14 - 1

Perturbation Theory I (See CTDL 1095-1107, 1110-1119)

Last time: derivation of all matrix elements for Harmonic-Oscillator: x, p, H

"selection rules" $x_{ij}^n |i-j| \le n$ in steps of 2 (e.g. \mathbf{x}^3 : $\Delta n = \pm 3, \pm 1$) "scaling" $x_{ii}^n \propto i^{n/2}$

dimensionless quantities $\begin{aligned} x &= \left(\frac{m\omega}{\hbar}\right)^{1/2} x\\ p &= (\hbar m\omega)^{-1/2} p\\ H &= \frac{1}{\hbar\omega} H\end{aligned}$

"annihilation"	$\mathbf{a} = 2^{-1/2} \left(\underbrace{x}_{\sim} + i \underbrace{p}_{\sim} \right)$	$\mathbf{a} n\rangle = n^{1/2} n-1\rangle$
"creation"	$\mathbf{a}^{\dagger} = 2^{-1/2} \left(\underbrace{x}_{\sim} - i \underbrace{p}_{\sim} \right)$	$\mathbf{a}^{\dagger} n\rangle = (n+1)^{1/2} n+1\rangle$
"number"	$\mathbf{a}^{\dagger}\mathbf{a}(\text{not }\mathbf{a}\mathbf{a}^{\dagger})$	${\bm a}^{\dagger}{\bm a} n\rangle {=} n n\rangle$
"commutator"	$[\mathbf{a},\mathbf{a}^{\dagger}] = +\mathbb{1}$	

Selection rules are obtained simply by counting the numbers of \mathbf{a}^{\dagger} and \mathbf{a} and taking the difference.

The actual value of the matrix element depends on the order in which individual \mathbf{a}^{\dagger} and \mathbf{a} factors are arranged, but the selection rule does not.

Lots of nice tricks and shortcuts using $a,\,a^{\dagger}$ and $a^{\dagger}a$

One of the places where these tricks come in handy is perturbation theory.

We already have:

- 1. WKB: local solution, local k(x), stationary phase
- 2. Numerov–Cooley: exact solution no restrictions
- 3. Discrete Variable Representation: exact solution, ψ as linear combination of H-O.

Why perturbation theory?

- replace exact **H** which is usually of ∞ dimension by $\mathbf{H}^{\mathrm{eff}}$ which is of finite dimension. Truncate infinite matrix so that any eigenvalue and eigenfunction can be computed with error < some preset tolerance. Fit model that is physical (because it makes localization and coupling mechanisms explicit) yet parametrically parsimonious
- derive explicit <u>functional</u> relationship between the n-dependent observable and n e.g. $\frac{E_n}{hc} = \omega_e (n+1/2) - \omega_e x_e (n+1/2)^2 + \omega_e y_e (n+1/2)^3$

• establish relationship between a molecular constant (ω_e , $\omega_e x_e$, ...) and the parameters that define V(x) e.g. $(\omega_e x_e) \leftrightarrow ax^3$

There are 2 kinds of garden variety perturbation theory:

- 1. Nondegenerate (Rayleigh-Schrödinger) P.T. \rightarrow simple formulas
- 2. Quasi-Degenerate P.T. \rightarrow matrix \mathbf{H}^{eff} finite \mathbf{H}^{eff} is corrected for "out-of-block" perturbers by "van Vleck" or "contact" transformation

~ 4 Lectures

Derive Perturbation Theory Formulas

- * correct E_n and ψ_n directly for "neglected" terms in exact **H**
- * correct all other observables indirectly through corrected ψ

14 - 4

Formal treatment

$$\begin{split} \mathbf{E}_{n} &= \lambda^{0} \mathbf{E}_{n}^{(0)} + \lambda^{1} \mathbf{E}_{n}^{(1)} + \lambda^{2} \mathbf{E}_{n}^{(2)} & \text{usually stop at } \lambda^{2} \\ \psi_{n} &= \lambda^{0} \psi_{n}^{(0)} + \lambda^{1} \psi_{n}^{(1)} & \text{usually stop at } \lambda^{1} \\ (\text{because all observables involve } \psi \times \psi') \\ \mathbf{H} &= \lambda^{0} \mathbf{H}^{(0)} + \lambda^{1} \mathbf{H}^{(1)} & \text{order-sorting is MURKY} \end{split}$$

 λ is an order-sorting parameter with no physical significance. Set $\lambda = 1$ after all is done. $\lambda = 0 \rightarrow 1$ is like turning on the effect of $\mathbf{H}^{(1)}$. Equations must be valid for $0 \le \lambda \le 1$.

