
  

5.73 Lecture #7 7 - 1 

JWKB QUANTIZATION CONDITION 

Last time: 

1. V x( ) = αx φ(p) = N exp

− 

h 

i 

α (Ep − p3 6m)
 

xψ( )  = Ai(z) * zeroes of Ai, Ai′ 
* tables of Ai (and Bi) 

* asymptotic forms far from turning points 

2. Semi-Classical Approximation for ψ(x) 

* p(x) = [(E − V(x))2m]1/2 

 

modifies classical to make 
it QM wavefunction 

“classical 

* ψ(x) = p(x) −1/2wavefunction” 
 
 x  

exp± i ∫ p(x )dx′′ 
h4cenvelope	 1 243  adjustable phase for 

 wiggly-variable k(x)  boundary conditions 

ψ without differential equation 
qualitative behavior of integrals (stationary phase) 

dλ
*	 validity: << 1 —valid not too near turning point.

dx 

[One reason for using semi-classical wavefunctions is that we often need to evaluate integrals 
* ˆ ˆOof the type ∫ ψ i pψ jdx. If Op is a slow function of x, the phase factor is 

i d   
exp 

h
[p x′) − p x′)]dx′. Take 

dx 
 


 = 0 to find xs p . δx is range about xs p over whichj( i( . .  . .  

2 ( . .  )δx.]phase changes by ± π  / .  Integral is equal to I x  s p  

Logical Structure of pages 6-11 to 6-14 (not covered in lecture): 

1.	 ψJWKB not valid (it blows up) near turning point — ∴ can’t match ψ’s on 
either side of turning point. 

2. Near a turning point, x±(E), every well-behaved V(x) looks linear 

V(x) ≈ V x+ (E)) + dV( 
dx x=x+

(x − x+ ) first term in a Taylor series. 

This makes it possible to use Airy functions for any V(x) near turning point. 
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5.73 Lecture #7 7 - 2 

3. asymptotic-Airy functions have matched amplitudes (and phase) across 
validity gap straddling the turning point. 

4. ψJWKB for a linear V(x) is identical to asymptotic-Airy! 

TODAY 

1. Summary of regions of validity for Airy, a-Airy, l-JWKB, JWKB on both 
sides of turning point. This seems complicated, but it leads to a result that 
will be exceptionally useful! 

2. WKB quantization condition: energy levels without wavefunctions! 

3. compute dnE/dE (for box normalization — can then convert to any other 
kind of normalization) 

4. trivial solution of Harmonic Oscillator 
Ev = hω (v+1/2) v = 0, 1, 2… 

Non-lecture  (from pages 6-12 to 6-14) 

classical ψa −AIRY = π−1/12
 

2 
h 

m 
2
α


−1/12

(a − x)−1/ 4 sin 


2 

 
2mα1/ 2

(a − x)3/ 2 + π 
 

3 h2  
4  

π −1/12  2mα −1/12
(x − a)−1/ 4 exp


− 2  2mα1/ 2

(x − a)3/ 2 
 

forbidden ψa −AIRY = 2  
h2  

 3  
h2  

 

classical ψl−JWKB =  C (a − x)−1/ 4 sin 


2  2mα1/ 2

(a − x)3/ 2 + φ
 

3  
h2  

 

forbidden ψl−JWKB =  D (x − a)−1/ 4 exp 

− 2 

 
2mα1/ 2

(x − a)3/ 2 
 

 3 h2  
 

C, D, and φ are determined by matching. 

These Airy functions are not normalized, but each pair has correct relative 
amplitude on opposite sides of turning point. l-JWKB has same functional form 
as a-Airy. This permits us to link pairs of JWKB functions across invalid region 
and then use JWKB to extend ψ(x) into regions further from turning point 
where linear approximation to V(x) is no longer valid. 
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5.73 Lecture #7 7 - 3 

Regions of Validity Near Turning Point E = V(x±(E)) 

I II 

xx + 

ψ(x) 

→| →| 

→|→| 

→| 

→| →| 

→| Common Validity of 
l-JWKB and a-AIRY 

LINEAR V(x) 

EXACT ψJWKB
ψJWKB 

ψ
l−JWKB 

ψAIRY 

ψa−AIRY 

OK at edges 
of Airy 
region 

CLASSICAL FORBIDDEN 

(E)

OK at t.p.

but not too

LINEAR V(x)

far ASYMPTOTIC AIRY


OK far enough 
from t.p. 

