(x) = constant) have: 1/k particle per A
of Ax

(or 2L particle per unit lengthj
T
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What about ordinary space normalization?
vy = Nye'™
Vi = Nie! ™
* (o) 1(/— . ,
[ wiwiedx =ING P [7 el R%gx g 0ifk 2k
oo if k =k’
m
THIS IS THE PROBLEM!

Can’t specify N,.

GENERALIZE

1 oo 1 —_’ oo *
Skk)=—([" eluk-k)gqy = ,dx
(ky=——[7 [ Ve ¥aix

_ -1/2 _ikx Ao L e ae—ix
where WSk,k = (21‘5) e , thus d(k, k )_an_m e dx

notation 8(k,k’)=8(k-k")=8(k—-k’,0)

when d(k,k’) 1s multiplied onto f(k) and integrated over all k,
we get f(k’)

oo

[7 8k, k)f(k)dk = £(K)

O0(k,k") is “zero” when k # k” and is “one” when k =k’

Vs . 1s eigenfunction of k = 11 with eigenvalue k ;: lA(l/Iﬁk . =kows
Ko 1 20 ™0

Vs ., 1s eigenfunction of X = x with eigenvalue x,
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Other normalization schemes for free particle

op * lligplp =N,e' what 1s value of N ?

-1 .
» using
8(p.p’) identity #1

h
Vapp = 2mn) 2P

I ViVt =55
o Yepp¥epp™* =5

1 h
— particle per A = —
/ p p

% particle per unit * length

SE * v = NE(eikx iefikx) k=

2m(E - V)"
hZ

degenerate pair of
states

you show that

\IfJr __—m _1/4cos (—ZmEjlmx
OEE | oEn2n? | 72

Vs __—m _1/4sin (—sz)l/zx
°BF | 2En?n? |

Vg, is orthogonal to Wy ¢

probability for

oK - normalized

sE.EVappdx =——+ ( ther — fi 5 j -
jo VsE,EVsE, EAX °F another F rom Yge g E

state per A

* Volume of N-dimensional phase space occupied by a 8p normalized state is h
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Thus there are% particles per A for a OE - normalized state.

2/ m 1/2 :i
or —(— articles per unit length
[ h(ZE) P P 8

So we have assembled all the basic stuff we will need, at least for
V(x) = constant problems. Now use it to examine a problem we
understand perfectly.

neven
) %1/2 sin)[(2mE . 1/2X
Ve, = L cos K2
n odd

- 1/2
L/2 L/2 kn _ (szn]

1 particle per box of length L

1 . .
T particle per unit length
— O0asL — oo

% particle per A

4 normalization schemes (8k, 0p, 0K, box): each gives different #/L or #/A.

Why - because each scheme defines “state” differently.

# particles )( # statesj must be independent of

However, expect that ( > 10e
OXx 00 normalization scheme

k, p, E or bo

Why? Because the probability of finding a system between x, x + dx
AND 0, 6 + d6 is observable. We have completely specified what counts

as an observation.
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Normalization-Independent Quantity for general V(x):

lim (d_nj [l L/2 dx}—(# states)(# particles)
molqe) |- VeeVse 50 -

density of
states
(# states per
unit 6

The infallible way to get the invariant reference density is to box
normalize (so that one can count states) and then take limit L — .

Why? Because most realistic potentials become smooth and flat at
large enough x.

x_(E) - inner turning point

Procedure: 1. Box normalize Vg (E is quantized)

dn
2. Compute & from E(n)

3. take limit L —> d_n ) (but ld_n remains finitej
dE L dE

example: 2 2mE, 1/2
Vg = L sin 2 X

0 L

L .
J. Y Y dx =1 by construction (for box normalization)
0 n n
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2 2 2 1/2
E —n2 h dE _ 2nh n—' [8mEnL }

n 8mlL2 dn  8mI? h2
dn 2L, m\/?2
E = 0= —|—
PEE)= = (ZE)
REFERENCE DENSITY
. |dnl L . 2(m)” [2m7]” P(x,x+6x; E,E+3E)
lim| —— | yeyedx :—(—) =[ 5 } =
L-el dE L J0 h\2E h°E ox OE
I S

indep. of L

#
AE L

THIS SECTION TO BE REPLACED

% for Wsp - d(r;—lik for g,

SE* [—2?} = lim e L
h“E L
above
derived
reference

density

L *
Jo Wsp W spdx

op
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2 Schematic Examples

* Bound — free transition probabilities

* Constant spectral density across a dissociation or ionization
limit.
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Bound-Free Transition (predissociation)

bound (box normalized

//—\ discrete energy levels

—L

repulsive (continuum of E-

levels,
can’t really box normalize)
Xstationary X
phase

at t = 0 system 1s prepared in ¥(x,0) = Yy, ,.4(X)

Fermi’s Golden Rule:

2w ~ 2
Rate = I'yound—free = 7” Wgée*(E)ngounddX| ng(E)

nse(E)
PsE = 552

repulsive state and taking lim| ——

derive this key quantity by box orm lizing
L—e\ L dEj

Then compute the H integral using two box normalized functions.

Constant spectral density on both sides of a bound/free limit

/\/\AA(,___

)
Intensity(®) )
\ T AR smooth function of ®, no
discontinuity at onset of continuum
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