End Matrix Solution of $\mathbf{H}-\mathrm{O}, \mathbf{a}+\mathbf{a}^{\dagger}$ Operators

1. starting from $\mathbf{H}=\frac{\mathbf{p}^{2}}{2 m}+\frac{1}{2} \mathrm{k} \mathbf{x}^{2} \quad$ and $[\mathbf{x}, \mathbf{p}]=i \hbar$
2. showed $p_{n m}=\frac{m}{i \hbar} x_{n m}\left(E_{m}-E_{n}\right)$

$$
\begin{aligned}
\mathrm{x}_{\mathrm{nm}} & =\frac{i}{\hbar \mathrm{k}} \mathrm{p}_{\mathrm{nm}}\left(\mathrm{E}_{\mathrm{m}}-\mathrm{E}_{\mathrm{n}}\right) \\
\therefore \mathrm{x}_{\mathrm{nn}} & =0, \mathrm{p}_{\mathrm{nn}}=0 \text { and }\left\{\begin{array}{l}
\mathrm{x}_{\mathrm{nm}} \\
\mathrm{p}_{\mathrm{nm}}
\end{array}\right\}=0 \text { if } \mathrm{E}_{\mathrm{n}}=\mathrm{E}_{\mathrm{m}}
\end{aligned}
$$

3. $\mathrm{x}_{\mathrm{nm}}^{2}=-\frac{1}{\mathrm{~km}} \mathrm{p}_{\mathrm{nm}}^{2}$

$$
\mathrm{E}_{\mathrm{m}}-\mathrm{E}_{\mathrm{n}}= \pm i \hbar \omega \quad \omega=(\mathrm{k} / \mathrm{m})^{1 / 2}
$$

\therefore the only non-zero \mathbf{x} and \mathbf{p} elements are between states whose E's differ by $\pm \hbar \omega$
4. combs of connected states, block diag. of $\mathbf{H}, \mathbf{x}, \mathbf{p}, \mathbf{x}^{2}, \mathbf{p}^{2} \quad \mathrm{E}_{\mathrm{n}}^{(\mathrm{i})}=\hbar \omega \mathrm{n}+\varepsilon_{\mathrm{i}}$
5. lowest index must exist because lowest E must exist. Call this index 0

$$
\begin{aligned}
& \left|\mathrm{x}_{01}\right|^{2}=\frac{\hbar}{2}(\mathrm{~km})^{-1 / 2} \\
& \left|\mathrm{p}_{01}\right|^{2}=\frac{\hbar}{2}(\mathrm{~km})^{+1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { from phase choice } \\
& \qquad \mathrm{x}_{01}=+i(\mathrm{~km})^{-1 / 2} \mathrm{p}_{01} \\
& \hline
\end{aligned}
$$

Today
6. Recursion Relationship $\left|x_{n n+1}\right|^{2}$ in terms of $\left|x_{n n-1}\right|^{2}$

$$
\text { general matrix elements }\left|\mathrm{x}_{\mathrm{nn}+1}\right|^{2},\left|\mathrm{p}_{\mathrm{nn}+1}\right|^{2}
$$

7. general \mathbf{x} and \mathbf{p} elements
8. only blocks correspond to $\varepsilon_{i}=\frac{1}{2} \hbar \omega$

Dimensionless $\mathbf{x}, \mathbf{p}, \mathbf{H}$ and \mathbf{a} (annihilation) and \mathbf{a}^{\dagger} (creation) operators
phase ambiguity: we can specify absolute phase of \mathbf{x} or \mathbf{p} BUT NOT BOTH because that would affect value of $[\mathbf{x}, \mathbf{p}]$

BY CONVENTION:

matrix elements of \mathbf{x} are REAL
p are IMAGINARY

$$
\begin{gathered}
\text { try } \mathrm{x}_{01}=+i(\mathrm{~km})^{-1 / 2} \mathrm{p}_{01} \text { and plug this into } \\
\mathrm{x}_{01} \mathrm{p}_{01}^{*}-\mathrm{p}_{01} \mathrm{x}_{01}^{*}=i \hbar \\
\text { get }\left|\mathrm{x}_{01}\right|^{2}=\frac{\hbar}{2}(\mathrm{~km})^{-1 / 2} \\
\left|\mathrm{p}_{01}\right|^{2}=\frac{\hbar}{2}(\mathrm{~km})^{+1 / 2}
\end{gathered}
$$