Plug 3 equations into Schr. Equation $\mathbf{H}\psi_n = \mathbf{E}_n \psi_n$ and collect terms according to order of λ .

$$\frac{\lambda^{0} \text{ terms}}{\mathbf{H}^{(0)} | \psi_{n}^{(0)} \rangle = \mathbf{E}_{n}^{(0)} | \psi_{n}^{(0)} \rangle}$$
left multiply by $\langle \psi_{m}^{(0)} |$

$$\boxed{\mathbf{H}_{mn}^{(0)} = \mathbf{E}_{n}^{(0)} \delta_{mn}}$$
requires that $\mathbf{H}^{(0)}$ be diagonal in $\psi_{n}^{(0)} \downarrow$
eigenvalues $\{\mathbf{E}_{n}^{(0)}\}$ and eigenfunctions $\{\psi_{n}^{(0)}\}$ of $\mathbf{H}^{(0)}$ CALLED BASIS
FUNCTIONS
CALLED ZERO ORDER MODEL

So we choose $\mathbf{H}^{(0)}$ to be the part of \mathbf{H} for which:

- * it is easy to write a complete set of eigenfunctions and eigenvalues
- * it is easy to evaluate matrix elements of common "perturbation" terms in this basis set
- * sometimes choice of basis set is based on convenience rather than "goodness" — doesn't matter as long as the basis is complete.

examples:	Harmonic Oscillator	$V(x) = \frac{1}{2}kx^2$
	Morse Oscillator	$V(x) = D\left[1 - e^{-ax}\right]^2$
	Quartic Oscillatr	$V(x) = bx^4$
	n-fold hindered rotor	$\mathbf{V}_{n}(\phi) = \left(\mathbf{V}_{n}^{0}/2\right)\left(1 - \cos n\phi\right)$

Now return to the Schr. Eq. and examine the λ^1 and λ^2 terms.

 $\frac{\lambda^{1} \text{ terms}}{\mathbf{H}^{(1)} | \psi_{n}^{(0)} \rangle + \mathbf{H}^{(0)} | \psi_{n}^{(1)} \rangle = \mathbf{E}_{n}^{(1)} | \psi_{n}^{(0)} \rangle + \mathbf{E}_{n}^{(0)} | \psi_{n}^{(1)} \rangle}$ multiply by $\langle \psi_{n}^{(0)} |$ from **H** operating to left $\mathbf{H}_{nn}^{(1)} + \mathbf{E}_{n}^{(0)} \langle \psi_{n}^{(0)} | \psi_{n}^{(1)} \rangle = \mathbf{E}_{n}^{(1)} + \mathbf{E}_{n}^{(0)} \langle \psi_{n}^{(0)} | \psi_{n}^{(1)} \rangle$ get rid of them $\langle \text{could also require } \langle \psi_{n}^{(0)} | \psi_{n}^{(1)} \rangle = 0 \rangle$ we do require this later

 $\begin{aligned} H_{nn}^{(1)} = E_n^{(1)} & \text{1st-order correction to E is just} \\ & \text{expectation value of perturbation term in} \\ & \mathbf{H}: \ \mathbf{H}^{(1)}. \end{aligned}$

return to λ^1 equation and this time multiply by $\left\langle \psi_m^{(0)}
ight|$

$$\begin{aligned} H_{mn}^{(1)} + E_{m}^{(0)} \left\langle \psi_{m}^{(0)} \middle| \psi_{n}^{(1)} \right\rangle &= 0 + E_{n}^{(0)} \left\langle \psi_{m}^{(0)} \middle| \psi_{n}^{(1)} \right\rangle \\ H_{mn}^{(1)} &= \left\langle \psi_{m}^{(0)} \middle| \psi_{n}^{(1)} \right\rangle \left(E_{n}^{(0)} - E_{m}^{(0)} \right) \\ \left\langle \psi_{m}^{(0)} \middle| \psi_{n}^{(1)} \right\rangle &= \frac{H_{mn}^{(1)}}{E_{n}^{(0)} - E_{m}^{(0)}} \\ & \text{ completeness of } \left\{ \psi_{n}^{(0)} \right\} : \sum_{k} \left| \psi_{k}^{(0)} \right\rangle \left\langle \psi_{k}^{(0)} \middle| \\ \psi_{n}^{(1)} &= \sum_{k} \left| \psi_{k}^{(0)} \right\rangle \left\langle \psi_{k}^{(0)} \middle| \psi_{n}^{(1)} \right\rangle \\ & \text{ but we know this } \end{aligned}$$

$$\psi_n^{(1)} = \sum_k \left| \psi_k^{(0)} \right\rangle \frac{H_{kn}^{(1)}}{E_n^{(0)} - E_k^{(0)}}$$

