Eigenvalues, Eigenvectors, and Discrete Variable Representation (DVR) should have read CDTL pages 94-144

Last time:

$$
\begin{aligned}
& \text { bra }\langle | \quad\left(\begin{array}{lll}
a_{1}^{*} & \ldots & a_{N}^{*}
\end{array}\right)_{\phi} \\
& \left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{N}
\end{array}\right)_{\phi} \\
& \text { | }>1 \\
& \mathrm{~N} \times \mathrm{N} \text { matrix } \\
& \langle\mid\rangle \\
& \mathbb{1}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & & 0 \\
& & 1 & \\
& 0 & & \ddots
\end{array}\right)=\sum_{\mathrm{k}}|\mathrm{k}\rangle\langle\mathrm{k}| \\
& \text { (complex) \# } \\
& \begin{array}{l}
\psi \text { in }\{\phi\} \text { basis set } \\
\left|\psi_{\mathrm{i}}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{\psi}=\left(\begin{array}{c}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\vdots \\
\vdots \\
\mathrm{a}_{\mathrm{N}}
\end{array}\right)_{\phi} \\
\mathrm{a}_{\mathrm{j}}={ }_{\phi}\left\langle\phi_{\mathrm{j}} \mid \psi_{\mathrm{i}}\right\rangle_{\phi}
\end{array} \\
& \begin{array}{c}
\psi \text { in }\{\phi\} \text { basis set } \\
\left|\psi_{\mathrm{i}}\right\rangle=\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{\psi}=\left(\begin{array}{c}
\mathrm{a}_{1} \\
\mathrm{a}_{2} \\
\vdots \\
\vdots \\
\mathrm{a}_{\mathrm{N}}
\end{array}\right)_{\phi} \\
\mathrm{a}_{\mathrm{j}}={ }_{\phi}\left\langle\phi_{\mathrm{j}} \mid \psi_{\mathrm{i}}\right\rangle_{\phi}
\end{array}
\end{aligned}
$$

at end of lecture

$$
\begin{aligned}
\left\langle\phi_{\mathrm{i}}\right| \mathbf{A B}\left|\phi_{\mathrm{j}}\right\rangle & =\sum_{\mathrm{k}}\left\langle\phi_{\mathrm{i}}\right| \mathbf{A} \underbrace{\left.\phi_{\mathrm{k}}\right\rangle\left\langle\phi_{\mathrm{k}}\right.}_{\mathbf{1}}|\mathbf{B}| \phi_{\mathrm{j}}\rangle \\
& =\sum_{\mathrm{k}} \mathrm{~A}_{\mathrm{ik}} \mathrm{~B}_{\mathrm{kj}}=(\mathbf{A B})_{\mathrm{ij}}
\end{aligned}
$$

5.73 Lecture \#11

What is the connection between the Schrödinger and Heisenberg representations?

$$
\begin{aligned}
& \psi_{i}(\mathbf{x})=\left\langle\mathbf{X} \mid \Psi_{i}\right\rangle \\
& \left|\mathbf{x}_{0}\right\rangle=\delta\left(\mathbf{X}, \mathbf{X}_{0}\right) \quad \text { eigenfunction of } \mathbf{x} \text { with eigenvalue } x_{0}
\end{aligned}
$$

Using this formulation for $\psi_{\mathrm{i}}(\mathrm{x})$, you can go freely (and rigorously) between the Schrödinger and Heisenberg approaches.

$$
\mathbf{1}=\sum_{\mathrm{k}}|\mathrm{k}\rangle\langle\mathrm{k}|=\int|\mathrm{x}\rangle\langle\mathrm{x}| \mathrm{dx}
$$

Today: eigenvalues of a matrix - what are they? how do we get them? (secular equation). Why do we need them?
eigenvectors - how do we get them?
Arbitrary V(x) in Harmonic Oscillator Basis Set (DVR)

5.73 Lecture \#11

Schr. Eq. is an eigenvalue equation

$$
\hat{A} \psi=\mathrm{a} \psi
$$

in matrix language

$$
\left.\begin{array}{l}
\text { guage } \\
\mathbf{A}\left|\psi_{\mathrm{i}}\right\rangle=\mathrm{a}_{\mathrm{i}}\left|\psi_{\mathrm{i}}\right\rangle \quad \mathrm{A}=\left(\begin{array}{llll}
\mathrm{a}_{1} & & & \\
& \mathrm{a}_{2} & & \\
& & \ddots & \\
0 & & & a_{N}
\end{array}\right)_{\Psi} \\
\\
\\
\\
\\
\end{array} \Psi_{1}\right\rangle=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right)_{\Psi} \quad \operatorname{satisfies} \mathbf{A}\left|\psi_{1}\right\rangle=a_{1}\left|\psi_{1}\right\rangle .
$$

but that is the eigen-basis representation - a special representation!
What about an arbitrary representation? Call it the ϕ representation.