$$
\left[\begin{array}{l}
\text { If we had chosen } \mathrm{x}_{01}=-i(\mathrm{~km})^{-1 / 2} \mathrm{p}_{01} \text { we would have } \\
\text { obtained }\left|\mathrm{x}_{01}\right|^{2}=-\frac{\hbar}{2}(\mathrm{~km})^{1 / 2} \text { which is impossible! }
\end{array}\right]
$$

check for self-consistency of seemingly arbitrary phase choices at every opportunity: * Hermiticity

$$
*|\quad|^{2} \geq 0
$$

6. Recursion Relation for $\left|\mathrm{x}_{\mathrm{ii}+1}\right|^{2}$
start again with gerand equation derived in \#3 above using the phase choice that worked above
going up

c.c. of both sides
going down

$$
\therefore \quad \mathrm{x}_{\mathrm{nn} \pm 1}= \pm i(\mathrm{~km})^{-1 / 2} \mathrm{p}_{\mathrm{nn} \pm 1}
$$

now the arbitrary part of the phase ambiguity in the relationship between \mathbf{x} and \mathbf{p} is eliminated

Apply this to the general term in $[\mathbf{x}, \mathbf{p}] \Rightarrow$ algebra

NONLECTURE : from terms in $[\mathbf{x}, \mathbf{p}]=i \hbar$

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{nn}+1} \mathrm{p}_{\mathrm{n}+1 \mathrm{n}}=\mathrm{x}_{\mathrm{nn}+1} \mathrm{p}_{\mathrm{nn}+1}^{*}= \\
& =\mathrm{x}_{\mathrm{nn}+1}\left(-\frac{(\mathrm{km})^{1 / 2}}{i} \mathrm{x}_{\mathrm{nn}+1}^{*}\right) \\
& =\left|\mathrm{x}_{\mathrm{nn}+1}\right|^{2}\left(+i(\mathrm{~km})^{1 / 2}\right) \\
& -\mathrm{p}_{\mathrm{nn}+1} \mathrm{x}_{\mathrm{n}+1 \mathrm{n}}=-\left(\frac{(\mathrm{km})^{1 / 2}}{i} \mathrm{x}_{\mathrm{nn}+1}\right)\left(\mathrm{x}_{\mathrm{nn}+1}^{*}\right)=\left|\mathrm{x}_{\mathrm{nn}+1}\right|^{2}\left(+i(\mathrm{~km})^{1 / 2}\right) \\
& \mathrm{x}_{\mathrm{nn}-1} \mathrm{p}_{\mathrm{n}-1 \mathrm{n}}=\mathrm{x}_{\mathrm{nn}-1} \mathrm{p}_{\mathrm{nn}-1}^{*}= \\
& =\mathrm{x}_{\mathrm{nn}-1}\left(+\frac{(\mathrm{km})^{1 / 2}}{i} \mathrm{x}_{\mathrm{nn}-1}^{*}\right) \\
& =\left|\mathrm{x}_{\mathrm{nn}-1}\right|^{2}\left(-i(\mathrm{~km})^{1 / 2}\right)
\end{aligned} \quad \begin{aligned}
-\mathrm{p}_{\mathrm{nn}-1} \mathrm{x}_{\mathrm{n}-1 \mathrm{n}}=-\left(-\frac{(\mathrm{km})^{1 / 2}}{i} \mathrm{x}_{\mathrm{nn}-1}\right)\left(\mathrm{x}_{\mathrm{nn}-1}^{*}\right)=\left|\mathrm{x}_{\mathrm{nn}-1}\right|^{2}\left(-i(\mathrm{~km})^{1 / 2}\right)
\end{aligned}
$$

$$
\begin{array}{rlr}
\therefore & i \hbar=2 i(\mathrm{~km})^{1 / 2}\left[\left|\mathrm{x}_{\mathrm{nn}+1}\right|^{2}-\left|\mathrm{x}_{\mathrm{nn}-1}\right|^{2}\right] & \\
& \left|\mathrm{x}_{\mathrm{nn}+1}\right|^{2}=\frac{\hbar(\mathrm{km})^{-1 / 2}}{2}+\left|\mathrm{x}_{\mathrm{nn}-1}\right|^{2} & \begin{array}{c}
\text { recursion } \\
\text { relation }
\end{array} \\
& \text { but }\left|\mathrm{x}_{01}\right|^{2}=\left|\mathrm{x}_{10}\right|^{2}=\frac{\hbar}{2}(\mathrm{~km})^{-1 / 2} &
\end{array}
$$

