JWKB QUANTIZATION CONDITION

$\underline{\text { Last time: }}$

$$
\text { 1. } \quad \begin{aligned}
\mathrm{V}(\mathrm{x})=\alpha \mathrm{x} \quad \phi(\mathrm{p})=\mathrm{Nexp}[- & \left.\frac{\mathrm{i}}{\hbar \alpha}\left(\mathrm{Ep}-\mathrm{p}^{3} / 6 \mathrm{~m}\right)\right] \\
\psi(\mathrm{x})=\operatorname{Ai}(\mathrm{z}) & \text { * zeroes of } \mathrm{Ai}, \mathrm{Ai}^{\prime} \\
& * \text { tables of } \mathrm{Ai}(\text { and } \mathrm{Bi}) \\
& * \text { asymptotic forms far from turning points }
\end{aligned}
$$

2. Semi-Classical Approximation for $\psi(x)$

ψ without differential equation qualitative behavior of integrals (stationary phase)

* validity: $\frac{\mathrm{d} \lambda}{\mathrm{dx}} \ll 1$ - valid not too near turning point.
[One reason for using semi-classical wavefunctions is that we often need to evaluate integrals of the type $\int \psi_{i}{ }^{*} \hat{O}_{p} \psi_{j} d x$. If \hat{O}_{p} is a slow function of x, the phase factor is $\exp \frac{i}{h}\left[p_{j}\left(x^{\prime}\right)-p_{i}\left(x^{\prime}\right)\right] d x^{\prime}$. Take $\frac{d}{d x}[]=0$ to find $x_{\text {s.p. }} . \delta x$ is range about $x_{\text {s.p. }}$ over which phase changes by $\pm \pi / 2$. Integral is equal to $\mathrm{I}\left(\mathrm{x}_{\text {s.p. }}\right) \delta \mathrm{x}$.]

Logical Structure of pages 6-11 to 6-14 (not covered in lecture):

1. $\psi_{\text {JWKB }}$ not valid (it blows up) near turning point $-\therefore$ can't match ψ 's on either side of turning point.
2. Near a turning point, $\mathrm{x}_{ \pm}(\mathrm{E})$, every well-behaved $\mathrm{V}(\mathrm{x})$ looks linear

$$
\mathrm{V}(\mathrm{x}) \approx \mathrm{V}\left(\mathrm{x}_{+}(\mathrm{E})\right)+\left.\frac{\mathrm{dV}}{\mathrm{dx}}\right|_{\mathrm{x}=\mathrm{x}_{+}}\left(\mathrm{x}-\mathrm{x}_{+}\right) \quad \text { first term in a Taylor series. }
$$

This makes it possible to use Airy functions for any $\mathrm{V}(\mathrm{x})$ near turning point.
3. asymptotic-Airy functions have matched amplitudes (and phase) across validity gap straddling the turning point.
4. $\quad \psi_{J W K B}$ for a linear $\mathrm{V}(\mathrm{x})$ is identical to asymptotic-Airy!

TODAY

1. Summary of regions of validity for Airy, a-Airy, ℓ-JWKB, JWKB on both sides of turning point. This seems complicated, but it leads to a result that will be exceptionally useful!
2. WKB quantization condition: energy levels without wavefunctions!
3. compute $\mathrm{dn}_{\mathrm{E}} / \mathrm{dE}$ (for box normalization - can then convert to any other kind of normalization)
4. trivial solution of Harmonic Oscillator

$$
\mathrm{E}_{\mathrm{v}}=\hbar \omega(\mathrm{v}+1 / 2) \quad \mathrm{v}=0,1,2 \ldots
$$

Non-lecture (from pages 6-12 to 6-14)

$$
\left.\begin{array}{ll}
\text { classical } & \psi_{a-A I R Y}=\pi^{-1 / 12}\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{-1 / 12}(a-x)^{-1 / 4} \sin \left[\frac{2}{3}\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{1 / 2}(a-x)^{3 / 2}+\frac{\pi}{4}\right] \\
\text { forbidden } & \psi_{a-\operatorname{AIRY}}=\frac{\pi^{-1 / 12}}{2}\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{-1 / 12}(x-a)^{-1 / 4} \exp \left[-\frac{2}{3}\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{1 / 2}(x-a)^{3 / 2}\right] \\
\text { classical } & \psi_{\ell-\text { JWKB }}=\quad C \quad(a-x)^{-1 / 4} \sin \left[\frac{2}{3}\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{1 / 2}(a-x)^{3 / 2}+\phi\right] \\
\text { forbidden } & \psi_{\ell-\text { JWKB }}=\quad D
\end{array}(x-a)^{-1 / 4} \exp \left[-\frac{2}{3}\left(\frac{2 m \alpha}{\hbar^{2}}\right)^{1 / 2}(x-a)^{3 / 2}\right]\right)
$$

C, D, and ϕ are determined by matching.