* index of $\psi_n^{(1)}$ matches 1st index in denominator * n = k is problematic. Insist Σ'_k exclude k = n. * we could have demanded $\langle \psi_n^{(0)} | \psi_n^{(1)} \rangle = 0$

 λ^2 terms

most important in real problems although excluded from many text books.

$$\mathbf{H}^{(1)} | \boldsymbol{\psi}_{n}^{(1)} \rangle = \mathbf{E}_{n}^{(1)} | \boldsymbol{\psi}_{n}^{(1)} \rangle + \mathbf{E}_{n}^{(2)} | \boldsymbol{\psi}_{n}^{(0)} \rangle$$

multiply by $\langle \boldsymbol{\psi}_{n}^{(0)} | \qquad \langle \boldsymbol{\psi}_{n}^{(0)} | \boldsymbol{\psi}_{n}^{(1)} \rangle = 0$
 $\langle \boldsymbol{\psi}_{n}^{(0)} | \mathbf{H}^{(1)} | \boldsymbol{\psi}_{n}^{(1)} \rangle = \mathbf{0} + \mathbf{E}_{n}^{(2)}$
 \uparrow

completeness

matrix element squared over energy difference in "energy denominator"

always first

we have derived all needed formulas

 $E_n^{(0)}, E_n^{(1)}, E_n^{(2)}; \psi_n^{(0)}, \psi_n^{(1)}$

Examples
$$V(x) = \frac{1}{2}kx^{2} + ax^{3}$$
 (a < 0)

$$H^{(0)} = \frac{1}{2}kx^{2} + \frac{p^{2}}{2m}$$
$$H^{(1)} = ax^{3}$$

(actually ax^3 term with a < 0 makes all potentials unbound. How can we pretend that this catastrophe does not affect the results from perturbation theory?) *modified* 9/30/02 10:13 AM need matrix elements of \mathbf{x}^3

two ways to do this

* matrix multiplication $x_{i\ell}^3 = \sum_{j,k} x_{ij} x_{jk} x_{k\ell}$

* $\mathbf{a}, \mathbf{a}^{\dagger}$ tricks

$$\mathbf{x}^{3} = \left(\frac{\hbar}{\mathrm{m}\omega}\right)^{3/2} \mathbf{\tilde{x}}^{3} = \left(\frac{\hbar}{\mathrm{m}\omega}\right)^{3/2} \left[2^{-1/2}\left(\mathbf{a} + \mathbf{a}^{\dagger}\right)\right]^{3}$$
$$= \left(\frac{\hbar}{2\mathrm{m}\omega}\right)^{3/2} \left[\mathbf{a}^{3} + \left(\mathbf{a}^{\dagger}\mathbf{a}\mathbf{a} + \mathbf{a}\mathbf{a}^{\dagger}\mathbf{a} + \mathbf{a}\mathbf{a}\mathbf{a}^{\dagger}\right) + \left(\mathbf{a}\mathbf{a}^{\dagger}\mathbf{a}^{\dagger} + \mathbf{a}^{\dagger}\mathbf{a}\mathbf{a}^{\dagger} + \mathbf{a}^{\dagger}\mathbf{a}^{\dagger}\mathbf{a}\right) + \mathbf{a}^{\dagger 3}\right]$$

each group in () has their own Δv selection rule (see pages 13-8 and 9): simplify using $[a,a^{\dagger}] = 1$

Goal is to manipulate each mixed ${\bf a}, {\bf a}^\dagger$ term so that "the number operator" appears at the far right and exploit $|{\bf a}^\dagger {\bf a}|n\rangle = n|n\rangle$

Only nonzero elements:

$$\mathbf{a}_{n-3n}^{3} = [n(n-1)(n-2)]^{1/2}$$
square root

$$\mathbf{a}_{n+3n}^{\dagger 3} = [(n+3)(n+2)(n+1)]^{1/2}$$
square root
of larger q.n.

