## Matrix Mechanics

should have read CDTL pages 94-121
read CTDL pages 121-144 ASAP
Last time: Numerov-Cooley Integration of 1-D Schr. Eqn. Defined on a Grid. 2 -sided boundary conditions nonlinear system - iterate to eigenenergies (Newton-Raphson)

So far focussed on $\psi(x)$ and Schr. Eq. as differential equation.
Variety of methods $\quad\left\{\mathrm{E}_{\mathrm{i}}, \Psi_{\mathrm{i}}(\mathrm{x})\right\} \leftrightarrow \mathrm{V}(\mathrm{x})$
Often we want to evaluate integrals of the form

| overlap of special <br> $\psi$ on standard <br> functions $\{\phi\}$ | $\int \psi^{*}(x) \phi_{i}(x) d x=a_{i}$ | a is "mixing coefficient" <br> $\{\phi\}$ is complete set of "basis <br> functions" |
| :--- | :---: | :--- |
| expectation values <br> transition moments | OR |  |

There are going to be elegant tricks for evaluating these integrals and relating one integral to others that are already known. Also "selection" rules for knowing automatically which integrals are zero: symmetry, commutation rules

Today: begin matrix mechanics - deal with matrices composed of these integrals focus on manipulating these matrices rather than solving a differential equation - find eigenvalues and eigenvectors of matrices instead (COMPUTER "DIAGONALIZATION")

* Perturbation Theory: tricks to find approximate eigenvalues of infinite matrices
* Wigner-Eckart Theorem and 3-j coefficients: use symmetry to identify and interrelate values of nonzero integrals
* Density Matrices: information about state of system as separate from measurement operators

First Goal: Dirac notation as convenient NOTATIONAL simplification
It is actually a new abstract picture
(vector spaces) - but we will stress the utility ( $\psi \leftrightarrow\rangle$ relationships) rather than the philosophy!

Find equivalent matrix form of standard $\psi(x)$ concepts and methods.

1. Orthonormality $\int \psi_{\mathrm{i}}^{*} \psi_{\mathrm{j}}^{\mathrm{dx}}=\delta_{\mathrm{ij}}$
2. completeness $\quad \psi(\mathrm{x})$ is an arbitrary function
(expand $\psi$ ) A. Always possible to expand $\psi(\mathrm{x})$ uniquely in a COMPLETE BASIS SET $\{\phi\}$

$$
\begin{gathered}
\psi(\mathrm{x})=\sum_{\mathrm{i}} \mathrm{a}_{\mathrm{a}_{i}} \phi_{\mathrm{i}}(\mathrm{x}) \\
* \quad \mathrm{a}_{\mathrm{i}}=\int \phi_{\mathrm{i}}^{*} \psi \mathrm{dx}
\end{gathered}
$$

(expand $\mathbf{B} \psi$ ) B. Always possible to expand $\hat{\mathrm{B}} \psi$ in $\{\phi\}$ since we can write $\psi$ in terms of $\{\phi\}$.
So simplify the question we are asking to $\hat{B} \phi_{i}=\sum_{j} b_{j} \phi_{j} \quad$ What are the $\left\{b_{j}\right\}$ ? Multiply by $\int \phi_{j}^{*}$

$$
\mathrm{b}_{\mathrm{j}}=\int \phi_{\mathrm{j}}^{*} \hat{\mathrm{~B}} \phi_{\mathrm{i}} \mathrm{dx} \equiv \mathrm{~B}_{\mathrm{ji}}
$$

$$
\hat{\mathrm{B}} \phi_{\mathrm{i}}=\sum_{\mathrm{j}} \mathrm{~B}_{\mathrm{ji}} \phi_{\mathrm{j}}{ }_{\substack{\text { note counter-intuitive pattern of } \\ \text { indices. We will return to this. }}}
$$

* The effect of any operator on $\psi_{i}$ is to give a linear combination of $\psi_{j}$ 's.

