Last time: WKB quantization condition for bound eigenstates of almost general $\mathrm{V}(\mathrm{x})$ - Connection into bound region from left and right

$$
\begin{aligned}
\int_{x_{-}(E)}^{x_{+}(E)} & p_{E}\left(x^{\prime}\right) d x^{\prime}=\frac{h}{2}(n+1 / 2) \\
& p_{E}(x)=[2 m(E-V(x))]^{1 / 2}
\end{aligned}
$$

E_{n} without ψ_{n} !
But where do we get $\mathrm{V}(\mathrm{x})$? $\longrightarrow \quad \begin{aligned} & \text { it moves on } \mathrm{V}(\mathrm{x})\end{aligned}$
Certainly not from femtochemistry!
From FREQUENCY DOMAIN SPECTROSCOPY

$$
\mathrm{E}_{\mathrm{V}, \mathrm{~J}} \rightarrow \mathrm{~V}(\mathrm{x})
$$

RKR method

Next time: Numerical Integration of 1-D Schr. Eq. - see handouts Then begin working toward matrix picture
Need background in Ch. 2 of CTDL
pages 94-121 soon, pages 121-144 by next week Postulates and theorems not to be covered except as needed for solving problems.

Today: $\quad \mathrm{E}_{\mathrm{V}, \mathrm{J}} \rightarrow$ spectroscopic notation

WKB QC applied to $\frac{\partial \mathrm{A}}{\partial \mathrm{E}}, \frac{\partial \mathrm{A}}{\partial \mathrm{J}} \leftarrow \mathrm{G}(\mathrm{v}), \mathrm{B}(\mathrm{v})$ used to determine $\mathrm{x}_{ \pm}(\mathrm{E})$.

Long Range Theory: Ultra Cold Collisions: Atom in Molecule

Someday you will discover that the energy levels of a diatomic molecule are given by

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{evJ}} / \mathrm{hc} \underset{\text { electronic }}{\mathrm{T}_{\mathrm{e}}}+\underset{\text { vibration }}{\mathrm{G}(\mathrm{v})}+\underset{\text { rotation }}{\mathrm{F}(\mathrm{~J})} \quad \mathrm{cm}^{-1} \\
& =v_{\mathrm{e}}+[\mathrm{Y}_{00}+\underbrace{\left.\omega_{\mathrm{e}}(\mathrm{v}+1 / 2)-\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}(\mathrm{v}+1 / 2)^{2}+\ldots\right]}_{\mathrm{C}(\mathrm{v})}] \\
& +\left[B_{e}-\alpha_{e}(v+1 / 2)+\ldots{ }_{B(v)}^{G(v)}\right] J(J+1)-\mathrm{DJ}^{2}(J+1)^{2}
\end{aligned}
$$

$R K R$ requires only $\underline{G(v)}$ and $\underline{B(v)}$ to get $\underline{V}_{\underline{J}}(\underline{x})$

$$
\underset{\substack{\mathrm{J} \text {-dependent } \\
\text { effective } \\
\text { potential }}}{\text { where } \mathrm{V}_{\mathrm{J}}(\mathrm{x})}=\underset{\begin{array}{c}
\text { bare } \\
\text { potential }
\end{array}}{\mathrm{U}(\mathrm{x})}+\frac{\hbar^{2} \mathrm{~J}(\mathrm{~J}+1)}{2 \mu \mathrm{x}^{2}} \quad \mathrm{x} \equiv \mathrm{R}-\mathrm{R}_{\mathrm{e}}
$$

We are going to derive $V_{0}(x)$ directly from $G(v), B(v)$ data. This is the only direct spectrum to potential inversion method! WKB quantization is the basis for this.

$$
\int_{x_{-}\left(E_{v}\right)}^{x_{+}\left(E_{v}\right)} p_{E_{v}}\left(x^{\prime}\right) d x^{\prime}=(h / 2)(v+1 / 2) \quad v=0,1, \ldots \# \text { of nodes }
$$

In this equation, what we know $\left(\mathrm{E}_{\mathrm{v}}\right)$ and what we want $(\mathrm{V}(\mathrm{x})$ and x at turning points) are hopelessly mixed up. There is a trick!