thus

general result

5.73 Lecture \#13

7. Magnitudes and Phases for $\mathrm{x}_{\mathrm{n}+1}$ and $\mathrm{p}_{\mathrm{n}+1}$
verify phase consistency and Hermiticity for \mathbf{x} and \mathbf{p}
in \#3 we derived $\mathrm{x}_{\mathrm{nn} \pm 1}= \pm i(\mathrm{~km})^{-1 / 2} \mathrm{p}_{\mathrm{nn} \pm 1}$
one self-

x real
and
positive

\mathrm{x}_{\mathrm{nn}-1}=+(\mathrm{n})^{1 / 2}\left(\frac{\hbar}{2(\mathrm{~km})^{1 / 2}}\right)^{1 / 2}=+\mathrm{x}_{\mathrm{nn}-1} \quad(\mathrm{~km})^{1 / 2}=m \omega\end{array}\right.\)

AND
p imaginary w/sign flip for up vs. down

$$
\left[\begin{array}{l}
\mathrm{p}_{\mathrm{nn}+1}=-i(\mathrm{n}+1)^{1 / 2}\left(\frac{\hbar(\mathrm{~km})^{1 / 2}}{2}\right)^{1 / 2}=-\mathrm{p}_{\mathrm{n}+1 \mathrm{n}} \\
\mathrm{p}_{\mathrm{nn}-1}=+i(\mathrm{n})^{1 / 2}\left(\frac{\hbar(\mathrm{~km})^{1 / 2}}{2}\right)^{1 / 2}=-\mathrm{p}_{\mathrm{n}-1 \mathrm{n}}
\end{array}\right.
$$

Phase is a recurrent problem in matrix mechanics because we never look at
This is the usual phase convention

wavefunctions or evaluate integrals explicitly.

8. Possible existence of noncommunicating blocks along diagonal of $\mathbf{H}, \mathbf{x}, \mathbf{p}$
you show that $\mathrm{H}_{\mathrm{nm}}=(\mathrm{n}+\mathbf{1} / 2) \hbar\left(\frac{\mathrm{k}}{\mathrm{m}}\right)^{1 / 2} \delta_{\mathrm{nm}}$
$\binom{$ note that \mathbf{x}^{2} and \mathbf{p}^{2} have non - zero $\Delta \mathrm{n}= \pm 2$ elements but }{$\frac{1}{2} \mathrm{k} \mathbf{x}^{2}+\frac{\mathbf{p}^{2}}{2 \mathrm{~m}}$ has cancelling contributions in $\Delta \mathrm{n}= \pm 2$ locations }

This result implies

* all of the possibly independent blocks in $\mathbf{x}, \mathbf{p}, \mathbf{H}$ are identical
* $\varepsilon_{i}=(1 / 2) \hbar \omega$ for all i
* degeneracy of all E_{n} ? all same, but can't prove that it is 1 .

Creation and Annihilation Operators (CTDL pages 488-508)

* Dimensionless operators
* simple operator algebra rather than complicated real algebra
* matrices arranged according to "selection rules"
* matrix elements calculated by extremely simple rules
* automatic generation of any basis function by repeated operations on lowest (nodeless) basis state
get rid of system-specific factors of k, μ, ω and also \hbar.

$$
\begin{aligned}
& \omega=(k / m)^{1 / 2}
\end{aligned}
$$

We choose these
factors to make everything come

$$
\underset{\sim}{\mathrm{H}}=\frac{1}{\hbar \omega} \mathrm{H}=\frac{1}{2}\left({\underset{\sim}{\mathrm{x}}}^{2}+{\underset{\sim}{\mathrm{p}}}^{2}\right) \quad \mathbf{H}=\frac{1}{2} k \mathbf{x}^{2}+\frac{\mathbf{p}^{2}}{2 m}=\frac{1}{2} \hbar \omega\left(\underset{\sim}{x}{ }^{2}+{\underset{\sim}{p}}^{2}\right)
$$

out dimensionless.