3. Products of Operators

$$
\begin{aligned}
(\hat{\mathrm{A}} \hat{\mathrm{~B}}) \phi_{\mathrm{i}}= & \hat{\mathrm{A}}\left(\hat{\mathrm{~B}} \phi_{\mathrm{i}}\right)=\hat{\mathrm{A}} \sum_{\mathrm{j}} \mathrm{~B}_{\mathrm{ji}} \phi_{\mathrm{j}} \\
& \text { can move numbers (but not operators) around freely } \\
= & \sum_{\mathrm{j}} \mathrm{~B}_{\mathrm{ji}} \hat{\mathrm{~A}} \phi_{\mathrm{j}}=\sum_{\mathrm{j}} \sum_{\mathrm{k}} \mathrm{~B}_{\mathrm{ji}} \mathrm{~A}_{\mathrm{kj}} \phi_{\mathrm{k}} \quad \text { note repeated index } \\
= & \sum_{\mathrm{j}, \mathrm{k}}\left(\mathrm{~A}_{\mathrm{kj}} \mathrm{~B}_{\mathrm{ji}}\right) \phi_{\mathrm{k}}=\sum_{\mathrm{k}}(\mathbf{A B})_{\mathrm{ki}} \phi_{\mathrm{k}}
\end{aligned}
$$

* Thus product of 2 operators follows the rules of matrix multiplication:
$\hat{A} \hat{B}$ acts like $\mathbf{A} \mathbf{B}$
Recall rules for matrix multiplication:

must match \# of columns on left to \# of rows on right


Need a notation that accomplishes all of this memorably and compactly.

Dirac's bra and ket notation
Heisenberg's matrix mechanics
ket $\left\rangle\right.$ is a column matrix, i.e. a vector $\left(\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{N}\end{array}\right)$
contains all of the "mixing coefficients" for $\psi$ expressed in some basis set. [These are projections onto unit vectors in N -dimensional vector space.] Must be clear what state is being expanded in what basis

$$
\begin{aligned}
& \psi(\mathrm{x})=\sum_{\mathrm{i}}^{\left[\int_{\mathrm{i}} \phi_{\mathrm{i}}^{*} \psi \mathrm{a} \mathrm{a}_{\mathrm{i}}\right.} \phi_{\mathrm{i}}(\mathrm{x}) \\
& |\psi\rangle=\left(\begin{array}{c}
\int \phi_{1}^{*} \psi \mathrm{dx} \\
\int \phi_{2}^{*} \psi \mathrm{dx} \\
\vdots \\
\int \phi_{\mathrm{N}}^{*} \psi \mathrm{dx}
\end{array}\right)_{\phi \leftarrow \text { bookkeeping device (RARE) }}^{*} \quad \begin{array}{c}
* \text { a column of complex } \# \mathrm{~s} \\
* \text { nothing here is a function of } \mathrm{x}
\end{array}
\end{aligned}
$$

OR, a pure state in its own basis
$\left|\phi_{2}\right\rangle=\left(\begin{array}{c}0 \\ 1 \\ 0 \\ \vdots \\ 0\end{array}\right)_{\phi} \quad$ one 1, all others 0


The * stuff is needed to make sure $\langle\psi \mid \psi\rangle=1$ even though $\left\langle\phi_{i} \mid \psi\right\rangle$ is complex.

The symbol $\langle\mathrm{a} \mid \mathrm{b}\rangle$, a bra-ket, is defined in the sense of product of $(1 \times \mathrm{N}) \otimes(\mathrm{N} \times 1)$ matrices $\rightarrow$ a $1 \times 1$ matrix: a number!

Box Normalization in both $\psi$ and $\langle\mid\rangle$ pictures

$$
\begin{aligned}
& 1=\int \psi^{*} \psi d x \\
& \psi=\sum_{i}\left(\int \phi_{i}^{*} \psi d x\right) \phi_{i} \\
& \psi^{*}=\sum_{\mathrm{j}}\left(\phi_{\mathrm{j}} \psi^{*} \mathrm{dx}\right) \phi_{\mathrm{j}}^{*} \\
& \text { expand both in } \\
& \phi \text { basis }
\end{aligned}
$$

$$
\begin{aligned}
& 1=\sum_{j}\left|\int \phi_{j}^{*} \psi d x\right|^{2} \\
& \text { real, positive\#'s } \\
& \text { forces } 2 \text { sums to } \\
& \text { collapse into } 1
\end{aligned}
$$