$$
\mathrm{A}(\mathrm{E}, \mathrm{~J}) \equiv \int_{\mathrm{x}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left[\mathrm{E} \pm \mathrm{V}_{\mathrm{J}}\left(\mathrm{x}^{\prime}\right)\right] \mathrm{d} \mathrm{x}^{\prime}
$$

but, still, we know neither $\mathrm{V}_{\mathrm{J}}(\mathrm{x})$ nor $\mathrm{x}_{ \pm}(\mathrm{E}, \mathrm{J})$!!
Roadmap: 1. Show that $\frac{\partial \mathrm{A}}{\partial \mathrm{E}}$ and $\frac{\partial \mathrm{A}}{\partial \mathrm{J}}$ are numerically evaluable data input integrals (via WKB QC) involving only $\mathrm{E}_{\mathrm{v}, \mathrm{J}}$ info here 2. independently, $\frac{\partial \mathrm{A}}{\partial \mathrm{E}}$ and $\frac{\partial \mathrm{A}}{\partial \mathrm{J}}$ determine

2 eqs. in 2
unknowns give $\left[x_{+}(E, J)-x_{-}(E, J)\right]$ and $\left[\frac{1}{x_{+}(E, J)}-\frac{1}{x_{-}(E, J)}\right]$ turning points

Do \#2 first because it is so easy

$$
\begin{aligned}
\frac{\partial \mathrm{A}}{\partial \mathrm{E}} & =\frac{\partial}{\partial \mathrm{E}}\left[\int_{\mathrm{x}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left[\mathrm{E}-\mathrm{U}\left(\mathrm{x}^{\prime}\right)-\frac{\hbar^{2} \mathrm{~J}(\mathrm{~J}+1)}{2 \mu \mathrm{x}^{\prime 2}}\right] \mathrm{dx}^{\prime}\right] \\
& =\int_{\mathrm{X}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})} 1 \mathrm{dx}^{\prime} \quad+\underbrace{0}_{\text {contributions from } \frac{\frac{\partial x_{ \pm}(\mathrm{E}, \mathrm{~J})}{\partial \mathrm{E}}}{0}+\underbrace{0}+}
\end{aligned}
$$

are zero because integrand is 0 at turning points

$$
\frac{\partial \mathrm{A}}{\partial \mathrm{E}}=\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})-\mathrm{x}_{-}(\mathrm{E}, \mathrm{~J})
$$

$$
\begin{aligned}
\frac{\partial \mathrm{A}}{\partial \mathrm{~J}} & =\frac{\partial}{\partial \mathrm{J}}\left[\int_{\mathrm{x}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left[\mathrm{E}-\mathrm{U}\left(\mathrm{x}^{\prime}\right)-\frac{\hbar^{2} \mathrm{~J}(\mathrm{~J}+1)}{2 \mu \mathrm{X}^{\prime 2}}\right] \mathrm{dx} \mathrm{x}^{\prime}\right] \\
& =-\frac{\hbar^{2}}{2 \mu} \int_{\mathrm{x}_{-}}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}[\frac{2 \mathrm{~J})+1}{\mathrm{x}^{\prime 2}} \mathrm{dx}^{\prime}+\underbrace{0+0}_{\text {integrand }=0 \text { at } \mathrm{x}_{ \pm}}
\end{aligned}
$$

$$
\frac{\partial \mathrm{A}}{\partial \mathrm{~J}}=+\frac{\hbar 2(2 \mathrm{~J}+1)}{2 \mu}\left[\frac{1}{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}-\frac{1}{\mathrm{x}_{-}(\mathrm{E}, \mathrm{~J})}\right]
$$

So, if we can evaluate these derivatives from E_{vJ} data, we have $\mathrm{V}_{\mathrm{J}}(\mathrm{x})$!
some clever manipulations to put $\mathrm{A}(\mathrm{E}, \mathrm{J})$ into convenient form
(see nonlecture notes on pages $8-5,6,7$)
$A(E, J)=\int_{x_{-}(E, J)}^{x_{+}(E, J)}\left[E \pm V_{J}\left(x^{\prime}\right)\right] d x^{\prime}$

skipped steps are shown on pages $8-5,6,7$.
this integral could be evaluated at any E , but we really only want $\frac{\partial \mathrm{A}}{\partial \mathrm{E}}$ and $\frac{\partial \mathrm{A}}{\partial \mathrm{J}}$. Evaluate these derivatives at $\mathrm{J}=0$.

