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1.  Assumptions

2.  xnm and pnm in terms of (En–Em)  
3.  xnm in terms of pnm
4.  Block Diagonalize x, p, H
5.  Lowest quantum number must exist (call it 0) → explicit values for

6.  Recursion relationship for xnn±1 and pnn±1
7.  Magnitudes and phases for xnn±1 and pnn±1
8.  Possibility of noncommunicating blocks along diagonal of H, x, p eliminated

Matrix Solution of Harmonic Oscillator
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 Discrete Variable Representation: Matrix representation for  1- D problem
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TODAY:  Derive all matrix elements of x, p, H from [x,p] commutation
rule and definition of H.

Example of how one can get matrix results entirely from commutation
rule definitions (e.g. of an angular momentum: J2, Jx, Jy, Jz
and Wigner-Eckart Theorem)

NO WAVEFUNCTIONS, NO INTEGRALS, ALL MAGIC!

Outline of steps:
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eigen basis exists for 

* x,p

 and p are Hermitian (real expectation values)
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See CTDL pages 488-500 for similar treatment. 
You will never use this methodology - only the results!

IN MORE 
ELEGANT NOTATION
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1.  recall assumptions
2.  x and p matrix elements derived from Comm. Rules

x,H[ ] = x,
p2

2m
+ 1

2
kx2











= 1
2m

x,p2[ ] = 1
2m

p x,p[ ] + x,p[ ]p( )

x,p[ ] = ih**
  
→ x,H[ ] = p

2m
2ih = ih

m
p

p = m
ih





 x,H[ ]

pnm = m
ih





 xnlHlm − Hnlxlm( )

l
∑

xnm = i

kh
pnlHlm − Hnlplm( )

l
∑

but we know that some basis set must exist where H is diagonal.  Use it implicitly:
∴ replace H

lm by Emδml

pnm = m
ih





 xnmEm − Enxnm( )

pnm = m
ih





 xnm Em − En( )

∴ pnn = 0 (but, in addition, if H has a degenerate eigenvalue, then pnm = 0 if En = Em)

similarly for

 
xnm = i

hk
pnm Em − En( )

∴ xnn = 0 (and xnm = 0  if En = Em)

take matrix elements of both sides, insert completeness between x and H

  
similarly,  starting from [ , ] =  p H p x x, 1

2
2k i k[ ] = − h
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3.  solve for xnm in terms of pnm

multiply the xnm equation by pnm
multiply the pnm equation by xnm


The LHSs of both resulting
equations are equal

equate RHS:  
m
ih h

x E E
k

p E Enm m n nm m n
2 2−( ) = −( )i

* If En = Em (degeneracy) – then we already know that xnm = 0, pnm = 0

* If En ≠ Em xnm
2 = − 1

km
pnm

2

xnm = ±i(km)−1/2 pnm

THERE IS A PHASE
AMBIGUITY HERE!

earlier we derived pnm = m
ih

xnm Em − En( )

pnm = m
ih

±i km( )−1/2( )pnm Em − En( )plug in new result for xnm

 

Either

 AND * !!
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p E E k m
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p x

nm m n

nm nm

≠ − = ± ( ) ≡ ±

= ⇒ =

0

0 0

1 2
h hω

The only non-zero off-diagonal matrix elements of x and p involve
eigenfunctions of H that have energies differing by exactly hω!
A “selection rule”!  The only nonzero matrix elements of x and p are those
where indices differ by ±1.

(OK to divide
 thru by pnm)
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4.  x, p, H are block diagonal ized

In what sense?  There is a set of eigenstates of H that have energies that fall
onto the comb of evenly spaced En

(1)

  

H,x,p =
I 0 0 0
0 II 0 0
0 0 III 0
0 0 0 O













 En
(1) = n hω( ) + ε1

could be another set

  En
(2) = n hω( ) + ε2 where ε2 − ε1 ≠ nhω

all n

but within each set, there must be a lowest energy level

Set I E0
(1) is lowest

E1
(1) = E0

(1) + hω
etc.

Set II E0
(2) is lowest

E1
(2) = E0

(2) + hω
etc.

I II

interleaved but
noncommunicating?

Since x and p have nonzero elements only within communicating sets for H, thus x,
p, H are block diagonalized into sets I, II, etc.

We will eventually show that all of these blocks along the diagonal are identical
(and that each energy level is nondegenerate).  If x, p are block diagonal, then x2,
p2 are similarly block diagonal.
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5. A lowest index must exist within each block.  Call i t 0.