$$
{ }_{* * *}\left\{\begin{array}{l}
\mathbf{A}\left(\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{i}}|\mathrm{i}\rangle_{\phi}\right)=\mathrm{a}\left(\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}|\mathrm{i}\rangle_{\phi}\right)_{* * *} \\
\mathbf{A} \text { as transformation on each }\left|\phi_{\mathrm{i}}\right\rangle
\end{array} \quad\right. \text { Eigenvalue equation }
$$

N unknown coefficients $\left\{\mathrm{c}_{\mathrm{i}}\right\} \quad \mathrm{i}=1$ to N
How to determine $\left\{\mathrm{c}_{\mathrm{i}}\right\}$ and a ? Secular Eqn. derive it.
first, left multiply by ${ }_{\phi}\langle\mathrm{j}|$

$$
\begin{aligned}
& \sum_{\mathrm{i}} \mathrm{~A}_{\mathrm{ji}}^{\phi} \mathrm{c}_{\mathrm{i}}=\mathrm{a} \sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}\langle j \mid \mathrm{i}\rangle=\mathrm{a} \sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \delta_{\mathrm{ij}} \\
& 0=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{i}}\left[\mathrm{~A}_{\mathrm{ij}}^{\phi}-\mathrm{a} \delta_{\mathrm{ij}}\right] \quad \text { one equation } \\
& \mathrm{N} \text { unknowns }
\end{aligned}
$$

next, multiply original equation by ${ }_{\phi}\langle\mathrm{k}|$

$$
\begin{aligned}
& 0=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{i}}\left[\mathrm{~A}_{\mathrm{ki}}^{\phi}-\mathrm{a} \delta_{\mathrm{ik}}\right] \text { another equation } \\
& \text { etc. for all }{ }_{\phi}\langle |
\end{aligned}
$$

N linear homogeneous equations in N unknowns - Condition that a nontrivial (i.e. not all 0 's) solution exists is that determinant of coefficients $=0$.

5.73 Lecture \#11

$$
0=\left|\begin{array}{cccc}
\mathrm{A}_{11}-a & \mathrm{~A}_{12} & \cdots & \mathrm{~A}_{1 \mathrm{~N}} \\
\mathrm{~A}_{21} & \mathrm{~A}_{22}-a & & \\
& & \ddots & \\
& & & \mathrm{~A}_{\mathrm{NN}}-a
\end{array}\right|
$$

Nth order equation - as many as N different values of a satisfy this equation (if fewer than N , some values of a are "degenerate").

Does everyone know how to expand a determinant?
$\left\{a_{i}\right\}$ are the eigenvalues of \mathbf{A}
(same as what we would have obtained by solving differential operator eigenvalue equation)

If we know the eigenvalues, then we can find the $\mathrm{N}\left\{\left|\psi_{\mathrm{i}}\right\rangle\right\}$ such that

$$
\begin{gathered}
\left|\psi_{\mathrm{i}}\right\rangle=\sum_{\mathrm{j}} \mathrm{c}_{\mathrm{j}}|\mathrm{j}\rangle_{\phi} \\
\left\langle\psi_{\mathrm{i}}\right| \mathbf{A}^{\psi}\left|\psi_{\mathrm{j}}\right\rangle=\mathrm{a}_{\mathrm{j}} \delta_{\mathrm{ij}} \\
\mathbf{A}^{\psi}=\left(\begin{array}{ccc}
\mathrm{a}_{1} & & 0 \\
0 & \ddots & \mathrm{a}_{\mathrm{N}}
\end{array}\right) \\
\mathbf{A}^{\psi}\left|\psi_{1}\right\rangle=\mathrm{a}_{1}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right)
\end{gathered}
$$

But we generally start with \mathbf{A}^{ϕ} in nondiagonal form
computer $\left[\begin{array}{ll}1 . & \text { transform to diagonal form by } \mathbf{T}^{\leq} \mathbf{A}^{\phi} \mathbf{T}=\mathbf{A}^{\psi} \\ 2 . & \begin{array}{l}\text { the diagonal elements are eigenvalues } \\ \text { the diagonalizing transformation is composed of eigenvectors, }\end{array} \\ & \text { column by column of } \mathbf{T}^{\leq} .\end{array}\right.$

Hermitian Matrices

$$
\mathbf{A}=\mathbf{A}^{\dagger} \quad \mathrm{A}_{\mathrm{ij}}^{\dagger}=\mathrm{A}_{\mathrm{ji}}^{*}
$$

(can use this property to show that all expectation values of A are real)
These matrices can be "diagonalized" (i.e. the set of all eigenvalues can be found) by a unitary transformation.

