JWKB QUANTIZATION CONDITION

Last time:

1.
$$V(x) = \alpha x$$
 $\phi(p) = N \exp\left[-\frac{i}{\hbar\alpha} (Ep - p^3/6m)\right]$
 $\psi(x) = Ai(z)$ * zeroes of Ai, Ai'
* tables of Ai (and Bi)
* asymptotic forms far from turning points

2. Semi-Classical Approximation for $\psi(x)$

*
$$p(x) = [(E - V(x))2m]^{1/2}$$
 modifies classical to make
"classical
wavefunction"
* $\psi(x) = |p(x)|^{-1/2} \exp \left[\pm \frac{i}{\hbar} \int_{c}^{x} p(x')dx' \right]$ adjustable phase for
wiggly-variable k(x) boundary conditions

 $\begin{array}{l} \psi \mbox{ without differential equation} \\ \mbox{ qualitative behavior of integrals (stationary phase)} \\ * \mbox{ validity: } \frac{d\lambda}{dx} << 1 \ -- \mbox{ valid not too near turning point.} \end{array}$

[One reason for using semi-classical wavefunctions is that we often need to evaluate integrals of the type $\int \psi_i^* \hat{O}_p \psi_j dx$. If \hat{O}_p is a slow function of x, the phase factor is $\exp \frac{i}{h} [p_j(x') - p_i(x')] dx'$. Take $\frac{d}{dx} \left[= 0$ to find $x_{s.p.}$. δx is range about $x_{s.p.}$ over which phase changes by $\pm \pi/2$. Integral is equal to $I(x_{s.p.})\delta x$.]

Logical Structure of pages 6-11 to 6-14 (not covered in lecture):

- 1. ψ_{JWKB} not valid (it blows up) near turning point \therefore can't match ψ 's on either side of turning point.
- 2. Near a turning point, $x_{\pm}(E)$, every well-behaved V(x) looks linear

$$V(x) \approx V(x_{+}(E)) + \frac{dV}{dx}\Big|_{x=x_{+}} (x-x_{+})$$
 first term in a Taylor series.

This makes it possible to use Airy functions for any V(x) near turning point.

7 - 1

updated 9/16/02 11:29 AM

- 3. asymptotic-Airy functions have matched amplitudes (and phase) across validity gap straddling the turning point.
- 4. Ψ_{JWKB} for a linear V(x) is identical to asymptotic-Airy!

TODAY

- 1. Summary of regions of validity for Airy, a-Airy, *l*-JWKB, JWKB on both sides of turning point. This seems complicated, but it leads to a result that will be exceptionally useful!
- 2. WKB quantization condition: energy levels without wavefunctions!
- 3. compute dn_E/dE (for box normalization can then convert to any other kind of normalization)
- 4. trivial solution of Harmonic Oscillator $E_v = \hbar \omega (v+1/2) \quad v = 0, 1, 2...$

Non-lecture (from pages 6-12 to 6-14)

classical
$$\psi_{a-AIRY} = \pi^{-1/12} \left(\frac{2m\alpha}{\hbar^2} \right)^{-1/12} (a-x)^{-1/4} \sin \left[\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (a-x)^{3/2} + \frac{\pi}{4} \right]$$

forbidden $\psi_{a-AIRY} = \frac{\pi^{-1/12}}{2} \left(\frac{2m\alpha}{\hbar^2} \right)^{-1/12} (x-a)^{-1/4} \exp \left[-\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (x-a)^{3/2} \right]$
classical $\psi_{\ell-JWKB} = C$ $(a-x)^{-1/4} \sin \left[\frac{2}{3} \left(\frac{2m\alpha}{\hbar^2} \right)^{1/2} (a-x)^{3/2} + \phi \right]$

forbidden
$$\psi_{\ell-JWKB} = D$$
 $(x-a)^{-1/4} \exp\left[-\frac{2}{3}\left(\frac{2m\alpha}{\hbar^2}\right)^{1/2}(x-a)^{3/2}\right]$

C, D, and $\boldsymbol{\phi}$ are determined by matching.

These Airy functions are not normalized, but each pair has correct relative amplitude on opposite sides of turning point. ℓ -JWKB has same functional form as a-Airy. This permits us to link pairs of JWKB functions across invalid region and then use JWKB to extend $\psi(x)$ into regions further from turning point where linear approximation to V(x) is no longer valid.

Regions of Validity Near Turning Point $E = V(x_{\pm}(E))$

Common region of validity for ψ_{a-AIRY} and $\psi_{\ell-JWKB}$ — same functional form, specify amplitude and phase for $\psi_{JWKB}(x)$ valid far from turning point for exact V(x)!

7 - 4

Quantization of E in Arbitrary Shaped Wells

Already know how to splice across I, II and II, III but how do we match ψ 's in a < x < b region?

Region I $\psi_{JWKB}^{I}(x) = \frac{C}{2} |p(x)|^{-1/2} e^{-\frac{1}{\hbar} \int_{x}^{a} |p(x')dx'|}$ x < a (forbidden region) (real, no oscillations)

Note carefully that argument of exp goes to $-\infty$ as $x \to -\infty$, thus $\psi_I(-\infty) \to 0$. Note also that (ψ^I/C) increases monotonically as x increases up to x = a.