$$
\left[\begin{array}{rl}
\mathrm{G}(\mathrm{v}) & =\mathrm{Y}_{00}+\omega_{\mathrm{e}}(\mathrm{v}+1 / 2) \\
0 & =\mathrm{G}\left(\mathrm{v}_{\min }\right)=\mathrm{Y}_{00}+\omega_{\mathrm{e}}\left(\mathrm{v}_{\min }+1 / 2\right) \\
-\frac{\mathrm{Y}_{00}}{\omega_{\mathrm{e}}} & =\mathrm{v}_{\min }+1 / 2 \\
\mathrm{v}_{\min } & =-\frac{\mathrm{Y}_{00}}{\omega_{\mathrm{e}}}-\frac{1}{2}
\end{array}\right]
$$

$$
\left[\mathrm{v}_{\min } \text { is slightly different from }-1 / 2\right]
$$

$$
\text { for } \mathrm{J}=0 \quad \mathrm{E}_{\mathrm{v}, \mathrm{~J}}^{\prime}=\mathrm{G}(\mathrm{v})
$$

$$
\frac{\partial \mathrm{A}}{\partial \mathrm{E}}=\left(\frac{2 \hbar^{2}}{\mu}\right)^{1 / 2} \int_{-1 / 2-\mathrm{Y}_{00} / \omega_{\mathrm{e}}}^{\mathrm{v}(\mathrm{E})} \underset{\uparrow}{\mathrm{d}(\mathrm{E}-\mathrm{G}(\mathrm{v})]^{-1 / 2} \mathrm{dv} \equiv 2 \mathrm{f}(\mathrm{E})}
$$

evaluate this integral numerically at any E.
[Singularity at upper limit fixed by change of variable: Zeleznik JCP 42, 2836 (1965).]

$$
\begin{aligned}
& \begin{array}{l}
\frac{\partial \mathrm{A}}{\partial \mathrm{E}}=2\left(\frac{2 \hbar^{2}}{\mu}\right)^{1 / 2}\left(\frac{1}{2}\right) \int^{2} \\
\left(\mathrm{E}_{\text {min }}, \mathrm{J}\right)=-\frac{1}{2}-\frac{\mathrm{Y}_{00}}{\omega_{\mathrm{e}}} \\
\downarrow
\end{array} \\
& \text { defined so that } \mathrm{G}\left(\mathrm{v}_{\min }\right)=0
\end{aligned}
$$

$$
\begin{aligned}
\left.\frac{\partial \mathrm{A}}{\partial \mathrm{~J}}\right|_{\mathrm{J}=0} & =\left(\frac{2 \hbar^{2}}{\mu}\right) \int_{-1 / 2-Y_{00} / \omega_{e}}^{\mathrm{v}(\mathrm{E})}[\mathrm{E}-\mathrm{G}(\mathrm{v})]^{-1 / 2} \frac{\partial \mathrm{E}}{\partial \mathrm{~J}} \mathrm{dv}+0+0 \\
\mathrm{E} & =\mathrm{B}_{\mathrm{J}} \mathrm{~J}(\mathrm{~J}+1) \\
\frac{\partial \mathrm{E}}{\partial \mathrm{~J}} & =\left.\mathrm{B}_{\mathrm{v}}(2 \mathrm{~J}+1) \quad \frac{\partial \mathrm{E}}{\partial \mathrm{~J}}\right|_{\mathrm{J}=0}=\mathrm{B}_{\mathrm{v}}
\end{aligned}
$$

$$
\left.\therefore \quad \frac{\partial \mathrm{A}}{\partial \mathrm{~J}}\right|_{\mathrm{J}=0}=\left(\frac{2 \hbar^{2}}{\mu}\right)^{1 / 2} \int_{-1 / 2-\mathrm{Y}_{00} / \omega_{\mathrm{e}}}^{\left.[\mathrm{E}-\mathrm{G}(\mathrm{v})]^{-1 / 2} \mathrm{~N}_{\mathrm{v}} \mathrm{dv} \equiv-\left(\frac{\hbar^{2}}{2 \mu}\right) 2 \mathrm{~g}(\mathrm{E}) \right\rvert\, \text { data }} \underset{\text { data }}{\mathrm{v}(\mathrm{E})}
$$

(again, a nonfatal singularity at upper limit)
$f(E)$ and $g(E)$ are "Klein action integrals" which are jointly determined by empirical $G(v)$ and $B(v)$ functions.