We have proved that sum of $\mid$ mixing coefficients $\left.\right|^{2}=1$. These are called "mixing fractions" or "fractional character".
now in $\langle\mid\rangle$ picture

$$
\left.\begin{array}{rl}
\langle\psi \mid \psi\rangle & =(\underbrace{\int \phi_{1} \psi^{*} \mathrm{dx} \quad \int \phi_{2} \psi^{*} \mathrm{dx}}_{\text {row vector: "bra" }} \cdots \cdots
\end{array}\right)\left(\begin{array}{c}
\int_{\begin{array}{c}
\text { column } \\
\text { vector "ket" }
\end{array}}^{\substack{\phi_{1}^{*} \psi \mathrm{dx} \\
\vdots \\
\phi_{2}^{*} \psi \mathrm{dx}}} \\
\end{array}\right)
$$

[CTDL talks about dual vector spaces — best to walk before you run. Always translate $\rangle$ into $\psi$ picture to be sure you understand the notation.]

### 5.73 Lecture \#10

10-6

Any symbol 〈〉 is a complex number.
Any symbol $\rangle\langle |$ is a square matrix.
again $\langle\psi \mid \psi\rangle=\left(\left\langle\psi \mid \phi_{1}\right\rangle\left\langle\psi \mid \phi_{2}\right\rangle \ldots\right)\left(\begin{array}{c}\left\langle\phi_{1} \mid \psi\right\rangle \\ \left\langle\phi_{2} \mid \psi\right\rangle \\ \vdots\end{array}\right)$

$$
=\sum_{i}\left\langle\psi \mid \phi_{\mathrm{i}}\right\rangle\left\langle\phi_{\mathrm{i}} \mid \psi\right\rangle=\langle\psi \mid \psi\rangle=1
$$

what is $\left.\left|\phi_{1}\right\rangle\left\langle\phi_{1}\right|=\left(\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & \ldots \\ 0 & 0 & \\ \vdots & & \ddots\end{array}\right) \begin{array}{l}\text { a shorthand for } \\ \text { specifying only } \\ \text { the important } \\ \text { part of an } \\ \text { infinite matrix }\end{array}\right]$
what is $\sum_{\mathrm{i}}\left|\phi_{\mathrm{i}}\right\rangle\left\langle\phi_{\mathrm{i}}\right|=\left(\begin{array}{llll}1 & & & \\ & 1 & 0 & \\ & 0 & 1 & \\ & & & \ddots\end{array}\right) \begin{aligned} & \text { unit or identity } \\ & \text { matrix }=1\end{aligned}$
"completeness" or "closure" involves insertion of $\mathbb{I}$ between any two symbols.

Use 1 to evaluate matrix elements of product of 2 operators, $\mathbf{A B}$ (we know how to do this in $\psi$ picture).

$$
\begin{aligned}
& \left.\left\langle\phi_{\mathrm{i}}\right| \mathbf{A B}\left|\phi_{\mathrm{j}}\right\rangle=\sum_{\mathrm{k}}\left\langle\phi_{\mathrm{i}}\right| \frac{\mathbf{A}\left|\phi_{\mathrm{k}}\right\rangle\left\langle\phi_{\mathrm{k}}\right.}{}|\mathbf{B}| \phi_{\mathrm{j}}\right\rangle \\
& =\sum_{\mathrm{k}} \mathrm{~A}_{\mathrm{ik}} \mathrm{~B}_{\mathrm{kj}}=(\mathrm{AB})_{\mathrm{ij}} \text { a number }
\end{aligned}
$$

In Heisenberg picture, how do we get exact equivalent of $\psi(x)$ ? basis set $\delta\left(\mathrm{x}, \mathrm{x}_{0}\right)$ for all $\mathrm{x}_{0}$ - this is a complete basis (eigenbasis for $\hat{x}$, eigenvalue $\mathrm{x}_{0}$ ) - perfect localization at any $\mathrm{x}_{0}$
$\langle\mathrm{x} \mid \psi\rangle$ is the same thing as $\psi(\mathrm{x}) \quad\left(\right.$ i.e., $\left.\int \delta\left(x, x^{\prime}\right)^{*} \psi\left(x^{\prime}\right) d x^{\prime}=\psi(x)\right)$ $\uparrow$
x is continuously variable $\leftrightarrow \delta(\mathrm{x})$
overlap of state vector $\psi$ with $\delta(\mathrm{x})$ - a complex number. $\psi(x)$ is a complex function of a real variable.
other $\psi \leftrightarrow\langle\mid\rangle$ relationships