$$
[\underset{\sim}{\mathrm{x}}, \underset{\sim}{\mathrm{p}}]=\left(\frac{\mathrm{m} \omega}{\hbar} \frac{1}{\hbar \mathrm{~m} \omega}\right)^{1 / 2}[\mathrm{x}, \mathrm{p}]=\frac{1}{\hbar}(i \hbar)=i
$$

from results for $\mathbf{x}, \mathbf{p}, \mathbf{H}$

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{mn}}=2^{-1 / 2}\left[(\mathrm{n}+1)^{1 / 2} \delta_{\mathrm{mn}+1}+\mathrm{n}^{1 / 2} \delta_{\mathrm{mn}-1}\right] \\
& \underset{\sim}{\mathrm{p}} \mathrm{mn} \\
& =2^{-1 / 2} i\left[(\mathrm{n}+1)^{1 / 2} \delta_{\mathrm{mn}+1} \widehat{\sim}^{\left.-\mathrm{n}^{1 / 2} \delta_{\mathrm{mn}-1}\right]}\right] \\
& \mathrm{H}_{\mathrm{mn}}=(\mathrm{n}+1 / 2) \delta_{\mathrm{mn}} \\
& \text { diagonal } \\
& \text { Kronecker }-\delta^{\prime} \text { s specify selection rules for nonzero matrix elements } \\
& \begin{array}{l}
\text { now define something new } \\
\text { more! }
\end{array} \\
& \mathbf{a}, \mathbf{a}^{\dagger} \text { to clean things up even }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{a}=2^{-1 / 2}(\underset{\sim}{\mathbf{x}}+i \underset{\sim}{\underset{\sim}{p}}) \\
& \mathbf{a}^{\dagger}=2^{-1 / 2}(\underset{\sim}{\mathbf{x}}-\underset{\sim}{\underset{\sim}{p}})
\end{aligned} \gg \begin{aligned}
& \underset{\sim}{\mathbf{x}}=2^{-1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right) \\
& \underset{\sim}{\mathbf{p}}=2^{-1 / 2} i\left(\mathbf{a}^{\dagger}-\mathbf{a}\right)
\end{aligned}
$$

Let's examine the matrix elements of \mathbf{a} and \mathbf{a}^{\dagger}

$$
\mathrm{a}_{\mathrm{mn}}=\left[2^{-1 / 2}{\underset{\sim}{\mathrm{mn}}}+2^{-1 / 2} i \underset{\sim}{\mathrm{pn}} \underset{ }{ }\right]
$$

$$
=\left[\frac{1}{2}(\mathrm{n}+1)^{1 / 2} \delta_{\mathrm{mn}+1}-\frac{1}{2}(\mathrm{n}+1)^{1 / 2} \delta_{\mathrm{mn}+1}+\frac{1}{2} \mathrm{n}^{1 / 2} \delta_{\mathrm{mn}-1}+\frac{1}{2} \mathrm{n}^{1 / 2} \delta_{\mathrm{mn}-1}\right]
$$

group according to "selection rule"

$\mathrm{a}_{\mathrm{mn}}=\mathrm{n}^{1 / 2} \delta_{\mathrm{mn}-1}$
first index is one smaller than second
row $\mathrm{a}_{\mathrm{mn}}=\left\langle\mathrm{m}_{\uparrow}\right| \mathbf{a} \mid \mathrm{n}^{\sqrt{n}\rangle}{ }_{\mathrm{n}^{1 / 2}|\mathrm{n}-1\rangle}^{\text {column }}$
similarly
$\mathrm{a}_{\mathrm{mn}}^{\dagger}=(\mathrm{n}+1)^{1 / 2} \delta_{\mathrm{mn}+1}$
a is lowering or "annihilation" operator
first index is one larger than second \mathbf{a}^{\dagger} is a "creation" operator