  

x,p[ ] = ih is a diagonal matrix
xnlplm − pnlxlm( )

l
∑ = ihδnm

ih = xnn+1pn+1n − pnn+1xn+1n( ) + xnn−1pn−1n − pnn−1xn−1n( )
must be
equal

These are the only surviving
nonzero terms in the sum
over l!

but there must be a lowest Ei because

E = T + V and T ≥ 0, E ≥ Vmin

let n = 0 be lowest index

p0,–1 = x0,–1 = 0

 x01p10 − p01x10 = ih

x,p are Hermitian A = A†( ) thus x01p01
* − p01x01

* = ih

previously xnm = ±i km( )−1/2 pnm

we must make phase choices so that x and p are Hermitian

used Hermiticity here

(note that the same symbol is used
for mass and basis state index)
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phase ambiguity:  we can specify absolute phase of x or p BUT NOT BOTH because that
would affect value of [x,p]

matrix elements of x are REAL
p are IMAGINARY

BY CONVENTION:

x km p

p p x
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 and eliminate p  by plugging this into

x

01

01 h
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x01
2 = h

2
km( )

−1/2

p01
2 = h

2
km( )
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get

If we had chosen  we would have 

obtained x  which is impossible!01

x km p
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two things that must be checked for self-consistency of
seemingly arbitrary phase choices at every opportunity:

* Hermiticity

* 2 ≥ 0

Recursion Relation for xii+1
2

6.

start again with general equation derived in #3 above using the phase
choice that worked in #5 above

xn+1n
* = i km( )−1/2 pn+1n

*

index going up

Hermiticity

c.c. of both sides

index going down

x i km pnn nn+
−

+= −1
1 2

1( ) /

x i km pn n n n+
−

+= −1
1 2

1( ) /
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∴ xnn±1 = ±i km( )−1/2 pnn±1

now the arbitrary part of the phase ambiguity in the relationship between x
and p is eliminated

Apply this to the general term in [x,p] ⇒ lots of algebra

NONLECTURE : from four terms in [x,p] = ih

xnn+1pn+1n = xnn+1pnn+1
* = xnn+1 − km( )1/2

i
xnn+1

*






= xnn+1
2 +i km( )1/2( )

−pnn+1xn+1n = − km( )1/2

i
xnn+1







xnn+1

*( ) = xnn+1
2 +i km( )1/2( )

xnn−1pn−1n = xnn−1pnn−1
* = xnn−1 + km( )1/2

i
xnn−1

*






= xnn−1
2 −i km( )1/2( )

−pnn−1xn−1n = − − km( )1/2

i
xnn−1







xnn−1

*( ) = xnn−1
2 −i km( )1/2( )

  

∴  ih = 2i km( )1/2 xnn+1
2 − xnn−1

2[ ]
xnn+1

2 = h(km)−1/2

2
+ xnn−1

2

but x01
2 = x10

2 = h

2
km( )−1/2

xnn+1
2 = n + 1( ) h

2
km( )−1/2

pnn+1
2 = n + 1( ) h

2
km( )+1/2

recursion
relation

general
result

thus

combine 4 terms in [x,p] = ih to get

  
each step up produces another additive term:  

h

2
1 2( ) /km −
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This result implies

7.  Magnitudes and Phases for xnn±1 and pnn±1

verify phase consistency and hermiticity for x and p

in #3 we derived xnn±1 = ±i km( )−1/2 pnn±1

xnn+1 = + n + 1( )1/2 h

2 km( )1/2








1/2

= +xn+1n

xnn−1 = + n( )1/2 h

2 km( )1/2








1/2

= +xnn−1
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pnn+1 = −i n + 1( )1/2 h km( )1/2

2


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1/2

= −pn+1n

pnn−1 = +i n( )1/2 h km( )1/2

2
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

one self-
consistent set is

x real
and
positive

p imaginary
with sign flip
for up vs.
down

AND

Note that nonzero matrix elements of x and p are always ∝∝∝∝ [larger quantum

number]1/2

This is the usual phase convention
Must be careful about phase choices because one never really looks at wavefunctions,
operators, or integrals

8.  Possible existence of noncommunicating blocks along diagonal of H, x, p

you show that 

note that  and  have nonzero n = 2 elements but 

1
2

 has cancelling contributions in n = 2 locations

2 2
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* all of the possibly independent blocks in x, p, H are
identical

* εi = (1/2)hω for all i
* degeneracy of all En?  all En must have same

degeneracy, but can’t prove that it is 1.