1. All observable quantities are represented by a Hemitian operator (Why because expectation values are always real). Definition of Hermitian operator.

$$
\mathrm{A}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{ji}}^{*} \quad \text { or } \quad \mathbf{A}=\mathbf{A}^{\dagger}
$$

2. Change of basis set

Easy to prove that if all expectation values of $\mathbf{A}$ are real, then $\mathbf{A}=\mathbf{A}^{\dagger}$ and vice-versa

$$
\mathbf{A}^{\phi} \leftrightarrow \mathbf{A}^{\mathrm{u}} \quad\{\phi\} \text { to }\{\mathrm{u}\}
$$

$$
A_{i j}^{\phi} \equiv\left\langle\phi_{i}\right| A\left|\phi_{j}\right\rangle=\left\langle\phi_{i}\right| \mathbf{1} A \mathbf{1}\left|\phi_{j}\right\rangle
$$

$$
=\sum_{k, \ell}\left\langle\phi_{i} \mid u_{k}\right\rangle\left\langle\mathbf{u}_{k}\right| A\left|\mathbf{u}_{\ell}\right\rangle\left\langle u_{\ell} \mid \phi_{j}\right\rangle
$$

$$
\mathrm{S}
$$

$$
=\sum_{k, \ell} S_{i k}^{\leq} A_{k \ell}^{u} S_{\ell j}=\left(\mathbf{S}^{\leq} A^{u} \mathbf{S}\right)_{i j} \equiv A_{i j}^{\phi}
$$

$$
A^{\phi}=S^{\leq} A^{u} S
$$

a special kind of
transformation (unitary)
(different from usual
$\mathbf{T}^{-1} \mathbf{A T}$ "similarity" transformation)

What kind of matrix is $\mathbf{S}$ ?
$S_{\ell_{j}}=\left\langle u_{\ell} \mid \phi_{j}\right\rangle$
$S_{\ell_{j}}^{*}=\left[\left\langle u_{\ell} \mid \phi_{j}\right\rangle\right]^{*}=\left\langle\phi_{j} \mid u_{\ell}\right\rangle \equiv S_{j \ell}^{\leq}$
$\leq$ means take complex conjugate and interchange indices.
Using the definitions of $\mathbf{S}$ and $\mathbf{S}^{\leq}$:

$$
\begin{aligned}
& \mathrm{S}_{\ell \mathrm{j}} \mathrm{~S}_{\mathrm{jk}}^{\dagger}=\left\langle\mathrm{u}_{\ell} \mid \phi_{\mathrm{j}}\right\rangle\left\langle\phi_{\mathrm{j}} \mid \mathrm{u}_{\mathrm{k}}\right\rangle \\
& \sum_{\mathrm{j}} \mathrm{~S}_{\ell \mathrm{j}} \mathrm{~S}_{\mathrm{jk}}^{\dagger}=\sum_{\mathrm{j}}\left\langle\mathrm{u}_{\ell} \mid \phi_{\mathrm{j}}\right\rangle\left\langle\phi_{\mathrm{j}} \mid \mathrm{u}_{\mathrm{k}}\right\rangle=\left\langle\mathrm{u}_{\mathrm{l}}\right| \mathbb{1}\left|\mathrm{u}_{\mathrm{k}}\right\rangle \\
&=\left\langle\mathrm{u}_{\ell} \mid \mathrm{u}_{\mathrm{k}}\right\rangle=\delta_{\ell \mathrm{k}}=1_{\ell \mathrm{k}} \\
& \therefore \mathbf{S S}^{+}=\mathbb{1} \quad \text { OR } \quad \mathbf{S}^{+}=\mathbf{S}^{-1} \text { "Unitary" } \begin{array}{c}
\text { a very special and } \\
\text { convenient propery. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{A}^{\phi} & =\mathrm{S}^{\dagger} \mathrm{A}^{\mathrm{u}} \mathrm{~S} \\
\mathrm{SA}^{\phi} \mathrm{S}^{\dagger} & =\mathrm{SS}^{\dagger} \mathrm{A}^{\mathrm{u}} \mathrm{SS}^{\dagger}=\mathrm{A}^{\mathrm{u}}
\end{aligned}
$$

