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Perturbation Theory I
(See CTDL 1095-1107, 1110-1119)

Last time:  derivation of all matrix elements for Harmonic-Oscillator:  x, p, H
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a little more:
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124 34

(one step to right
of main diagonal)

(n steps
to right)

Selection rules are obtained simply by counting the numbers of
a† and a and taking the difference.

The actual value of the matrix element depends on the order in which individual a†

and a factors are arranged, but the selection rule does not.

Lots of nice tricks and shortcuts using a, a† and a†a
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One of the places where these tricks come in handy is perturbation theory.

We already have:

Why perturbation theory?

1. WKB:  local solution, local k(x), stationary phase
2. Numerov–Cooley: exact solution - no restrictions
3. Discrete Variable Representation:  exact solution,

 ψ  as linear combination of H-O.

• replace exact H which is usually of ∞ dimension by Heff which is of finite
dimension.  Truncate infinite matrix so that any eigenvalue and eigenfunction can
be computed with error < some preset tolerance.
Fit model that is physical (because it makes localization and coupling mechanisms
explicit) yet parametrically parsimonious

• derive explicit functional relationship between the n-dependent observable and n
e.g.

• establish relationship between a molecular constant (ωe, ωexe, …) and the
parameters that define V(x)  e.g.

En
hc

= ωe n + 1 / 2( ) − ωexe n + 1 / 2( )2 + ωeye n + 1 / 2( )3

There are 2 kinds of garden variety perturbation theory:

1. Nondegenerate (Rayleigh-Schrödinger) P.T. → simple formulas

2. Quasi-Degenerate P.T. → matrix Heff

finite Heff is corrected for “out-of-block” perturbers by “van Vleck” or “contact”
transformation

~4 Lectures

Derive Perturbation Theory Formulas * correct En and ψn directly for
“neglected” terms in exact H

* correct all other observables indirectly
through corrected ψ

ωexe ↔ ax3
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Formal treatment
usually stop at λ2

usually stop at λ1

(because all observables involve ψ × ψ′)

order-sorting is MURKY

En = λ0En
(0) + λ1En

(1) + λ2En
(2)

ψn = λ0ψn
(0) + λ1ψn

(1)

H = λ0H(0) + λ1H(1)

λ is an order-sorting parameter with no physical significance.  Set λ = 1 after all is
done.  λ = 0 → 1 is like turning on the effect of H(1).  Equations must be valid for

 0 ≤ λ ≤ 1.

Plug 3 equations into Schr. Equation Hψn = Enψn and collect terms according to
order of λ.

H(0) ψn
(0) = En

(0) ψn
(0)

λ0 terms

left multiply by ψm
(0)

Hmn
(0) = En

(0)δmn

requires that H(0) be diagonal in ψn
(0)

↓
eigenvalues En

(0){ }
↓

{ }and eigenfunctions n ( )ψ 0  of (0)H
CALLED BASIS
FUNCTIONS

CALLED ZERO ORDER MODEL
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So we choose H(0) to be the part of H for which:

* it is easy to write a complete set of eigenfunctions and
eigenvalues

* it is easy to evaluate matrix elements of common
“perturbation” terms in this basis set

* sometimes choice of basis set is based on convenience
rather than “goodness” — doesn’t matter as long as the
basis is complete.

examples: Harmonic Oscillator

Morse Oscillator

Quartic Oscillatr

n-fold hindered rotor

V(x) = 1
2

kx2

V(x) = D 1 − e−ax[ ]2
V(x) = bx4

Vn(φ ) = Vn
0 2( ) 1 − cosnφ( )

λ1 terms

H(1) ψn
(0) + H(0) ψn

(1) = En
(1) ψn

(0) + En
(0) ψn

(1)

multiply by ψn
(0)

Hnn
(1) +En

(0) ψ n
(0) ψ n

(1) =En
(1) +En

(0) ψ n
(0) ψ n

(1)

same
get rid of them

from H operating to left

could also require ψn
(0) ψn

(1) = 0( )
we do require this later

Now return to the Schr. Eq. and examine the λ1 and λ2 terms.
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Hnn
(1) = En

(1) 1st-order correction to E is just
expectation value of perturbation term in
H:  H(1).