When you are doing matching for the first time, it is very important to verify that the phase of ψ varies with x in the way you want it to.

Region II
$$\psi_{\text{JWKB}}^{\text{IIa}}(x) = C|p(x)|^{-1/2} \sin\left[\frac{1}{\hbar}\int_{a}^{x} p(x')dx' + \frac{\pi}{4}\right]$$
 $a < x < b$

The first zero is located at an accumulated phase of $(3/4)\pi$ inside x=a because $(3/4 + 1/4)\pi = \pi$ and sin $\pi = 0$.

It does not matter that ψ^{IIa} is invalid near x = a, x = b

Note that phase increases as x increases - as it must. The $\pi/4$ is the extra phase required by the AIRY splice across I,II. It reflects the tunneling of $\psi(x)$ into the forbidden region.

PHASE starts at $\pi/4$ in classical region and always increases as one moves (further into classical region) away from turning point. **NEVER FORGET!**

Region III
$$\psi_{JWKB}^{III}(x) = \frac{C'}{2} |p(x)|^{-1/2} e^{-\frac{1}{\hbar} \int_{b}^{x} |p(x')| dx'} x > b$$

Note that phase advances (i.e. the phase integral gets more positive) as $x\to\infty.$

 $\Psi^{III}_{JWKB} \text{ decreases monotonically to } 0 \text{ as } x \to +\infty.$

Region II again
$$\psi_{\text{JWKB}}^{\text{IIb}}(x) = C' |p(x)|^{-1/2} \sin \left[\frac{1}{\hbar} \int_{x}^{b} p(x') dx' + \frac{\pi}{4}\right]$$

note: argument of sine starts at $\pi/4$ and increases as one goes from x = b inward. In other words, opposite to ψ^{IIa} , the argument decreases from left to right!

But
$$\psi^{\text{IIa}}(x) = \psi^{\text{IIb}}(x)$$
 for all $a < x < b$!

2 ways to satisfy this requirement

1.
$$\sin(\underbrace{\theta(\mathbf{x})}_{\substack{\text{argument}\\ \text{of }\psi^{\text{IIa}}}}) = \sin[\underbrace{(-\theta(\mathbf{x}))}_{\substack{\text{argument}\\ \text{of }\psi^{\text{IIb}}}} + (2n+1)\pi] \text{ AND } \mathbf{C} = \mathbf{C'}$$

$$[\sin \theta = -\sin(-\theta), \qquad \sin(\theta + (2n+1)\pi) = -\sin\theta,$$

$$\therefore \sin \theta = \sin(-\theta + (2n+1)\pi)]$$

updated 9/16/02 11:29 AM

2.
$$\sin(\theta(\mathbf{x})) = -\sin[-\theta(\mathbf{x}) + 2n\pi]$$
 if $\mathbf{C} = -\mathbf{C}'$

now look at what the 2 cases require for the arguments

1.
$$C = C'$$

$$\begin{bmatrix} \frac{1}{\hbar} \int_{a}^{x} p dx + \frac{\pi}{4} \end{bmatrix} = -\begin{bmatrix} \frac{1}{\hbar} \int_{x}^{b} p dx + \frac{\pi}{4} \end{bmatrix} + (2n+1)\pi$$

$$\psi^{IIa} \qquad \psi^{IIb}$$

$$\theta(x) \qquad -\theta(x) + (2n+1)\pi$$

$$\therefore \frac{1}{\hbar} \left(\int_{a}^{x} + \int_{x}^{b} p dx \right) = (2n+1)\pi - \frac{\pi}{4} - \frac{\pi}{4}$$

$$\begin{bmatrix} \int_{a}^{b} p(x') dx' = \hbar\pi [2n+1/2] \end{bmatrix}$$
Quantization.
2. $C = -C'$ get
$$\begin{bmatrix} \int_{a}^{b} p(x') dx' = \hbar\pi [2n-1/2] \end{bmatrix}$$
combine the two:
$$\begin{bmatrix} cb = c \text{ transformation } t = t \text{ transformation } t$$

the two:

$$\int_{a}^{b} p(x')dx' = \hbar\pi(n+1/2)$$

$$n = 0, 1, 2, ...$$

$$C' = C(-1)^{n}$$
** WKB quantization condition. Most important result of this lecture.

n is # of internal nodes because argument always starts at $\pi/4$ and increases inward to $(n + 3/4)\pi$ at other turning

point.	inner t.p.	outer t.p.	
for $n = 0$	$\sin(\pi/4) \rightarrow$	$\sin(3\pi/4)$	NO NODE!
n = 1	$\sin(\pi/4) \rightarrow$	$\sin(7\pi/4)$	1 node.
	etc.		

Node count tells what level it is. $\int pdx$ at arbitrary E_{probe} tells how many levels there are at $E \leq E_{probe}$!