Nonlecture derivation of this useful form of

$$
A(E, J)=2\left(\frac{2 \hbar^{2}}{\mu}\right)^{1 / 2} \int_{v\left(E_{\min }, J\right)}^{v(E, J)}\left[E-E_{v J}^{\prime}\right]^{1 / 2} d v
$$

Begin here: $\quad \mathrm{A}(\mathrm{E}, \mathrm{J})=\int_{\mathrm{x}_{-}(\mathrm{E}, \mathrm{J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{J})}\left[\mathrm{E}-\mathrm{V}_{\mathrm{J}}\left(\mathrm{x}^{\prime}\right)\right] \mathrm{dx}^{\prime}$
integral identity $\quad b-a=\frac{2}{\pi} \int_{a}^{b}\left(\frac{x-a}{b-x}\right)^{1 / 2} d x$

$$
\begin{aligned}
\text { let } \begin{aligned}
b & =E \\
a & =V_{J}(x) \\
x & =E_{v J}^{\prime} \\
\text { so that }\left(\frac{x-a}{b-x}\right) & =\frac{E_{v J}-V_{J}(x)}{E-E_{v J}} \\
\therefore \quad A(E, J) & =\int_{X_{-}(E, J)}^{x_{+}(E, J)}[b-a] d x^{\prime}
\end{aligned} \\
\therefore \quad A(B)
\end{aligned}
$$

Now insert the integral identity

$$
\begin{aligned}
\mathrm{A}(\mathrm{E}, \mathrm{~J}) & =\int_{\mathrm{x}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left(\frac{2}{\pi} \int_{\mathrm{a}}^{\mathrm{b}}\left[\frac{\mathrm{x}-\mathrm{a}}{\mathrm{~b}-\mathrm{x}}\right]^{1 / 2} \mathrm{dx}\right) \mathrm{dx} \mathrm{x}^{\prime} \\
& =\int_{\mathrm{x}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left(\frac{2}{\pi} \int_{\mathrm{V}_{J}(\mathrm{x})}^{\mathrm{E}}\left[\frac{\mathrm{E}_{\mathrm{vJ}}^{\prime}-\mathrm{V}_{\mathrm{J}}\left(\mathrm{x}^{\prime}\right)}{\mathrm{E}-\mathrm{E}_{\mathrm{vJ}}^{\prime}}\right]^{1 / 2} \mathrm{dE}_{\mathrm{vJ}^{\prime}}^{\prime}\right) \mathrm{dx}^{\prime}
\end{aligned}
$$

put in values of a, b, and x
reverse order of integration and recognize WKB QC in disguise

$$
=\frac{2}{\pi} \int_{\mathrm{V}_{\mathrm{J}}(\mathrm{x})}^{\mathrm{E}}\left(\int_{\mathrm{x}_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left[\frac{\mathrm{E}_{\mathrm{vJ}}^{\prime}-\mathrm{V}_{\mathrm{J}}\left(\mathrm{x}^{\prime}\right)}{\mathrm{E}-\mathrm{E}_{\mathrm{vJ}}^{\prime}}\right]^{1 / 2} \mathrm{~d} x^{\prime}\right) \mathrm{dE}_{\mathrm{vJ}}^{\prime}
$$

numerator of dx' integral is QC — insert QC and then integrate by parts. denominator is independent of x^{\prime}, so insert QC