These Airy functions are not normalized, but each pair has correct relative amplitude on opposite sides of turning point. ℓ-JWKB has same functional form as a-Airy. This permits us to link pairs of JWKB functions across invalid region and then use JWKB to extend $\psi(x)$ into regions further from turning point where linear approximation to $\mathrm{V}(\mathrm{x})$ is no longer valid.

Regions of Validity Near Turning Point $\quad \mathrm{E}=\mathrm{V}\left(\mathrm{x}_{ \pm}(\mathrm{E})\right)$

Common region of validity for $\psi_{\text {a-AIRY }}$ and $\psi_{\ell \text {-JWKB }}$ - same functional form, specify amplitude and phase for $\psi_{\text {JWKB }}(\mathrm{x})$ valid far from turning point for exact V(x)!

5.73 Lecture \#7

Quantization of E in Arbitrary Shaped Wells

Already know how to splice across I, II and II, III but how do we match ψ 's in a $<\mathrm{x}<\mathrm{b}$ region?

Region I

$$
\psi_{\mathrm{JWKB}}^{\mathrm{I}}(\mathrm{x})=\frac{\mathrm{C}}{2}|\mathrm{p}(\mathrm{x})|^{-1 / 2} \mathrm{e}^{-\frac{1}{\hbar} \int_{\mathrm{x}}^{\mathrm{a}}\left|\mathrm{p}\left(\mathrm{x}^{\prime}\right) \mathrm{d} \mathrm{x}^{\prime}\right|} \quad \mathrm{x}<\mathrm{a} \quad \begin{array}{ll}
\quad & \text { (forbidden region) } \\
& \text { (real, no oscillations) }
\end{array}
$$

Note carefully that argument of exp goes to $-\infty$ as $x \rightarrow-\infty$, thus $\psi_{\mathrm{I}}(-\infty) \rightarrow 0$.
Note also that (ψ^{I} / C) increases monotonically as x increases up to $\mathrm{x}=\mathrm{a}$.

When you are doing matching for the first time, it is very important to verify that the phase of ψ varies with x in the way you want it to.

Region II $\quad \psi_{J W K B}^{\mathrm{IIa}}(\mathrm{x})=\mathrm{C}|\mathrm{p}(\mathrm{x})|^{-1 / 2} \sin \left[\frac{1}{\hbar} \int_{\mathrm{a}}^{\mathrm{x}} \mathrm{p}\left(\mathrm{x}^{\prime}\right) \mathrm{dx} \mathrm{x}^{\prime}+\frac{\pi}{4}\right] \quad \mathrm{a}<\mathrm{x}<\mathrm{b}$
The first zero is located at an accumulated phase of $(3 / 4) \pi$ inside $x=a$ because $(3 / 4+1 / 4) \pi=\pi$ and $\sin \pi=0$.

It does not matter that $\psi^{\text {IIa }}$ is invalid near $\mathrm{x}=\mathrm{a}, \mathrm{x}=\mathrm{b}$
Note that phase increases as x increases - as it must. The $\pi / 4$ is the extra phase required by the AIRY splice across I,II. It reflects the tunneling of $\psi(x)$ into the forbidden region.

PHASE starts at $\pi / 4$ in classical region and always increases as one moves (further into classical region) away from turning point. NEVER FORGET!

Region III

$$
\psi_{\text {JWKB }}^{\mathrm{III}}(\mathrm{x})=\frac{\mathrm{C}^{\prime}}{2}|\mathrm{p}(\mathrm{x})|^{-1 / 2} \mathrm{e}^{-\frac{1}{\hbar} \int_{\mathrm{b}}^{\mathrm{x}}\left|\mathrm{p}\left(\mathrm{x}^{\prime}\right)\right| \mathrm{dx}^{\prime}} \quad \mathrm{x}>\mathrm{b}
$$

Note that phase advances (i.e. the phase integral gets more positive) as $\mathrm{x} \rightarrow \infty$.
$\psi_{\mathrm{JWKB}}^{\mathrm{III}}$ decreases monotonically to 0 as $\mathrm{x} \rightarrow+\infty$.