...

$$\begin{array}{ll} \underline{\text{Density of States}} & \frac{dn}{dE} & \left[h\frac{dn}{dE} \text{ is the classical period of oscillation.}\right] \\ n(E) &= \frac{2}{h} \int_{x_{-}(E)}^{x_{+}(E)} p_{E}(x') dx' - \frac{1}{2} \\ \frac{dn}{dE} &= \frac{2}{h} \left[p_{E}(x_{+}) \frac{dx_{+}}{dE} - p_{E}(x_{-}) \frac{dx_{-}}{dE} + \int_{x_{-}}^{x_{+}} \frac{dp_{E}}{dE} dx \right] & \text{(must take derivatives of limits of integration as well as integrand)} \\ \text{but } p_{E}(x_{\pm}) &\equiv 0 \\ \therefore \frac{dn}{dE} &= \frac{2}{h} \int_{x_{-}}^{x_{+}} \frac{d}{dE} \left[2m(E - V(x')) \right]^{1/2} dx' \end{array}$$

$$\frac{dn}{dE} = \frac{2}{h} \frac{1}{2} (2m) \int_{x_{-}}^{x_{+}} \left[2m (E - V(x')) \right]^{-1/2} dx'$$

you show that, for harmonic oscillator

$$V(x) = \frac{1}{2}kx^{2}$$

$$\omega \equiv (k/m)^{1/2}$$

that $\frac{dn}{dE} = \frac{1}{\hbar\omega}$ independent of E, thus period of h.o. is independent of E.

Can always use WKB quantization to compute density of box normalized ψ_{E} 's, provided that E > V(x) everywhere except the 2 turning points.

Use WKB to solve a few "standard" problems. Since WKB is "semi-classical", we expect it to work in the $n\to\infty~$ limit. Could be some errors for a few of the

expect it to work in the n $\rightarrow \infty$ limit. Could be some erro lowest-n E_n's. <u>Harmonic Oscillator</u> V(x) = kx²/2 (k is force $p(x) = \left[2m\left(E - \frac{1}{2}kx^2\right)\right]^{1/2}$ At turning points, $V(x_{ip}) = E$ and $p(x_{ip}) = 0$, thus, at turning points $x_{\pm} = \pm \left[2E_n/k\right]^{1/2}$ because $E_n = \frac{1}{2}kx_{\pm}^2$ $\hbar\pi(n + 1/2) = \int_{x_{-}=-\left[2E_n/k\right]^{1/2}}^{x_{+}=\left[2E_n/k\right]^{1/2}} \left[2m\left(E_n - kx^2/2\right)\right]^{1/2} dx$

Non-lecture: Dwight Integral Table 350.01 $t \equiv \left[a^2 - x^2\right]^{1/2}$

$$\int t dx = \frac{xt}{2} + \frac{a^2}{2} \sin^{-1}(x / a)$$

here t = 0 at both x₊ and x₋

$$I = (2mk/2)^{1/2} \int_{-[2E_n/k]^{1/2}}^{[2E_n/k]^{1/2}} [2E_n/k - x^2]^{1/2} dx$$

$$I = (2mk/2)^{1/2} \left(\frac{2E_n}{k}\right) [\sin^{-1}1 - \sin^{-1}(-1)]$$

$$I = \left(\frac{m}{k}\right)^{1/2} E_n \left((\pi/2) - (-\pi/2)\right) = \pi \left(\frac{m}{k}\right)^{1/2} E_n$$

use the nonlecture result:

$$\hbar\pi(n+1/2) = \pi\left(\frac{m}{k}\right)^{1/2} E_n$$
$$E_n = \hbar\left(\frac{k}{m}\right)^{1/2} (n+1/2)$$

I suggest you apply WKB Quantization Condition to the following problems: See Shankar pages 454-457.

Vee	V(x) = a x	$E_n \propto (n+1/2)^{2/3}$
quartic	$V(x) = bx^4$	$\mathrm{E_n} \propto \left(n + 1/2\right)^{4/3}$
$\ell = 0, H \text{ atom}$	$V(x) = cx^{-1}$	$E_n \propto n^{-2}$
harmonic	$V(x) = \frac{1}{2}kx^2$	$\mathrm{E_n} \propto (n+1/2)^1$

What does this tell you about the relationship between the exponents m and α in $V_m \propto x^m$ and $E_n \propto n^\alpha ?$

power of x in V(x)	power of n in E(n)
-1	-2
1	2/3
2	1
4	4/3

Validity limits of WKB?

* splicing of ψ^{IIa}, ψ^{IIb} ? $\frac{d^2V}{dx^2}$ can't be too large near the splice region * ψ_{JWKB} is bad when $\frac{d\lambda}{dx} \ge 1$ (λ changes by more than itself for $\Delta x = \lambda$)

near turning points and near the minimum of V(x)

* can't use WKB QC if there are more than 2 turning points

* near bottom of well $\frac{d^2 V}{dx^2}$ is not small and $\frac{d\lambda}{dx} > 1$

(near both turning points). However, most wells look harmonic near minimum and WKB gives exact result for harmonic oscillator - should be more OK than one has any right to expect.

* semi-classical: should be good in high-n limit. If exact E_n has same form as WKB QC at low-n, WKB E_n is valid for all n.

H.O., Morse Oscillator...