
5.73 Lecture #8 Rydberg Klein Rees 8 - 1 
Last time:	 WKB quantization condition for bound eigenstates of 

almost general V(x) — Connection into bound region from 
left and right 

x+ (E) pE(x )dx′ =′∫x− (E) 
h 
2 

(n + 1/ 2) 

pE(x) = [2m(E − V(x))]1/2 

En without ψn! 
timing of w.p. as 

But where do we get V(x)? it moves on V(x)

Certainly not from femtochemistry!

From FREQUENCY DOMAIN SPECTROSCOPY


Ev,J → V(x) 

RKR method 

Next time: Numerical Integration of 1-D Schr. Eq. — see handouts 
Then begin working toward matrix picture 
Need background in Ch.2 of CTDL 

pages 94-121 soon, pages 121-144 by next week 
Postulates and theorems not to be covered except as needed for 
solving problems. 

Today: Ev,J → spectroscopic notation 

A(E, J) = 

E 

V(x) 

xe x 
dV

Equilibrium: = →  xe0 
dx 

∂A ∂A 1 1 
∂E

, 
∂J 

→ x+ (E) − x− (E) and 
x+ (E) 

− 
x− (E) 

∂A ∂A
WKB QC applied to 

∂E
 , 

∂J 
← G v( ),B(v) used to determine x± (E). 

Long Range Theory: Ultra Cold Collisions: Atom in Molecule 
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Someday you will discover that the energy levels of a diatomic 
molecule are given by 

EevJ / hc = Te + G(v) + Fv(J) cm-1 
electronic vibration rotation

[= νe + Y00 + ωe (v +1  / 2) − ωexe (v +1  / 2)2 +… 

+ Be − αe (v +1  / 2)+… [
] 

G(v) 

]J(J +1) − DJ2 (J +1)2 

B(v) 

RKR requires only G(v) and B(v) to get VJ(x) 

where VJ(x) = U(x) + h
2J(J +1) 

J-dependent bare 2µx2 
effective potential centrifugal barrier
potential (actually rotational 

kinetic energy) 

x ≡ R − Re 

m m1 2µ =  
m1 + m2 

We are going to derive V0 (x) directly from G(v), B(v) data. 
This is the only direct spectrum to potential inversion 
method! WKB quantization is the basis for this. 

∫ 
x E v )+ ( 

x′pE ( )dx′ = (h / 2)(v + 1 / 2) v = 0,1,…#  of nodes 
x E v ) v 

− ( 

In this equation, what we know (Ev) and what we want (V(x) and x at turning points) 
are hopelessly mixed up. There is a trick! 

A(E, J) ≡ 
x+ (E,J) [E ±  VJ(x )]dx′′∫x− (E,J) 

x–(E) x+(E) 

area at E 
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but, still, we know neither VJ(x)  nor x± (E,J)!! 

∂A ∂A 

integrals (via WKB QC) involving only data input 

Roadmap: 1 . Show that 
∂E 

and 
∂J

 are numerically evaluable 

Ev,J  info 
here ∂A ∂A 

[ 

2 . independently, 
∂E 

and 
∂J 

determine 

2 eqs. in 2  1 1  
unknowns give 

x+ (E, J) − x− (E, J)] and 

 x+ (E, J) 

− 
x− (E, J) 

 
turning points 

Do #2 first because it is so easy 

∂A = ∂  x+ (E,J) 
E – U( ′ 

∂E ∂E 
∫x− (E,J)  

x )  − h
2J(J +1) 


 
dx′



2µx′2  

= x+ (E,J) 1dx′ +∫x− (E,J) 

∂E 

are zero because integrand is 0 
at turning points 

+ 

contributions from 
∂x± (E, J) 

0 0 

∂A 
∂E 

= x+ (E, J) − x− (E, J) ! 