$$
\begin{aligned}
& \int_{x_{-}(\mathrm{E}, \mathrm{~J})}^{\mathrm{x}_{+}(\mathrm{E}, \mathrm{~J})}\left[\mathrm{E}^{\prime}-\mathrm{V}\left(\mathrm{x}^{\prime}\right)\right]^{1 / 2} \mathrm{~d} x^{\prime}=(2 \mu)^{-1 / 2} \int_{\mathrm{x}_{-}}^{\mathrm{x}_{+}} p\left(\mathrm{x}^{\prime}\right) \mathrm{d} x^{\prime} \\
&=(2 \mu)^{-1 / 2} \frac{\mathrm{~h}}{2}(\mathrm{v}+1 / 2) \\
&\left.\therefore \quad \mathrm{A}(\mathrm{E}, \mathrm{~J})=\left(\frac{2}{\pi}\right)(2 \mu)^{-1 / 2} \frac{h}{2} \int_{\mathrm{E}_{\min }}^{\mathrm{E}}\left[\frac{\mathrm{v}\left(\mathrm{E}^{\prime}, \mathrm{J}\right)+1 / 2}{\left(\mathrm{E}-\mathrm{E}_{\mathrm{vJ}}^{\prime}\right)^{1 / 2}}\right] \mathrm{dE}_{\mathrm{vJ}}^{\prime}\right]
\end{aligned}
$$

** integrate by parts

$$
\begin{aligned}
& \mathrm{f}^{\prime}=\left(\mathrm{E}-\mathrm{E}_{\mathrm{vJ}}^{\prime}\right)^{-1 / 2} \\
& \mathrm{f}=-2\left(\mathrm{E}-\mathrm{E}_{\mathrm{vJ}}^{\prime}\right)^{1 / 2} \quad\left(\text { not a typo because variable is } \mathrm{E}_{\mathrm{vJ}}^{\prime} \text { not } \mathrm{E}\right) \\
& \mathrm{g}=\left[\mathrm{v}\left(\mathrm{E}_{\mathrm{vJ}}^{\prime}, \mathrm{J}\right)+1 / 2\right] \\
& \mathrm{g}^{\prime}=\frac{\mathrm{dv}}{\mathrm{dE}^{\prime}}, \quad \text { which is known from } \mathrm{E}_{\mathrm{vJ}}
\end{aligned}
$$

$$
\mathrm{A}(\mathrm{E}, \mathrm{~J})=\underbrace{\left.\mathrm{fg}\right|_{\mathrm{E}^{\prime}=\mathrm{E}} ^{\mathrm{E}_{\text {min }}^{\prime}=\mathrm{E}}}+\left(\frac{2 \mathrm{~h}^{2}}{\mu}\right)^{1 / 2} \int_{\mathrm{E}_{\text {min }}}^{\mathrm{E}} 2\left(\mathrm{E}-\mathrm{E}^{\prime}\right)^{1 / 2} \frac{\mathrm{dv}}{\mathrm{dE}^{\prime}} \mathrm{dE}^{\prime}
$$

(caution: f and ghere are not Klein's action integrals)
** change variables from dE^{\prime} to dv^{\prime}

$$
\mathrm{dv}=\frac{\mathrm{dv}}{\mathrm{dE}^{\prime}} \mathrm{dE}^{\prime}
$$

limits of integration become $\int_{v\left(E_{\text {min }}, J\right)}^{v(E, J)}$
finished: $\quad A(E, J)=2\left(\frac{2 \hbar^{2}}{\mu}\right)^{1 / 2} \int_{v\left(E_{\text {min }}, J\right)}^{v(E, J)}\left[E-E_{v J}^{\prime}\right]^{1 / 2} d v$
we have two independent evaluations of $f(E)$ and $g(E)$
one leads to $\quad x_{+}(E, 0)-x_{-}(E, 0)=2 f(E)$

$$
\frac{1}{x_{+}(\mathrm{E}, 0)}-\frac{1}{x_{-}(\mathrm{E}, 0)}= \pm 2 g(\mathrm{E})
$$

$\begin{array}{ll}\text { pair of turning } \\ \text { points }\end{array} x_{ \pm}(E, 0)=\left[f(E) / g(E)+f(E)^{2}\right]^{1 / 2} \pm f(E) \quad \begin{aligned} & \text { from quadratic } \\ & \text { formula }\end{aligned}$
so we get a pair of turning points at each E. Not restricted to E's with integer v's!

Robert LeRoy: modern, n-th generation RKR program at http://theochem.uwaterloo.ca/~leroy/

Download program, instructions, and sample data.