5.73 Lecture \#11

eigenvector

suppose we apply

$$
\mathbf{A}^{\psi}\left|\Psi_{i}\right\rangle=\underset{\text { i-th }}{\mathbf{A}^{\psi}}\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{\psi}=\left(\begin{array}{c}
0 \\
\vdots \\
a_{i} \\
\vdots \\
0
\end{array}\right)_{\psi}=a_{i}\left(\begin{array}{c}
0 \\
\vdots \\
1 \\
\vdots \\
0
\end{array}\right)_{\psi}
$$

RECAPITULATE:
Start with arbitrary basis set $|\phi\rangle$
Construct \mathbf{A}^{ϕ} : Not Diagonal, but basis set was computationally convenient.
Find \mathbf{T} (computer) that causes $\mathbf{T}^{\leq} \mathbf{A}^{\phi} \mathbf{T}=\left(\begin{array}{ccc}\mathrm{a}_{1} & 0 & 0 \\ & \ddots & \\ 0 & & a_{N}\end{array}\right)=\mathrm{A}^{\psi}$
Eigenstates (eigenkets) are columns of \mathbf{T}^{\leq}in ϕ basis set.
Columns of \mathbf{T} are the linear combination of eigenvectors that correspond to each basis state. Useful for "bright state" calculations.

5.73 Lecture \#11

Can now solve many difficult appearing problems!
Start with a matrix representation of any operator that is expressable as a function of a matrix.
e.g.

$$
\begin{equation*}
\mathrm{e}^{-\mathrm{i} \mathbf{H}\left(\mathrm{t}-\mathrm{t}_{0}\right) / \hbar} \tag{x}
\end{equation*}
$$

propagator
potential curve
prescription example

$$
\begin{aligned}
& \mathrm{f}(\mathbf{x})=\mathbf{T} f \underbrace{\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right)} \mathbf{T}^{\dagger} \\
& \text { diagonalize } \mathbf{x} \text { - so } \mathrm{f}() \text { is } \\
& \text { applied to each diagonal } \\
& \mathbf{T}^{\dagger} \mathbf{x T}=\left(\begin{array}{cccc}
\mathrm{x}_{1} & \text { element } & & 0 \\
& \mathrm{x}_{2} & & \\
& & \ddots & \\
0 & & & \mathrm{x}_{\mathrm{N}}
\end{array}\right) \\
& \mathrm{f}\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right)=\left(\begin{array}{cccc}
\mathrm{f}\left(\mathrm{x}_{1}\right) & & & 0 \\
& \mathrm{f}\left(\mathrm{x}_{2}\right) & & \\
& & \ddots & \\
0 & & & \mathrm{f}\left(\mathrm{x}_{\mathrm{N}}\right)
\end{array}\right)
\end{aligned}
$$

Then perform inverse transformation $\mathbf{T} f\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right) \mathbf{T}^{\dagger}$ - undiagonalizes matrix, to give matrix representation of desired function of a matrix.

Show that this actually is valid for simple example

$$
\begin{array}{rlr}
\mathrm{f}(\mathrm{x}) & =\mathbf{x}^{\mathrm{N}} & \\
\underline{\underline{\mathrm{f}(\mathbf{x})}} & =\mathbf{T}\left[\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right)\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right) \cdots\left(\mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}\right)\right] \mathbf{T}^{\dagger} & \text { apply prescription } \\
& =\mathbf{T}\left[\mathbf{T}^{\dagger} \mathbf{x}^{\mathrm{N}} \mathbf{T}\right] \mathbf{T}^{\dagger}=\mathbf{x}^{\mathrm{N}} & \mathrm{~N}
\end{array}
$$

general proof for arbitrary $\mathrm{f}(\mathbf{x}) \rightarrow$ expand in power series. Use previous result for each integer power.