$$
\begin{aligned}
& \mathbf{a}^{\dagger}=\begin{array}{c}
0 \\
1 \\
3 \\
4
\end{array}\left(\begin{array}{ccccc}
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 \\
1^{1 / 2} & 0 & 0 & 0 & 0 \\
0 & 2^{1 / 2} & 0 & 0 & 0 \\
0 & 0 & 3^{1 / 2} & 0 & 0 \\
0 & 0 & 0 & 4^{1 / 2} & 0
\end{array}\right) \\
& \text { square root of integers always } \\
& \text { only one step below main } \\
& \text { diagonal. a, } \mathbf{a}^{\dagger} \text { are obviously not } \\
& \text { Hermitian } \\
& \text { e.g. }\langle 3| \mathbf{a}^{\dagger}|2\rangle=3^{1 / 2} \\
& \mathbf{a}^{\dagger} \text { raises } \\
& \mathbf{a}=\left(\begin{array}{ccccc}
0 & 1^{1 / 2} & 0 & 0 & 0 \\
0 & 0 & 2^{1 / 2} & 0 & 0 \\
0 & 0 & 0 & 3^{1 / 2} & 0 \\
0 & 0 & 0 & 0 & 4^{1 / 2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
& \text { square root of integers } \\
& \text { always only one step } \\
& \text { above main diagonal } \\
& \text { e.g. }\langle 3| \mathbf{a}|4\rangle=4^{1 / 2} \\
& \text { a lowers }
\end{aligned}
$$

What is so great about $\mathbf{a}, \mathbf{a}^{\dagger}$?

$$
\begin{array}{rlr}
\begin{aligned}
\mathbf{a}|\mathrm{n}\rangle & =\mathrm{n}^{1 / 2}|\mathrm{n}-1\rangle \\
\mathbf{a}^{\dagger}|\mathrm{n}\rangle & =(\mathrm{n}+1)^{1 / 2}|\mathrm{n}+1\rangle
\end{aligned} & \begin{array}{c}
\text { annihilates 1 quantum } \\
|\mathrm{n}\rangle
\end{array} & =[\mathrm{n}!]^{-1 / 2}\left(\mathbf{a}^{\dagger}\right)^{\mathrm{n}}|0\rangle
\end{array} \quad \begin{aligned}
& \begin{aligned}
\text { creates 1 quantum }
\end{aligned} \\
& \text { neenerate any state from lowest one }|0\rangle
\end{aligned}
$$

more tricks: look at $\mathbf{a a}^{\dagger}$ and $\mathbf{a}^{\dagger} \mathbf{a}$
is $\mathbf{a a}^{\dagger}$ Hermitian? $\quad\left[(\mathrm{AB})^{\dagger}=\mathrm{B}^{\dagger} \mathrm{A}^{\dagger}\right]$ definition of hermitian

$$
\left(\mathbf{a a}^{\dagger}\right)^{\dagger}=\mathbf{a}^{\dagger \dagger} \mathbf{a}^{\dagger}=\mathbf{a a}^{\dagger}
$$

$\therefore \mathbf{a a}^{\dagger}$ and $\mathbf{a}^{\dagger} \mathbf{a}$ are Hermitian — to what "observable" quantity do they correspond? We will see that one of these is the "number operator."

$$
\begin{aligned}
& \mathbf{a} \mathbf{a}^{\dagger}=\frac{1}{2}(\underset{\sim}{\mathbf{x}}+\mathbf{i} \underset{\sim}{\mathbf{p}})(\underset{\sim}{\mathbf{x}}-\mathbf{i} \underset{\sim}{\mathbf{p}})=\frac{1}{2}\left({\underset{\sim}{\mathbf{x}}}^{2}+\mathbf{i} \underset{\sim}{\mathbf{p}} \underset{\sim}{\mathbf{x}}-\mathbf{i} \underset{\sim}{\mathbf{x}} \underset{\sim}{\mathbf{p}}+\underset{\sim}{\mathbf{p}}{ }^{2}\right) \\
& =\frac{1}{2}({\underset{\sim}{\mathbf{x}}}^{2}+{\underset{\sim}{\mathbf{p}}}^{2}-\underset{\sim}{\mathbf{i}}[\underbrace{\underset{\sim}{\mathbf{p}}}_{\underset{\sim}{\mathbf{x}}}])=\frac{1}{2}\left({\underset{\sim}{\mathbf{x}}}^{2}+{\underset{\sim}{\mathbf{p}}}^{2}+1\right) \\
& \text { similarly } \mathbf{a}^{\dagger} \mathbf{a}=\frac{1}{2}\left({\underset{\sim}{\mathbf{x}}}^{2}+{\underset{\sim}{\mathbf{p}}}^{2}-1\right) \\
& \left.\begin{array}{rl}
\therefore \underset{\sim}{H} & =\frac{1}{2}\left(\mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a a}^{\dagger}\right) \text { and }\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=1 \\
\underset{\sim}{\mathbf{H}} & =\mathbf{a}^{\dagger} \mathbf{a}+1 / 2 \quad \text { number operator }+1 / 2
\end{array}\right) \text { simple form for } \underset{\sim}{H} \\
& \mathrm{H}=\hbar \omega \underset{\sim}{\mathrm{H}}=\hbar \omega\left(\mathbf{a}^{\dagger} \mathbf{a}+1 / 2\right) \\
& \mathbf{a}^{\dagger} \mathbf{a}|\mathrm{n}\rangle=\mathrm{n}|\mathrm{n}\rangle \quad \mathbf{a}^{\dagger} \mathbf{a} \text { is "number operator" } \\
& {\left[\mathbf{a a}^{\dagger}|\mathrm{n}\rangle=(\mathrm{n}+1)|\mathrm{n}\rangle\right] \quad \text { not as useful }}
\end{aligned}
$$