return to λ1 equation and this time multiply by ψm
(0)

Hmn
(1) + Em

(0) ψm
(0) ψn

(1) = 0 + En
(0) ψm

(0) ψn
(1)

Hmn
(1) = ψm

(0) ψn
(1) En

(0) − Em
(0)( )

ψm
(0) ψn

(1) =
Hmn

(1)

En
(0) − Em

(0)

completeness of ψ (0){ }:   ψk
(0)

k
∑ ψk

(0)

ψn
(1) = ψk

(0)

k
∑ ψk

(0) ψn
(1)

but we know this

ψn
(1) = ψk

(0)

k
∑

Hkn
(1)

En
(0) − Ek

(0)

*

 

( )

 index of  matches 1st index in denominator

* n = k is problematic.  Insist exclude k = n.

* we could have demanded 

n
(1)

n
(0)

ψ

ψ ψ

′Σ

=
k

n
1 0
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λ2 terms

H(1) ψn
(1) = En

(1) ψn
(1) + En

(2) ψn
(0)

multiply by ψn
(0)

most important in real problems although excluded from many text books.

ψn
(0) H(1) ψn

(1) = 0 + En
(2)

ψn
(0) ψn

(1) = 0

↑
completeness

k
n k k n nE∑ =ψ ψ ψ ψ( ) ( ) ( ) ( ) ( ) ( )0 1 0 0 1 2H

Hn,k
(1) ′Σ

k

Hk,n
(1)

En
(0) − Ek

(0)

En
(2) = ′Σ

k

Hk,n
(1) 2

En
(0) − Ek

(0)

↑
always first

matrix element squared
over

energy difference in “energy
denominator”

we have derived all needed formulas En
(0),En

(1),En
(2);ψn

(0),ψn
(1)

x

V(x)

(a < 0)
Examples

V(x) = 1
2

kx2 + ax3

H(0) = 1
2

kx2 + p2

2m

H(1) = ax3 (actually ax3 term with a < 0 makes all
potentials unbound.  How can we pretend
that this catastrophe does not affect the
results from perturbation theory?)



14 - 85.73 Lecture #14

modified 9/30/02 10:13 AM

need matrix elements of x3

two ways to do this

* matrix multiplication

* a,a† tricks

xil
3 = xijx jkxkl
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x x a a

a a aa aa a aaa aa a a aa a a a a

3
3 2

3
3 2

1 2
3

3 2
3 3

2

2

= 





= 





+( )[ ]
= 





+ + +( ) + + +( ) +[ ]

−h h

h

m m

m

ω ω

ω

/

~

/
/ †

/
† † † † † † † † † †

each group in ( ) has their own ∆v selection rule (see pages 13-8 and 9):
simplify using [a,a†] = 1

Goal is to manipulate each mixed a,a† term so that “the number operator”
appears at the far right and exploit a†a n = n n

Only nonzero elements:

an−3n
3 = n n −1( ) n − 2( )[ ]1/2

an+3n
†3 = n + 3( ) n + 2( ) n +1( )[ ]1/2

square root
of larger q.n.
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Property other than En?

e.g. transition probability (electric dipole allowed vibrational transitions)

Use ψn = ψn
(0) + ψn

(1)

  

Pn ′n ∝ xn ′n
2

for H - O

xn ′n
2 = h

2(km)1/2






n>δn> ,n< +1

mω
(only ∆n = ±1 transitions)

for a perturbed H–O, e.g. H(1) = ax3

aa†a† + a†aa† + a†a†a( ) = 3a†a†a + 3a†

3a†a†a + 3a†[ ]n+1n
= 3n n +1( )1/2 + 3 n +1( )1/2 = 3 n +1( )3/2

So we have worked out all x3 matrix elements — leave the rest to P.S. #5.
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1st index Allowed 
2nd Indices
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cubic anharmonicity of V(x) can give rise to ∆n = ±7, ±5, ±4, ±3, ±2, ±1, 0 transition

n x n + 7 = h

2 km( )1/2








7/2
a2

−3hω( )2
n + 7( )!

n!





1/2

xnn+7
2 ≈ a4

m7ω11 n7

mω

other less extreme ∆n transitions go as lower powers of
1
ω

 and n

For matrix elements of X.

≈ n7/2