Region II again

$$
\psi_{\mathrm{JWKB}}^{\mathrm{IIb}}(\mathrm{x})=\mathrm{C}^{\prime}|\mathrm{p}(\mathrm{x})|^{-1 / 2} \sin \left[\frac{1}{\hbar} \int_{\mathrm{x}}^{\mathrm{b}} \mathrm{p}\left(\mathrm{x}^{\prime}\right) \mathrm{d} \mathrm{x}^{\prime}+\frac{\pi}{4}\right]
$$

note: argument of sine starts at $\pi / 4$ and increases as one goes from $\mathrm{x}=\mathrm{b}$ inward. In other words, opposite to $\psi^{\text {IIa }}$, the argument decreases from left to right!

But $\psi^{\mathrm{IIa}}(\mathrm{x})=\psi^{\mathrm{IIb}}(\mathrm{x})$ for all $\mathrm{a}<\mathrm{x}<\mathrm{b}$!

2 ways to satisfy this requirement

1. $\sin (\underbrace{\theta(\mathrm{x})}_{\substack{\text { argument } \\ \text { of } \Psi^{\text {Ia }}}})=\sin [\underbrace{(-\theta(\mathrm{x})}_{\substack{\text { argument } \\ \text { of } \Psi^{\text {II }}}})+(2 \mathrm{n}+1) \pi]$ AND C $=\mathrm{C}^{\prime}$

$$
\begin{aligned}
& {[\sin \theta=-\sin (-\theta), \quad \sin (\theta+(2 n+1) \pi)=-\sin \theta,} \\
& \therefore \sin \theta=\sin (-\theta+(2 n+1) \pi)]
\end{aligned}
$$

2. $\sin (\theta(x))=-\sin [-\theta(x)+2 n \pi] \quad$ if $C=-C^{\prime}$
now look at what the 2 cases require for the arguments
3. $\mathrm{C}=\mathrm{C}^{\prime}$
$\left[\frac{1}{\hbar} \int_{\mathrm{a}}^{\mathrm{x}} \mathrm{pdx}+\frac{\pi}{4}\right]=-\left[\frac{1}{\hbar} \int_{\mathrm{x}}^{\mathrm{b}} \mathrm{pdx}+\frac{\pi}{4}\right]+(2 \mathrm{n}+1) \pi$

$$
\begin{array}{ll}
\psi^{\mathrm{IIa}} & \psi^{\mathrm{IIb}} \\
\theta(\mathrm{x}) & -\theta(\mathrm{x})+(2 \mathrm{n}+1) \pi
\end{array}
$$

$$
\therefore \frac{1}{\hbar}\left(\int_{a}^{x}+\int_{x}^{b} p d x\right)=(2 n+1) \pi-\frac{\pi}{4}-\frac{\pi}{4}
$$

$$
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{p}\left(\mathrm{x}^{\prime}\right) \mathrm{d} \mathrm{x}^{\prime}=\hbar \pi[2 \mathrm{n}+1 / 2] \quad \text { Quantization. }
$$

2. $\mathrm{C}=-\mathrm{C}^{\prime}$ get

$$
\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{p}\left(\mathrm{x}^{\prime}\right) \mathrm{dx} \mathrm{x}^{\prime}=\hbar \pi[2 \mathrm{n}-1 / 2]
$$

combine the two:

n is \# of internal nodes because argument always starts at $\pi / 4$ and increases inward to $(\mathrm{n}+3 / 4) \pi$ at other turning point.
for $\mathrm{n}=0$

$$
\begin{array}{cl}
\frac{\text { inner t.p. }}{} \text { outer t.p. } & \\
\cline { 1 - 1 }(\pi / 4) \rightarrow \sin (3 \pi / 4) & \text { NO NODE! } \\
\sin (\pi / 4) \rightarrow \sin (7 \pi / 4) \quad 1 \text { node. } \\
\text { etc. } &
\end{array}
$$

Node count tells what level it is. $\int p d x$ at arbitrary $E_{\text {probe }}$ tells how many levels there are at $\mathrm{E} \leq \mathrm{E}_{\text {probe }}$!