RKR does not work for polyatomic molecules because $\mathrm{E}-\mathrm{V}(\underset{\sim}{\mathrm{Q}})$
does not determine the multicomponent vector $\overrightarrow{\mathbf{P}}$
5.73 Lecture \#8 Rydberg Klein Rees

What does $\psi(x)$ look like at very high v?

* lots of nodes (v nodes)
* small lobe at inner turning point. Why?
* large lobe at outer turning point. Why?

Hint: Force $=-\frac{d V(x)}{d x}$
at sufficiently large v , it is certain that $\psi(\mathrm{x})$ is dominated by outer-most lobe and any expectation value of a function of x, such as $\mathrm{V}(\mathrm{x})$, will be dominated by the outer turning point region. Since the vibrational Schrödinger equation contains $\mathrm{V}(\mathrm{x})$, it is evident that E_{V} at high v should be determined primarily by the long range part of $\mathrm{V}(\mathrm{x})$ (and insensitive to details near x_{e} and at the inner turning point).

What do we know about covalent bonding?
ATOMIC ORBITAL OVERLAP IS REQUIRED!
NO OVERLAP at large $\mathrm{x}, \mathrm{V}(\mathrm{x})$ determined by properties of isolated atoms: dipole moment, polarizability - return to this later when we do perturbation theory.

It is always possible to predict the longest range term in $V(x)=C_{n} x^{-n}$ where the longest range term is the one with SMALLEST n .

Quick review of the Long-Range Theory

$$
\begin{array}{ll}
\text { at } J=0 \quad V_{0}(x)=U(x)=-C_{n} x^{-n} & \text { at long range (large } x) \\
U(\infty)=0 \equiv E_{v_{D}} & \\
U\left(x_{e}\right)=-D_{e} & \\
x_{+}(v)=\left(-C_{n} / E_{v}\right)^{1 / n} \\
x_{+}\left(v_{D}\right)=\infty & {\left[E_{v}=V\left(x_{+}(v)\right)=-C\right.} \\
\text { binding energy: } \varepsilon_{v}=E_{v_{D}}-E_{v}=C_{n} x_{+}^{-n} &
\end{array}
$$

How many levels are there in potential?

$$
\frac{\mathrm{h}}{2}\left(\mathrm{v}_{\mathrm{D}}+1 / 2\right)=\int_{\mathrm{x}_{-}\left(\mathrm{v}_{\mathrm{D}}\right)}^{\mathrm{x}_{+}\left(\mathrm{v}_{\mathrm{D}}\right)=\infty} \mathrm{p}_{\mathrm{D}}\left(\mathrm{x}^{\prime}\right) \mathrm{dx} \mathrm{x}^{\prime} .
$$

Now we do not know $\mathrm{v}_{\mathrm{D}}, \mathrm{C}_{\mathrm{n}}$, or D , but we do know n and know that E_{V} will be primarily determined by long-range part of $V(x)$ near v_{D}. So, for any E_{v} we expect that it will be possible to derive a relationship between

$$
\left(\mathrm{v}_{\mathrm{D}}-\mathrm{v}\right) \quad \# \text { of levels below highest bound level }
$$

and

$$
\left(E_{v_{D}}-E_{v}\right) \quad \text { binding energy }
$$

by some clever tricks you may discover on Problem Sets \#4 and 5, we find

$$
\mathrm{v}_{\mathrm{D}}-\mathrm{v}=\mathrm{a}_{\mathrm{n}} \varepsilon_{\mathrm{v}}^{\frac{\mathrm{n}-2}{2 \mathrm{n}}}
$$

Tells us how to plot E_{v} vs. v to extrapolate to v_{D} and then to obtain accurate value of D_{e} from a linear plot near dissociation.