5.73 Lecture \#11

John Light: Discrete Variable Representation (DVR)
General V(x) evaluated in Harmonic Oscillator Basis Set.
we did not do H-O yet, but the general formula for all of the nonzero matrix elements of \mathbf{x} is:

$$
\langle\mathrm{n}| \mathrm{x}|\mathrm{n}+1\rangle=\left[\frac{\hbar}{2 \omega \mu}\right]^{1 / 2}(\mathrm{n}+1)^{1 / 2} \quad \omega=(\mathrm{k} / \mu)^{1 / 2}
$$

(infinite dimension matrix) $\mathbf{x}=\left[\frac{\hbar}{2 \omega \mu}\right]^{1 / 2}\left(\begin{array}{ccccc}0 & \sqrt{1} & 0 & \cdots & \cdots \\ \sqrt{1} & 0 & \sqrt{2} & \cdots & \cdots \\ 0 & \sqrt{2} & 0 & \sqrt{3} & 0 \\ \vdots & \vdots & \sqrt{3} & 0 & \sqrt{4} \\ \vdots & \vdots & \vdots & \sqrt{4} & 0\end{array}\right)=\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$

$$
\left[\mathbf{x}^{2}=\left[\frac{\hbar}{2 \omega \mu}\right]\left(\begin{array}{ccccccccc}
1 & 0 & \sqrt{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & \sqrt{6} & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} & 0 & 5 & 0 & \sqrt{12} & 0 & 0 & 0 & 0 \\
0 & \sqrt{6} & 0 & 7 & 0 & & 0 & 0 & 0 \\
0 & 0 & \sqrt{12} & 0 & 9 & 0 & & 0 & 0 \\
0 & 0 & 0 & & 0 & 11 & 0 & & 0 \\
0 & 0 & 0 & 0 & & 0 & 13 & 0 & \vdots \\
0 & 0 & 0 & 0 & 0 & & 0 & 15 & \ddots \\
0 & 0 & 0 & 0 & 0 & 0 & & \ddots & \ddots
\end{array}\right)\right]
$$

[CARTOON]
etc. matrix multiplication
to get matrix for $f(\mathbf{x})$ diagonalize e.g., 1000×1000 (truncated) \mathbf{x} matrix that was expressed in harmonic oscillator basis set.

5.73 Lecture \#11

$$
\begin{aligned}
& \mathbf{T}^{\dagger} \mathbf{x} \mathbf{T}=\left(\begin{array}{cccc}
\mathrm{x}_{1} & 0 & 0 & 0 \\
0 & \mathrm{x}_{2} & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \mathrm{x}_{1000}
\end{array}\right)_{\mathrm{x}} \\
& \mathbf{V}(\mathrm{x})_{\mathrm{x}}=\left(\begin{array}{cccc}
\mathrm{V}\left(\mathrm{x}_{1}\right) & 0 & 0 & 0 \\
0 & \mathrm{~V}\left(\mathrm{x}_{2}\right) & 0 & 0 \\
0 & 0 & \ddots & 0 \\
0 & 0 & 0 & \mathrm{~V}\left(\mathrm{x}_{1000}\right)
\end{array}\right)_{\mathrm{x}} \\
& \mathbf{V}(\mathrm{x})_{\mathrm{H}-\mathrm{O}}=\mathbf{T V}(\mathrm{x})_{\mathrm{x}} \mathbf{T}^{\dagger}=\left(\begin{array}{c}
\text { full } \\
\text { complicated } \\
\text { matrix }
\end{array}\right) \quad \begin{array}{c}
\mathbf{T} \text { was determined } \\
\begin{array}{c}
\text { when } \mathbf{x} \text { was } \\
\text { diagonalized }
\end{array} \\
\end{array} \begin{array}{c}
\\
\\
\\
\\
\mathrm{H}-\mathrm{O}
\end{array} \\
& \mathbf{H}=\frac{\mathbf{p}^{2}}{2 \mu}+V(x) \\
& \text { diagonalized-x basis } \\
& \left\{\mathrm{x}_{\mathrm{i}}\right\} \text { are eigenvalues. } \\
& \text { They have no } \\
& \text { obvious physical } \\
& \text { significance. } \\
& \text { next transform back } \\
& \text { from x-basis to } \\
& \mathrm{H}-\mathrm{O} \text { basis set } \\
& \text { when } \mathbf{x} \text { was } \\
& \text { diagonalized }
\end{aligned}
$$

need matrix for \mathbf{p}^{2}, get it from \mathbf{p} (the general formula for all non-zero matrix elements of \mathbf{p})