Density of States $\quad \frac{\mathrm{dn}}{\mathrm{dE}} \quad\left[h \frac{d n}{d E}\right.$ is the classical period of oscillation. $]$

$$
\begin{aligned}
& \mathrm{n}(\mathrm{E})=\frac{2}{\mathrm{~h}} \int_{\mathrm{x}_{-}(\mathrm{E})}^{\mathrm{x}_{+}(\mathrm{E})} \mathrm{p}_{\mathrm{E}}\left(\mathrm{x}^{\prime}\right) \mathrm{dx} \mathrm{x}^{\prime}-\frac{1}{2} \\
& \frac{\mathrm{dn}}{\mathrm{dE}}=\frac{2}{\mathrm{~h}}\left[\mathrm{p}_{\mathrm{E}}\left(\mathrm{x}_{+}\right) \frac{\mathrm{dx}_{+}}{\mathrm{dE}}-\mathrm{p}_{\mathrm{E}}\left(\mathrm{x}_{-}\right) \frac{\mathrm{dx}}{\mathrm{dE}}+\int_{\mathrm{x}}^{\mathrm{x}}\right. \\
& \text { but } \mathrm{p}_{\mathrm{E}}\left(\mathrm{x}_{ \pm}\right) \equiv 0 \\
& \therefore \frac{\mathrm{dn}}{\mathrm{dE}}=\frac{2}{\mathrm{~h}} \int_{\mathrm{x}_{-}}^{\mathrm{x}_{+}} \frac{\mathrm{d}}{\mathrm{dE}}\left[2 \mathrm{~m}\left(\mathrm{E}-\mathrm{V}\left(\mathrm{x}^{\prime}\right)\right)\right]^{1 / 2} \mathrm{dx}^{\prime}
\end{aligned}
$$

$$
\frac{\mathrm{dn}}{\mathrm{dE}}=\frac{2}{\mathrm{~h}}\left[\mathrm{p}_{\mathrm{E}}\left(\mathrm{x}_{+}\right) \frac{\mathrm{dx}_{+}}{\mathrm{dE}}-\mathrm{p}_{\mathrm{E}}\left(\mathrm{x}_{-}\right) \frac{\mathrm{dx}_{-}}{\mathrm{dE}}+\int_{\mathrm{x}_{-}}^{\mathrm{x}_{+}} \frac{\mathrm{dp}_{\mathrm{E}}}{\mathrm{dE}} \mathrm{dx}\right] \quad \begin{aligned}
& \text { (must take derivatives of limits of } \\
& \text { integration as well as integrand) }
\end{aligned}
$$

$$
\frac{\mathrm{dn}}{\mathrm{dE}}=\frac{2}{\mathrm{~h}} \frac{1}{2}(2 \mathrm{~m}) \int_{\mathrm{x}_{-}}^{\mathrm{x}_{+}}\left[2 \mathrm{~m}\left(\mathrm{E}-\mathrm{V}\left(\mathrm{x}^{\prime}\right)\right)\right]^{-1 / 2} \mathrm{dx}^{\prime}
$$

you show that, for harmonic oscillator

$$
\begin{aligned}
\mathrm{V}(\mathrm{x}) & =\frac{1}{2} \mathrm{kx}^{2} \\
\omega & \equiv(\mathrm{k} / \mathrm{m})^{1 / 2} \\
\text { that } \frac{\mathrm{dn}}{\mathrm{dE}} & =\frac{1}{\hbar \omega} \quad \text { independent of } \mathrm{E} \text {, thus period of h.o. is independent of } \mathrm{E} .
\end{aligned}
$$

Non-lecture
for general box normalization
can still use this to compute $\frac{\mathrm{dn}}{\mathrm{dE}}$ because

$$
\frac{\mathrm{dx}_{+}}{\mathrm{dE}}=0\left(\text { even though } \mathrm{p}_{\mathrm{E}}\left(\mathrm{x}_{+}\right) \neq 0\right)
$$

location of right hand turning point is independent of E.
Can always use WKB quantization to compute density of box normalized ψ_{E} 's, provided that $\mathrm{E}>\mathrm{V}(\mathrm{x})$ everywhere except the 2 turning points.

5.73 Lecture \#7

Use WKB to solve a few "standard" problems. Since WKB is "semi-classical", we expect it to work in the $n \rightarrow \infty$ limit. Could be some errors for a few of the lowest-n E_{n} 's.
Harmonic Oscillator $\quad \mathrm{V}(\mathrm{x})=\mathrm{kx}^{2} / 2 \quad$ (k is force constant, not wave vector)
$p(x)=\left[2 m\left(E-\frac{1}{2} k x^{2}\right)\right]^{1 / 2}$
At turning points, $V\left(x_{t p}\right)=E$ and $p\left(x_{t p}\right)=0$, thus, at turning points $x_{ \pm}= \pm\left[2 E_{n} / k\right]^{1 / 2}$
because $E_{n}=\frac{1}{2} k x_{ \pm}^{2}$
$\hbar \pi(\mathrm{n}+1 / 2)=\int_{\mathrm{x}_{-}=-\left[2 \mathrm{E}_{\mathrm{n}} / \mathrm{k}\right]^{1 / 2}}^{\mathrm{x}_{+}=\left[2 \mathrm{E}_{\mathrm{n}} / \mathrm{k}\right]^{1 / 2}}\left[2 \mathrm{~m}\left(\mathrm{E}_{\mathrm{n}}-\mathrm{kx}^{2} / 2\right)\right]^{1 / 2} \mathrm{dx}$