What have we done? We have exposed all of the "symmetry" and universality of the $\mathrm{H}-\mathrm{O}$ basis set. We can now trivially work out what the matrix for any $\mathbf{X}^{\mathrm{n}} \mathbf{P}^{\mathrm{m}}$ operator looks like and organize it according to selection rules.

What about \mathbf{X}^{3} ?

$$
\begin{array}{rlr}
\mathbf{X}^{3} & =\left(\frac{\mathrm{m} \omega}{\hbar}\right)^{-3 / 2}{\underset{\sim}{\mathbf{X}}}^{3} & \begin{array}{l}
\text { When you multiply this out, } \\
\text { preserve the order of } \mathbf{a} \text { and } \mathbf{a}^{\dagger}
\end{array} \\
{\underset{\sim}{\mathbf{X}}}^{3}=\left(2^{-3 / 2}\right)\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{3} & \text { factors. } \\
& =\left(2^{-3 / 2}\right)\left[\mathbf{a}^{3}+\left(\mathbf{a}^{\dagger} \mathbf{a a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a a a}{ }^{\dagger}\right)+\left(\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right)+\mathbf{a}^{\dagger}{ }^{3}\right] \\
\Delta \mathrm{n} & =\begin{array}{ccc}
-3, & -1, & +1,
\end{array}+\frac{(\# \text { of } \dagger \text { minus }}{\# \text { of non- } \dagger)}
\end{array}
$$

Simplify each group using commutation properties so that it has form

$$
\begin{array}{ccc}
\mathbf{a}\left[\mathbf{a}^{\dagger} \mathbf{a}\right] \\
\Downarrow & \text { or } & \mathbf{a}^{\dagger}\left[\mathbf{a}^{\dagger} \mathbf{a}\right]|\mathrm{n}\rangle \\
\Downarrow & & (\mathrm{n}+1)^{1 / 2} \mathrm{n}|\mathrm{n}+1\rangle
\end{array}
$$

NONLECTURE: Simplify the $\Delta \mathrm{n}=-1$ terms.

$$
\begin{aligned}
& \mathbf{a}^{\dagger} \mathbf{a a}=\mathbf{a a}^{\dagger} \underbrace{\left[\mathbf{a}^{\dagger}, \mathbf{a}\right] \mathbf{a}=-\mathbf{a}}_{\mathbf{a}^{-\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \mathbf{a a}}=\mathbf{a a}^{\dagger} \mathbf{a}-\mathbf{a}} \\
& \mathbf{a a a}^{\dagger}=\mathbf{a a}^{\dagger} \underbrace{}_{\mathbf{a}_{\left.\mathbf{a} \mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{a}}^{\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}}}=\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a} \\
& {\left[\mathbf{a}^{\dagger \mathbf{a a}}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a a a}^{\dagger}\right]=3 \mathbf{a} \mathbf{a}^{\dagger} \mathbf{a}}
\end{aligned}
$$

add and subtract term
needed to reverse order
try to put everthing into $\mathbf{a a}^{\dagger} \mathbf{a}$ order

NONLECTURE: Simplify the $\Delta \mathrm{n}=+1$ terms.