OK at onset of LINEAR V(x) JWKB 
JWKB region 

Common region of validity for ψa-AIRY and ψ
l-JWKB — same functional form, 

specify amplitude and phase for ψJWKB(x) valid far from turning point for exact 
V(x)! 
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5.73 Lecture #7 7 - 4 
Quantization of E in Arbitrary Shaped Wells 

IIIIII 

E 

a b 
x 

V x  E x a 

V x  E x E a 

( )  ( ) 

( )  ( )– 

≈ −  − 
= = 

> 

α 

α 0 

V x  E x b 

V x  E x E b 

( )  ( ) 

( )  ( ) 

≈ +  − 
= = 

> 
+ 

β 

β 0 ←← 

x− (E) = a x+ (E) = b 

– ∴ ∴ + 

Already know how to splice across I, II and II, III but how do 

we match ψ’s in a < x < b region? 

I C − 1
∫x
a p(x )dx′′ 

Region I ψ JWKB(x) =
2 

p(x) −1/ 2 e h x < a (forbidden region) 

(real, no oscillations) 

Note carefully that argument of exp goes to –∞ as x → − ∞, thus ψI(–∞) → 0. 

Note also that (ψI/C) increases monotonically as x increases up to x = a. 

When you are doing matching for the first time, it is very important to 
verify that the phase of ψ varies with x in the way you want it to. 
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5.73 Lecture #7 7 - 5 

IIaRegion II ψ JWKB(x) = C p(x) −1/ 2 sin1 
∫xp(x )dx′ + π  a < x < b′  h a 4  

The first zero is located at an accumulated phase of (3/4)π inside x=a because 
(3/4 + 1/4)π = π and sin π = 0. 

It does not matter that ψIIa is invalid near x = a, x = b 

Note that phase increases as x increases - as it must. The π/4 is the extra phase 
required by the AIRY splice across I,II. It reflects the tunneling of ψ(x) into the 
forbidden region. 

PHASE starts at π/4 in classical region and always increases as one moves 
(further into classical region) away from turning point. NEVER FORGET! 

III 
− 1

∫b
x p(x ) dx′′ 

Region III ψ JWKB(x) = C 
2
′ 

p(x) −1/ 2 e h x > b 

Note that phase advances (i.e. the phase integral gets more 
positive) as x → ∞. 

IIIψ JWKB decreases monotonically to 0 as x → +∞. 

IIbRegion II again ψ JWKB(x) = C p(x) −1/ 2 sin1 
∫bp(x )dx′ + π ′ ′  h x 4  

note: argument of sine starts at π/4 and increases as one goes from 
x = b inward. In other words, opposite to ψIIa, the argument 
decreases from left to right! 

But ψ IIa (x) = ψ IIb(x) for all a <  x <  b ! 

2 ways to satisfy this requirement 

1. sin( θ(x) (–θ(x)
4

) + (2n + 1)π] AND C = C′ { ) = sin[
123

argument argument 

of ψ 
IIa 

of ψ 
IIb 

[sin θ = − sin(−θ), sin(θ +  (2n + 1)π) = −  sin θ, 

∴sin θ =  sin(−θ + (2n + 1)π)] 
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5.73 Lecture #7 7 - 6 

2. sin(θ(x)) = −  sin[−θ(x) + 2nπ] if  C = −C′ 

now look at what the 2 cases require for the arguments 

1.	 C = C′ 1
∫a
xpdx + π 

 = −1
∫x
bpdx + π


 + 2n +1)π h 4  h 4

( 

ψ IIa ψ IIb 

θ(x) −θ(x) + (2n + 1)π 

∴ 1 (∫ax+∫x
bpdx) = 2n +1)π − π 

4
( 

4
− π 

h 

b

∫a
p(x )dx′ = hπ 2n + 1 2[ ] Quantization. ′ 

b
2.	 C = −C′ get ∫a

p(x )dx′ = hπ 2n − 1 2[ ]′

combine the two: 
p( ′ x )d ′ xa

b∫ = hπ n +1  2(
n = 0,1, 2,… 

′ C = C(−1)n 

) ** WKB quantization 
condition. Most important 
result of this lecture. 

n is # of internal nodes because argument always starts at 
π/4 and increases inward to (n + 3/4)π  at other turning 
point. inner t.p. outer t.p. 

f o r n  =  0 s in (π /4) →  sin(3π /4) NO NODE! 
n  =  1 s in (π /4) →  sin(7π /4) 1 node. 

etc .  