$$(\mathbf{a}^{\dagger}\mathbf{a}\mathbf{a} + \mathbf{a}\mathbf{a}^{\dagger}\mathbf{a} + \mathbf{a}\mathbf{a}\mathbf{a}^{\dagger}) = 3\mathbf{a}\mathbf{a}^{\dagger}\mathbf{a}$$

because $\mathbf{a}^{\dagger}\mathbf{a}\mathbf{a} = \mathbf{a}\mathbf{a}^{\dagger}\mathbf{a} + [\mathbf{a}^{\dagger}, \mathbf{a}]\mathbf{a} = \mathbf{a}\mathbf{a}^{\dagger}\mathbf{a} - \mathbf{a}$
 $\mathbf{a}\mathbf{a}\mathbf{a}^{\dagger} = \mathbf{a}\mathbf{a}^{\dagger}\mathbf{a} + \mathbf{a}[\mathbf{a}, \mathbf{a}^{\dagger}] = \mathbf{a}\mathbf{a}^{\dagger}\mathbf{a} + \mathbf{a}$
 $(\mathbf{a}\mathbf{a}^{\dagger}\mathbf{a})_{n-1n} = n^{3/2}$

$$\left(\mathbf{a} \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} + \mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger} + \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a} \right) = 3 \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a} + 3 \mathbf{a}^{\dagger} \left[3 \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a} + 3 \mathbf{a}^{\dagger} \right]_{n+1n} = 3n(n+1)^{1/2} + 3(n+1)^{1/2} = 3(n+1)^{3/2}$$

So we have worked out all \mathbf{x}^3 matrix elements — leave the rest to P.S. #5.

Property other than E_n ? Use $\psi_n = \psi_n^{(0)} + \psi_n^{(1)}$

e.g. transition probability (electric dipole allowed vibrational transitions)

$$\begin{aligned} \mathbf{P}_{nn'} &\propto \left| \mathbf{x}_{nn'} \right|^2 \\ \text{for H - O} \\ \left| \mathbf{x}_{nn'} \right|^2 &= \left(\frac{\hbar}{2(\mathbf{km})^{1/2}} \right) \mathbf{n}_{>} \delta_{\mathbf{n}_{>},\mathbf{n}_{<}+1} \\ &\underset{\mathbf{m}\omega}{\text{m}\omega} \\ \text{(only } \Delta \mathbf{n} = \pm 1 \text{ transitions)} \end{aligned}$$

for a perturbed H–O, e.g. $\mathbf{H}^{(1)} = \mathbf{a}\mathbf{x}^3$

$$\begin{aligned} \left| \Psi_{n} \right\rangle &= \left| \Psi_{n}^{(0)} \right\rangle + \sum_{k}' \frac{H_{nk}^{(1)}}{E_{n}^{(0)} - E_{k}^{(0)}} \left| \Psi_{k}^{(0)} \right\rangle \\ \left| \Psi_{n} \right\rangle &= \left| \Psi_{n}^{(0)} \right\rangle + \frac{H_{nn+3}^{(1)}}{-3\hbar\omega} \left| \Psi_{n+3}^{(0)} \right\rangle + \frac{H_{nn+1}^{(1)}}{-\hbar\omega} \left| \Psi_{n+1}^{(0)} \right\rangle + \frac{H_{nn-1}^{(1)}}{+\hbar\omega} \left| \Psi_{n-1}^{(0)} \right\rangle + \frac{H_{nn-3}^{(1)}}{+3\hbar\omega} \left| \Psi_{n-3}^{(0)} \right\rangle \end{aligned}$$

1st index	Allowed 2nd Indices
(n+3)	(n+4, n+2)
n+1	n+2, n
n X	n+1, n-1
n – 1	n, n-2
(n-3)	(n-2, n-4)

For matrix elements of **X**.

cubic anharmonicity of V(x) can give rise to $\Delta n = \pm 7, \pm 5, \pm 4, \pm 3, \pm 2, \pm 1, 0$ transition

$$\langle \mathbf{n} | \mathbf{x} | \mathbf{n} + 7 \rangle = \left(\frac{\hbar}{2(\mathbf{km})^{1/2}} \right)^{7/2} \frac{\mathbf{a}^2}{(-3\hbar\omega)^2} \left[\frac{(\mathbf{n} + 7)!}{\mathbf{n}!} \right]^{1/2} \\ |\mathbf{x}_{\mathbf{nn}+7}|^2 \approx \frac{\mathbf{a}^4}{\mathbf{m}^7 \omega^{11}} \mathbf{n}^7$$

other less extreme Δn transitions go as lower powers of $\frac{1}{\omega}$ and n