∂A = ∂  x+ (E,J) 
E – U( ′ 

∂J ∂J 
∫x− (E,J)  

x )  − h
2J(J +1) 


 
dx′



2µx′2  

= −  h
2 

x+ (E,J) 2J +1  0 + 0
2µ ∫x− (E,J) x′2 dx′ + 123 

integrand = 0 at x ± 

∂A = +  h2(2J +1)  1 1  
∂J 2µ 

 x+ (E,J) 
− 

x− (E,J) 
 

So, if we can evaluate these derivatives from EvJ data, we have VJ(x)! 
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some clever manipulations to put A(E,J) into convenient form 
(see nonlecture notes on pages 8-5,6,7) 

A(E, J) = 
x+ (E,J) [E ±  VJ(x )]dx′′∫x− (E,J) 

1/2 

dv 

skipped steps are shown 
on pages 8-5, 6, 7.A(E, J) = 2 


 2h2 

µ 






1/2 v(E,J)	 E ± E′ vJ 






∫v(Emin ,J)

1 2434 
{



 
datadata 

this integral could be evaluated at any E, but we really only 

want ∂A 
and 

∂A . Evaluate these derivatives at J = 0.
∂E ∂J 
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E E dv 
v E  J

v E  J

vJ = 
µ 

 
 

 
 

 
 

 
 ′ [ + +∫ −

2
2

2 
0 0

2 1 2
1 2  h

/ 

( ) 

( , ) / 

min 

– 

v(Emin , J) = −  1 
2 

− Y00 
ωe 

lower limit 
independent of E integrand = 0 

at upper limit 

G(v) = Y00 + ωe v +1  / 2(
0 =  G(vmin ) = Y00 + ωe vmin +1  / 2(

− Y00 
ωe 

= vmin +1  / 2 

vmin = −  Y00 
ωe 

− 1 
2 

 

 

 
 
 

 
 
 
 

 

 

 
 
 
 
 
 
 
 

for J = 0 ′ Ev,J = G(v) 

∂A 
∂E 

= 2h2 

µ 
 

 


 

1/ 2 

−1/ 2−Y00 /ωe 

v(E) ∫ E –  G(v)[ −1/ 2 dv ≡ 2f(E)

data 

evaluate this integral numerically at any E. 

[Singularity at upper limit fixed by change of variable: Zeleznik JCP 42, 2836 (1965).] 

data 

[vmin is slightly different from –1/2] 

defined so that G(vmin) = 0 

] 1 
,

) 
)

]
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∂A =
 2h2 ⌠ v(E) 

[E − G(v)]−1/ 2 ∂E 
dv + 0 + 0∂J J=0  µ ⌡−1/ 2−Y00 /ωe 

∂J 

E = BJJ(J +1) 

∂E ∂E 
∂J 

= Bv(2J +1) 
∂J J=0 

= Bv 

∴ ∂A 
∂J J=0 

= 2h2 

µ 
 

 


 

1/ 2 

E − G(v)[ −1/ 2 Bvdv ≡ −  h
2 

2µ 
 

 
 

 2g(E) 
−1/ 2−Y00 /ωe 

v(E) ⌠ 

⌡
 

data 

data 

]

(again, a nonfatal singularity at upper limit)

f(E) and g(E) are “Klein action integrals” which are jointly determined by

empirical G(v) and B(v) functions.


Nonlecture derivation of this useful form of 
1 2/ 

v E  J)
A(E,J) = 2 

 2h2 
∫ ( − 1 2  

 µ  v E  min ,J)[E E′ vJ ] / 
dv

Begin here: A(E,J) = ∫x+ (E,J)[E − VJ(x )]dx′′x− (E,J) 

b
2 ⌠  x − a  1/2 

integral identity b − a = 
π  dx 

⌡a 
 b − x  

let b = E 

a VJ( )= x 

x E′ vJ = 

 x -a 

 = EvJ − VJ( )x

so that  
b - x E EvJ− 

x+ (E,J)∴ A(E, J) = ∫x− (E,J)[b − a]dx′
Now insert the integral identity 
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⌠ x+ (E,J) 2 ⌠ b x − a 1/ 2 


⌡x− (E,J) 
 π ⌡a 

 b − x  dx
 

dx′ put in values of a, b, and x
A(E,J) =   

⌠ x+ (E,J) E 

  2 ⌠ 
 
E′ vJ − VJ(x )  


1/ 2 

dE′ vJ 

 

dx′ ′ =   π 

⌡x− (E,J)  ⌡VJ (x) 
 E − E′ vJ  


reverse order of integration and recognize WKB QC in disguise 

E⌠ 
2  

⌠ x+ (E,J)

 
E′ vJ − VJ(x )  

 
1/2

dx′


 

dE′ vJ 
′ = 

π  ⌡VJ (x)⌡x− (E,J) 
 E − E′ vJ   

numerator of dx′ integral is QC — insert QC and then integrate by parts. 