$$
\begin{aligned}
& \mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}=\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger} \underbrace{\mathbf{a}^{\dagger}=\mathbf{a}^{\dagger}}_{\left[\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}\right.}=\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \\
& \mathbf{a}^{\dagger} \mathbf{a a ^ { \dagger }}=\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a} \underbrace{\mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}}_{\mathbf{a}^{\dagger}\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{a}^{\dagger}}=\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger} \\
& {\left[\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right]=3 \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+3 \mathbf{a}^{\dagger}}
\end{aligned}
$$

$\underline{\Delta \mathrm{n}= \pm 3}$

$$
\begin{aligned}
\mathbf{a}^{3}|\mathrm{n}\rangle & =[\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)]^{1 / 2}|\mathrm{n}-3\rangle \\
\mathbf{a}^{\dagger 3}|\mathrm{n}\rangle & =[(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)]^{1 / 2}|\mathrm{n}+3\rangle
\end{aligned}
$$

$\underline{\Delta \mathrm{n}= \pm 1}$

$$
\begin{aligned}
{\left[\mathbf{a}^{\dagger} \mathbf{a a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a a a}^{\dagger}\right]|\mathrm{n}\rangle } & =3\left(\mathrm{n}^{3 / 2}\right)|\mathrm{n}-1\rangle \\
{\left[\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right]|\mathrm{n}\rangle } & =3\left[(\mathrm{n}+1)^{1 / 2} \mathrm{n}|\mathrm{n}+1\rangle+(\mathrm{n}+1)^{1 / 2}|\mathrm{n}+1\rangle\right] \\
& =3(\mathrm{n}+1)^{1 / 2}(\mathrm{n}+1)|\mathrm{n}+1\rangle \\
& =3(\mathrm{n}+1)^{3 / 2}|\mathrm{n}+1\rangle
\end{aligned}
$$

no need to do matrix multiplication. Just play with $\mathbf{a}, \mathbf{a}^{\dagger}$ and commutation rule and $\mathbf{a}^{\dagger} \mathbf{a}$ number operator

"Second Quantization"

$$
\begin{aligned}
& \mathbf{x}_{\mathrm{mn}}^{3}=\left(\frac{\hbar}{2 \mathrm{~m} \omega}\right)^{3 / 2}\left[\delta_{\mathrm{mn}+3} \begin{array}{l}
\text { same as }|\mathrm{n}+3\rangle\langle\mathrm{n}| \\
\text { s }+1)(\mathrm{n}+2)(\mathrm{n}+3))^{1 / 2}
\end{array}\right. \\
& \\
& +\underbrace{}_{\text {mn-3 }}(\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2))^{1 / 2}] \\
& \text { simple! } \mathbf{x}^{3} \text { is arranged into four } \\
& \text { separate terms, each with its } \\
& \text { own explicit selection rule. }
\end{aligned}
$$

* $\mathrm{V}(\mathrm{x})=\frac{1}{2} \mathrm{k} \mathbf{x}^{2}+\underbrace{\mathrm{ax}^{3}+\mathrm{b} \mathbf{x}^{4}}_{\text {anharmon }}$
* IR transition intensities $\propto|\langle\mathrm{n}| \mathbf{x}| \mathrm{n}+1\rangle\left.\right|^{2}$
* Survival and transfer probabilities of initially prepared pure harmonic oscillator non-eigenstate in anharmonic potential.
* Expectation values of any function of x and p.

5.73 Lecture \#13

13-11

Universitality: all k, m (system-specific) constants are removed until we put them back in at the end of the calculation.
e.g., What is $\langle\Delta x\rangle^{2}=\left[\left\langle x^{2}\right\rangle-\langle x\rangle^{2}\right]$
$\mathbf{x}^{2}=\frac{\hbar}{\mathrm{m} \omega} \underset{\sim}{\mathrm{x}}=\frac{\hbar}{\mathrm{m} \omega}\left[\frac{1}{2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}\right]$
$\langle\Delta \mathrm{x}\rangle^{2}=\frac{\hbar}{2 \mathrm{~m} \omega}\left[\left\langle\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{2}\right\rangle-\left\langle\mathbf{a}+\mathbf{a}^{\dagger}\right\rangle^{2}\right] ?$ pure numbers in []