Non-lecture: Dwight Integral Table $350.01 \quad \mathrm{t} \equiv\left[\mathrm{a}^{2}-\mathrm{x}^{2}\right]^{1 / 2}$

$$
\begin{gathered}
\int \operatorname{tdx}=\frac{x t}{2}+\frac{a^{2}}{2} \sin ^{-1}(x / a) \\
\text { here } t=0 \text { at both } x_{+} \text {and } x_{-} \\
I=(2 m k / 2)^{1 / 2} \int_{-\left[2 E_{n} / k\right]^{1 / 2}\left[2 E_{n} / k-x^{2}\right]^{1 / 2} d x}^{I / 2}\left[(2 m k / 2)^{1 / 2}\left(\frac{2 E_{n}}{k}\right)\left[\sin ^{-1} 1-\sin ^{-1}(-1)\right]\right. \\
I=\left(\frac{m}{k}\right)^{1 / 2} E_{n}((\pi / 2)-(-\pi / 2))=\pi\left(\frac{m}{k}\right)^{1 / 2} E_{n}
\end{gathered}
$$

use the nonlecture result: $\quad \hbar \pi(\mathrm{n}+1 / 2)=\pi\left(\frac{\mathrm{m}}{\mathrm{k}}\right)^{1 / 2} \mathrm{E}_{\mathrm{n}}$
$\mathrm{E}_{\mathrm{n}}=\hbar \underbrace{\left(\frac{\mathrm{k}}{\mathrm{m}}\right)^{1 / 2}}_{\omega}(\mathrm{n}+1 / 2)$

I suggest you apply WKB Quantization Condition to the following problems: See Shankar pages 454-457.

Vee	$\mathrm{V}(\mathrm{x})=\mathrm{alx}$	$\mathrm{E}_{\mathrm{n}} \propto(\mathrm{n}+1 / 2)^{2 / 3}$
quartic	$\mathrm{V}(\mathrm{x})=\mathrm{bx}^{4}$	$\mathrm{E}_{\mathrm{n}} \propto(\mathrm{n}+1 / 2)^{4 / 3}$
$\ell=0$, H atom	$\mathrm{V}(\mathrm{x})=\mathrm{cx}^{-1}$	$\mathrm{E}_{\mathrm{n}} \propto \mathrm{n}^{-2}$
harmonic	$\mathrm{V}(\mathrm{x})=\frac{1}{2} \mathrm{kx}^{2}$	$\mathrm{E}_{\mathrm{n}} \propto(\mathrm{n}+1 / 2)^{1}$

What does this tell you about the relationship between the exponents m and α in $\mathrm{V}_{\mathrm{m}} \propto \mathrm{x}^{\mathrm{m}}$ and $\mathrm{E}_{\mathrm{n}} \propto \mathrm{n}^{\alpha}$?

power of x in $\mathrm{V}(\mathrm{x})$	power of n in $\mathrm{E}(\mathrm{n})$
-1	-2
1	$2 / 3$
2	1
4	$4 / 3$

Validity limits of WKB?

* splicing of $\psi^{\mathrm{IIa}}, \psi^{\mathrm{IIb}} ? \frac{\mathrm{~d}^{2} V}{\mathrm{dx}^{2}} \quad$ can't be too large near the splice region
* $\psi_{\text {JWKB }}$ is bad when $\frac{\mathrm{d} \lambda}{\mathrm{dx}} \gtrsim 1 \quad(\lambda$ changes by more than itself for $\Delta \mathrm{x}=\lambda)$ near turning points and near the minimum of $V(x)$
* can't use WKB QC if there are more than 2 turning points
* near bottom of well $\frac{d^{2} V}{d x^{2}}$ is not small and $\frac{d \lambda}{d x}>1$
(near both turning points). However, most wells look harmonic near minimum and WKB gives exact result for harmonic oscillator - should be more OK than one has any right to expect.
* semi-classical: should be good in high-n limit. If exact E_{n} has same form as WKB QC at low-n, WKB E_{n} is valid for all n .
H.O., Morse Oscillator...