denominator is independent of x′, so insert QC 

⌠ x+ (E,J) ⌠ x+ 
 [E′ − V(x )]1/2dx′ = (2µ)−1/2  p(x )dx′′ ′
⌡x− (E,J) ⌡x− 

= (2µ)−1/2 h 
2 

(v + 1/ 2) 

E⌠   
∴ A(E, J) =  2 ( )−1/2 h   v(E , J) + 

) 
1/ 2 ′ 

 π 2µ 
2  

 (E − E′ vJ 
1/2 

 
dE′ vJ ** 

⌡Emin 

** integrate by parts 

f′ = (E − E′ vJ )−1/2 

f = −2 E  − E′ vJ )1/2 (not a typo because variable is E′ vJ not E)( 
g = [v(E′ vJ , J) + 1/ 2] 

dv 
g′ = 

dE′ 
, which is known from E vJ 

E′=E  2h2 1/ 2
⌠ E (caution: f and g here 

A(E,J) = fg E′=Emin 
+

 µ   
dE′⌡Emin 

2(E − E′)1/ 2 dv 
dE′ are not Klein’s action 

1 2434 
=0 at both limits integrals) 

updated 9/18/02 8:57 AM 



5.73 Lecture #8 Rydberg Klein Rees 8 - 7 
** change variables from dE′ to dv′ 

dv
dv = dE′ 

dE′ 
⌠ v(E,J) 

limits of integration become ⌡v Emin ,J)( 

finished: A(E,J) = 2


 
2h2 1/ 2

⌠ v(E,J) 

⌡v Emin ,J)
[E − E′ vJ ]1/ 2 dv 

µ  
( 

we have two independent evaluations of f(E) and g(E) 

one leads to x+ (E,0) − x− (E,0) = 2f(E) 
1 1− = ±2g(E) 

x+ (E,0) x− (E,0) 

pair of turningx± (E,0) = [f(E)/ g(E) + f(E)2 ]1/2 
± f(E) from quadratic

points formula 

so we get a pair of turning points at each E. Not restricted to E’s with integer v’s! 

V(x) connect the dots! 

Robert LeRoy: modern, n-th generation RKR program at 

http://theochem.uwaterloo.ca/~leroy/ 

Download program, instructions, and sample data. 

RKR does not work for polyatomic molecules because E V  Qr − ( )~ 
does not determine the multicomponent vector P 
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W.C. Stwalley CPL 6, 241 (1970)


Long-Range Molecules (weak perturbation of atomic properties) 

R.J. Bernstein & R.LeRoy JCP 52, 3869 (1970) 

hard soft turning point 

turning 
point 

What does ψ (x) look like at very high v? 
* lots of nodes (v nodes) 
* small lobe at inner turning point. Why? 
* large lobe at outer turning point. Why? 

H int:  Force = – 
dV(x) 

dx 

at sufficiently large v, it is certain that ψ(x) is dominated by 
o u t e r-most lobe and any expectation value of a function of x, such as 
V(x), will be dominated by the outer turning point region. Since the 
vibrational Schrödinger equation contains V(x), it is evident that Ev 
at high v should be determined primari ly by the long range part of 
V(x) (and insensitive to details near xe and at the inner turning 
poin t ) .  

What do we know about covalent bonding?

ATOMIC ORBITAL OVERLAP IS REQUIRED!

NO OVERLAP at large x, V(x) determined by properties of isolated

a t o m s: dipole moment, polarizability — return to this later when we

do perturbation theory.


It is always possible to predict the longest range term in V(x) = Cnx−n 

where the longest range term is the one with SMALLEST n. 
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Quick review of the Long-Range Theory 

D 

εv ≡ EvD 
− Ev 

x–(vD) 

x–(v) 
x+(v) 

x+(vD) = ∞ 

vD is noninteger v 
of “level” at “top” of 
potential 

εv is binding 
energy of v-th level 

xe 

0 ( )  = U xat J = 0 V x  ( )  = −Cnx −n at long range (large x) 
U ∞ =  0 ≡ E v D 

U x( ) = −Dee 

x v  ( ( −n+ ( )  = −Cn E v )1/n [Ev = V x+ (v)) = −Cnx+ ]
x vD+ ( ) = ∞  

−nbinding energy: εv = E v D 
− E v = Cnx + 

How many levels are there in potential? 