Node count tells what level it is. ∫pdx at arbitrary Eprobe tells how 

many levels there are at E ≤ Eprobe! 
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5.73 Lecture #7 7 - 7 

Density of States	 dn 
h 

dn  
dE  dE

 is the classical period of oscillation. 

n(E) = 
2 x+ (E)pE(x )dx′ − 1′
h ∫x− (E) 2 

dn = 2 
pE ( )  dx+ − pE ( )  dx− + ∫x

x 

−
+ dpE dx

 (must take derivatives of limits ofx+ x−dE h dE dE dE integration as well as integrand) 
but pE ( ) ≡ 0x± 

∴ dn = 2 ∫x+ d [2m E  − V(x ))]1/ 2 
dx′( ′ 

dE h x− dE 

dn 
dE 

= 2 
h 

1 
2 

(2m) 2m E − V( ′ x )([ −1/ 2 
d ′ x

x− 

x+ 

∫ )]

you show that, for harmonic oscillator 

V(x) = 1 
kx2 

2 

ω ≡ (k m)1/2 

that 
dn = 1 independent of E, thus period of h.o. is independent of E. 
dE hω 

Non-lecture


for general box normalization


can still use this to compute 
dn 

because 
dE 

x– 
x+ = LLL: 

dx+ 
dE 

= 0 (even though pE x+( )  ≠ 0). 

location of right hand turning point is independent of E. 

Can always use WKB quantization to compute density of box normalized 
ψE’s, provided that E > V(x) everywhere except the 2 turning points. 
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5.73 Lecture #7 7 - 8 
Use WKB to solve a few “standard” problems. Since WKB is “semi-classical”, we 
expect it to work in the n → ∞  limit. Could be some errors for a few of the 
lowest-n En’s. 

Harmonic Oscillator V(x) = kx2/2 (k is force constant, not wave vector) 

/1 2  V(x)  
( )  = 



2m

 
E − 

1 
kx 2





2 

At turning points, V xtp ( ) = 0,( ) = E and p xtp 

/
thus, at turning points x± = ±[2En k]1 2  

because En = 
1 

kx± 
2 

2 
x+ =[2En k]1/2 

2m En − kx2 2 ]1/2 
hπ(n + 1 / 2) = ∫x− =−[2En k]1/2 [ ( ) dx 

x 

Non-lecture: Dwight Integral Table 350.01 t ≡ [a2 − x2 ]1/2 

xt
∫ tdx =

2
+ a 

2

2 
sin−1(x / a) 

here t = 0 at both x+ and x-


I = (2mk 2)1/2 ∫
[2En k]1/2 

[2En k − x2 ]1/2
dx 

−[2En k]1/2 

I = (2mk 2)1/2 
 

2En 

[sin−11 − sin−1(−1)]
k


1/2 
En ((π 2) − −π 2)) = π

 m(

1/2 

En 















m
I = 

k
 k


1/2 

use the nonlecture result: hπ(n + 1 / 2) = π m  En k  

En = h k 1/2 
(n + 1 /  2) m 4 34 

ω 
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5.73 Lecture #7 7 - 9 

I suggest you apply WKB Quantization Condition to the following problems: See 
Shankar pages 454-457. 

Vee  V(x) = a|x| En ∝ (n + 1 / 2)2/3 

q u a r t i c  V(x) = bx4 En ∝ (n + 1 / 2)4/3 

l = 0, H atom V(x) = cx−1 En ∝ n−2 

h a r m o n i c  
V(x) = 1 

kx2 En ∝ (n + 1 / 2)1 

2 

What does this tell you about the relationship between the exponents m and α in 

Vm ∝ xm and En∝ nα? 

power of 
x in V(x) 

power of 
n in E(n) 

–1 –2 
1 /3 
2 
4 /3 

2
1 

4

Validity limits of WKB? 

* splicing of ψ IIa , ψ IIb ? 	
d2V 

can’t be too large near the splice region
dx2 

ψ JWKB is bad when 
dλ > 1 (λ changes by more than itself for ∆x = λ)~*	 dx 

near turning points and near the minimum of V(x) 

*	 can’t use WKB QC if there are more than 2 turning points 

near bottom of well 
d2V 

is not small and 
dλ > 1* dx2 dx 

(near both turning points). However, most wells look harmonic near 
minimum and WKB gives exact result for harmonic oscillator - should be 
more OK than one has any right to expect. 

*	 semi-classical: should be good in high-n limit. If exact En has same form as 
WKB QC at low-n, WKB En is valid for all n. 

H.O., Morse Oscillator… 
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