$$
\mathrm{A}^{\mathrm{u}}=\mathrm{SA}^{\phi} \mathrm{S}^{\dagger}
$$

Take matrix element of both sides of equation:

$$
\mathrm{A}_{\mathrm{ij}}^{\mathrm{u}}=\left\langle\mathrm{u}_{\mathrm{i}}\right| \mathrm{A}\left|\mathrm{u}_{\mathrm{j}}\right\rangle=\left(\mathrm{SA}^{\phi} \mathrm{S}^{\dagger}\right)_{\mathrm{ij}}
$$

$$
=\sum_{\mathrm{k}, \mathrm{l}} \mathrm{~S}_{\mathrm{ik}}\left\langle\phi_{\mathrm{k}}\right| \mathrm{A}\left|\phi_{\mathrm{l}}\right\rangle \mathrm{S}_{\mathrm{lj}}^{\dagger}
$$

$$
\therefore\left|u_{j}\right\rangle=\sum_{\ell}\left|\phi_{\ell}\right\rangle \mathbf{S}_{\ell j}^{\leq} \quad \mathrm{j}-\text { th column of } \mathbf{S}^{\leq}
$$

$$
\phi \rightarrow \mathrm{u} \quad \text { via } \mathbf{S}^{\dagger}, \mathbf{S}:\left|\mathrm{u}_{\mathrm{j}}\right\rangle \text { is } \mathrm{j} \text { - th column of } \mathbf{S}^{\dagger}
$$

Thus,


Alternatively,

$$
\begin{aligned}
\mathrm{A}_{\mathrm{pq}}^{\phi} & =\left\langle\phi_{p}\right| \mathbf{A}\left|\phi_{q}\right\rangle=\left(\mathbf{s}^{\leq} \mathbf{A}^{u} \mathbf{S}\right)_{p q} \\
& =\sum_{m n} S_{p m}^{\leq}\left\langle u_{m}\right| \mathbf{A}\left|u_{n}\right\rangle S_{n q}
\end{aligned}
$$

$$
\therefore\left|\phi_{q}\right\rangle=\sum_{n}\left|u_{n}\right\rangle S_{n q} \quad q-\text { th column of } \mathbf{S}
$$

$$
\left|\phi_{\mathrm{q}}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
\text { q-th } \\
\vdots \\
0
\end{array}\right)_{\phi}=\left(\begin{array}{c}
S_{1 q} \\
S_{2 q} \\
\vdots \\
S_{n q}
\end{array}\right)_{u}
$$

## Commutation Rules

* $\quad[\hat{A}, \hat{B}]=\hat{A} \hat{B}-\hat{B} \hat{A}$

$$
\text { e.g. } \begin{aligned}
{[\hat{\mathrm{x}}, \hat{\mathrm{p}}] } & =\mathrm{i} \hbar \quad \text { means }(\mathrm{xp}-\mathrm{px}) \phi=\mathrm{x} \frac{\hbar}{\mathrm{i}} \frac{\mathrm{~d} \phi}{\mathrm{dx}}-\frac{\hbar}{\mathrm{i}}\left(\phi+\mathrm{x} \frac{\mathrm{~d} \phi}{\mathrm{dx}}\right) \\
& =\mathrm{i} \hbar \phi
\end{aligned}
$$

* If $\hat{A}$ and $\hat{B}$ are Hermitian, is $\hat{A} \hat{B}$ Hermitian?

but this is not what we need to say AB is Hermitian: That would be:

$$
(\mathbf{A B})_{\mathrm{ij}}=(\mathbf{A B})_{\mathrm{ji}}^{*}
$$

$\mathbf{A B}$ is Hermitian only if $[\mathbf{A}, \mathbf{B}]=0$
However, $\frac{1}{2}[\mathbf{A B}+\mathbf{B A}]$ is Hermitian if $\mathbf{A}$ and $\mathbf{B}$ are Hermitian.

This is the foolproof way to construct a new Hermitian operator out of simpler Hermitian operators.

Standard prescription for the Correspondence Principle.