⌠ x v D )=∞+ (
h ( vD + 1 2) =  pD(x ′)dx ′./
2 ⌡x v D )− ( 

Now we do not know vD , Cn , or D, but we do know n and know that 
Ev  will be primarily determined by long-range part of V(x) near vD . 
So, for any Ev we expect that it will be possible to derive a 
relationship between 

(vD − v) #  of levels below highest bound level 

and (EvD 
− Ev ) binding energy 

by some clever tricks you may discover on Problem Sets #4 and 5, 
we find 

n−2 

vD − v = anεv 
2n 

Tells us how to plot Ev vs. v to extrapolate to vD and then to obtain accurate value 
of De from a linear plot near dissociation. 
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Power of longest range term in V(x): 

n = 1 charge - charge +,– point charges (e.g. H atom) 
2 charge - dipole — 
3 charge - induced dipole H+ + H 
3 dipole - dipole Na 2S( )  + Na( 2P)

(also transition dipoles) 
5 dipole - induced dipole — 

2
/ ( 2 / 

5 quadrupole - quadrupole I P( 3 2  )  + I P3 2  ) 
6 induced dipole - induced dipole Na 2S ( )( )  + Na 2S

not only is the limiting n known, but also Cn  is known because it is 
calculable from a measurable property of the free atom. Many molecular 
states are described at long range by the same Cn 's ! Ultra-cold collisions 
now used to determine V(x) to very large x. Now best route to the 
properties of separated atoms! 

Mostly, long-range theory has been used as a guide to extrapolation to 
° accurate dissociation energy (relevant to ∆Hf ). Now Bose condensates. 

Molecule trapping. 

x−1 and x−2  potentials have ∞  number of bound levels. x−3,x−5,x−6  potentials  
have finite number, and the number of levels breaks off more abruptly as 
n increases. 

low nhigh n 

n → ∞ 

i.e., # of bound levels 

action integral affected more by wider classical ∆ x region than by 
deeper ∆ E binding region because p ∝ (E–V(x))1 / 2  
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This means (equation at bottom of 8-9) that if we plot (given that we can predict n 
with certainty) 

vD 

correct D: STRAIGHT LINE 
wrong D: guess for EvD 

wrong D: guess for EvD too low 

too high 
v 

0 ( 
guessed 

) 
n−2 

EvD 
− E

known 

v 2n 

n n − 2 it is possible to determine D and vD very 

3 1 / 6  
2n accurately 

5 3 / 1 0 

6 1 / 3  much better than Birge − Sponer plot,which 


7 5 / 1 4  is valid only for a Morse potential


∆G(v+1/2)=G(v+1) – G(v) • • • • 

• 

long linear 
extrapolation to vD 

Birge-Sponer: ∆G vs. v 

0 v vD 

v / ) − ωe xe (v + 1 2 2for Morse G( )  = ωe (v + 1 2  / ) 

∆G(v + 1 2/ ) = G(v + 1) − G(v) = ωe − ωe xe (2v + 2) decreasing to 0 as v increases 

Morse Potential when ∆G(v + 1 2/ ) = 0, ωe = ωe xe (2v + 2) 

V x  ω 
0( )  = D[1− e− Ax ]2

vD = 
2ω 

e

x 
− 1 vD is noninteger #  of bound vibrational levels 

e e  

=D G( ) = 
1  ω2 

e − ω x 
 

vD 4 
ωe e  

e e  

 x 

= (vD + 1) ωe −
ωe xe ≈ (vD + 1) ωe 

2 4 2 

But Morse inevitably has incorrect long-range form 
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Which is longer range? Morse or Cnx–n? Take ratio of binding energy at large x. 

lim −Cnx−n lim 
= 

x → ∞  D[1 −  e−Ax ]2 − D x → ∞  

lim 
= 

x → ∞  
lim 

= 
x → ∞  

−Cnx−n 

De−2Ax − 2De−Ax 

−Cnx−ne2Ax 

D − 2DeAx dominant term 

Cn x−neAx → ∞
2D 

This means that Morse binding energy gets small faster than Cnx–n for any n. 

Morse 

–Cnx–n 

G(v+1) – G(v) will get small faster for Morse. Plot ∆G(v + 1/2) vs. v. 

G(v+1) – G(v) 

0 v vD 
Morse vD 

True 

linear Birge-Sponer 

Dissociation energy usually underestimated by linear Birge-Sponer 
extrapolation. Long-range plot of correct power of EvD 

− Ev gives more 

accurate dissociation energy. 
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