$$
\begin{aligned}
& \langle\mathrm{n}| \mathrm{p}|\mathrm{n}+1\rangle=-\mathrm{i}\left[\frac{\hbar(\omega \mu)}{2}\right]^{1 / 2}(\mathrm{n}+1)^{1 / 2} \\
& \mathbf{p}=-\mathrm{i}\left[\frac{\hbar(\omega \mu)}{2}\right]^{1 / 2}\left(\begin{array}{ccccc}
0 & \sqrt{1} & 0 & 0 & 0 \\
-\sqrt{1} & 0 & \sqrt{2} & 0 & 0 \\
0 & -\sqrt{2} & 0 & 0 & 0 \\
0 & 0 & \ddots & \ddots & \ddots \\
0 & 0 & \ddots & \ddots & \ddots
\end{array}\right) \text { same structure as } \mathbf{x} \\
& \mathbf{p}^{\mathbf{2}}=-\left[\frac{\hbar(\omega \mu)}{2}\right]\left(\begin{array}{ccccc}
-1 & 0 & \sqrt{2} & 0 & 0 \\
0 & -3 & 0 & \ddots & 0 \\
\sqrt{2} & 0 & -5 & 0 & \ddots \\
0 & \ddots & \ddots & \ddots & \ddots \\
0 & \ddots & \ddots & \ddots &) \\
\text { if } \quad \mathrm{H} & =\frac{\mathrm{p}^{2}}{2 \mu}+\frac{1}{2} \mathrm{kx} \\
\mathrm{Hx} & =\frac{\hbar \omega}{4}\left(\frac{1}{2} \mathrm{k}=\frac{1}{2} \omega^{2} \mu\right) \\
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 14
\end{array}\right)=\hbar \omega\left(\begin{array}{cccc}
1 / 2 & 0 & 0 & 0 \\
0 & 3 / 2 & 0 & 0 \\
0 & 0 & 5 / 2 & 0 \\
0 & 0 & 0 & \ddots
\end{array}\right)
\end{aligned}
$$

but for arbitrary $\mathrm{V}(\mathrm{x})$, express \mathbf{H} in HO basis set,

$$
\begin{aligned}
& \mathbf{H}_{\mathrm{HO}}=\frac{\mathbf{p}_{\mathrm{HO}}^{2}}{2 \mu}+\underset{\mathbf{T V}(\mathbf{x})_{\mathrm{x}} \mathbf{T}^{\dagger}}{\mathbf{V}(\mathbf{x})_{\mathrm{HO}}} \\
& \text { eigenvalues obtained by } \mathbf{S}^{\dagger} \mathbf{H}_{\mathrm{HO}} \mathbf{S}=\left(\begin{array}{ccc}
\mathrm{E}_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \mathrm{E}_{\mathrm{N}}
\end{array}\right)
\end{aligned}
$$

columns of \mathbf{S}^{\dagger} are eigenvectors in HO basis set!

5.73 Lecture \#11

1. Express matrix of \mathbf{x} in $\mathrm{H}-\mathrm{O}$ basis (automatic; easy to program a computer to do this), get \mathbf{x}_{HO}.
2. Diagonalize \mathbf{x}_{HO}. Get \mathbf{x}_{x} and \mathbf{T}.
3. Trivial to write $\mathrm{V}(\mathrm{x})_{\mathrm{x}}$ as $\mathrm{V}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{V}(\mathbf{x})_{\mathrm{x}}$ in \mathbf{x} basis
4. Transform $\mathbf{V}(\mathbf{x})_{\mathrm{x}}$ back to $\mathrm{V}(\mathrm{x})_{\mathrm{HO}}$
5. Diagonalize \mathbf{H}_{HO}.

Solve many $V(x)$ problems in this basis set.
$1000 \times 1000 \mathbf{T}$ matrix diagonalizes $\mathbf{x} \Rightarrow 1000 \mathrm{x}_{\mathrm{i}}$'s
Save the \mathbf{T} and the $\left\{\mathrm{x}_{\mathrm{i}}\right\}$ for future use on all $\mathrm{V}(\mathrm{x})$ problems.

To verify convergence, repeat for new \mathbf{x} matrix of dimension 1100×1100. There will be no resemblance between $\left\{\mathbf{x}_{\mathrm{i}}\right\}_{1000}$ and $\left\{\mathbf{x}_{\mathrm{i}}\right\}_{1100}$.

If the lowest eigenvalues of \mathbf{H} (i.e. the ones you care about) do not change (by measurement accuracy), converged!

Next: Matrix solution of HO (no wave functions at all) Start from Commutation Rule!

Then Perturbation Theory.