Power of longest range term in $\mathrm{V}(\mathrm{x})$:
$\mathrm{n}=1$ charge - charge
2 charge - dipole
3 charge - induced dipole
3 dipole - dipole
(also transition dipoles)
5 dipole - induced dipole
5 quadrupole - quadrupole
6 induced dipole - induced dipole
,+- point charges (e.g. H atom)

$$
\begin{gathered}
\mathrm{H}^{+}+\mathrm{H} \\
\mathrm{Na}\left({ }^{2} \mathrm{~S}\right)+\mathrm{Na}\left({ }^{2} \mathrm{P}\right) \\
- \\
\left.\mathrm{II}^{(}{ }^{2} \mathrm{P}_{3 / 2}\right)+\mathrm{I}\left({ }^{2} \mathrm{P}_{3 / 2}\right) \\
\mathrm{Na}\left({ }^{2} \mathrm{~S}\right)+\mathrm{Na}\left({ }^{2} \mathrm{~S}\right)
\end{gathered}
$$

not only is the limiting n known, but also C_{n} is known because it is calculable from a measurable property of the free atom. Many molecular states are described at long range by the same C_{n} 's! Ultra-cold collisions now used to determine $\mathrm{V}(\mathrm{x})$ to very large x . Now best route to the properties of separated atoms!

Mostly, long-range theory has been used as a guide to extrapolation to accurate dissociation energy (relevant to $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$). Now Bose condensates. Molecule trapping.
x^{-1} and x^{-2} potentials have ∞ number of bound levels. $\mathrm{x}^{-3}, \mathrm{x}^{-5}, \mathrm{x}^{-6}$ potentials have finite number, and the number of levels breaks off more abruptly as n increases.

action integral affected more by wider classical Δx region than by deeper $\Delta \mathrm{E}$ binding region because $\mathrm{p} \propto(\mathrm{E}-\mathrm{V}(\mathrm{x}))^{1 / 2}$

This means (equation at bottom of 8-9) that if we plot (given that we can predict n with certainty)

0

n	$\frac{\mathrm{n}-2}{2 \mathrm{n}}$	it is possible to determine D and v_{D} very
3	$1 / 6$	accurately
5	3/10	
6	1/3	much better than Birge - Sponer plot, which
7	5/14	is valid only for a Morse potential

$$
\Delta G(\mathrm{v}+1 / 2)=G(\mathrm{v}+1)-G(\mathrm{v})=\omega_{e}-\omega_{e} x_{e}(2 \mathrm{v}+2) \text { decreasing to } 0 \text { as } \mathrm{v} \text { increases }
$$

Morse Potential
$V_{0}(x)=D\left[1-e^{-A x}\right]^{2}$
when $\Delta G(\mathrm{v}+1 / 2)=0, \omega_{e}=\omega_{e} x_{e}(2 \mathrm{v}+2)$

$$
\begin{aligned}
\mathrm{v}_{D}=\frac{\omega_{e}}{2 \omega_{e} x_{e}} & -1 \quad \mathrm{v}_{D} \text { is noninteger \# of bound vibrational levels } \\
D=G\left(\mathrm{v}_{D}\right) & =\frac{1}{4}\left[\frac{\omega_{e}^{2}}{\omega_{e} x_{e}}-\omega_{e} x_{e}\right] \\
& =\left(\mathrm{v}_{D}+1\right) \frac{\omega_{e}}{2}-\frac{\omega_{e} x_{e}}{4} \approx\left(\mathrm{v}_{D}+1\right) \frac{\omega_{e}}{2}
\end{aligned}
$$

Which is longer range? Morse or $\mathrm{C}_{\mathrm{n}} \mathrm{x}^{-\mathrm{n}}$? Take ratio of binding energy at large x .

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{-C_{n} x^{-n}}{D\left[1-e^{-A x}\right]^{2}-D} & =\lim _{x \rightarrow \infty} \frac{-C_{n} x^{-n}}{D e^{-2 A x}-2 D e^{-A x}} \\
& =\lim _{x \rightarrow \infty} \frac{-C_{n} x^{-n} e^{2 A x}}{D-2 D e^{A x}} \ll \text { dominant term } \\
& =\lim _{x \rightarrow \infty} \frac{C_{n}}{2 D} x^{-n} e^{A x} \rightarrow \infty
\end{aligned}
$$

This means that Morse binding energy gets small faster than $\mathrm{C}_{\mathrm{n}} \mathrm{x}^{\mathrm{n}}$ for any n .

$G(v+1)-G(v)$ will get small faster for Morse. Plot $\Delta G(v+1 / 2)$ vs. v.

Dissociation energy usually underestimated by linear Birge-Sponer extrapolation. Long-range plot of correct power of $E_{v_{D}}-E_{v}$ gives more accurate dissociation energy.

