Perturbation Theory I

Last time: derivation of all matrix elements for Harmonic-Oscillator: $\mathbf{x}, \mathbf{p}, \mathbf{H}$

$$
\begin{array}{lll}
\text { "selection rules" } & \mathrm{x}_{i j}^{\mathrm{n}} \quad|i-j| \leq \mathrm{n} \text { in steps of } 2 \quad\left(\text { e.g. } \mathrm{x}^{3}: \Delta \mathrm{n}= \pm 3, \pm 1\right) \\
\text { "scaling" } & \mathrm{x}_{i i}^{\mathrm{n}} \propto i^{\mathrm{n} / 2}
\end{array}
$$

$$
\begin{array}{ll}
\text { dimensionless } & \underset{\sim}{x} \\
\text { quantities } & =\left(\frac{\mathrm{m} \omega}{\hbar}\right)^{1 / 2} \mathrm{x} \\
& \underset{\sim}{\mathrm{p}}
\end{array}=(\hbar \mathrm{m} \omega)^{-1 / 2} \mathrm{p}, \text { (} \underset{\sim}{\mathrm{H}}=\frac{1}{\hbar \omega} \mathrm{H}
$$

"annihilation"

$$
\mathbf{a}=2^{-1 / 2}(\underset{\sim}{x}+i \underset{\sim}{p})
$$

$$
\mathbf{a}|n\rangle=n^{1 / 2}|n-1\rangle
$$

"creation"

$$
\mathbf{a}^{\dagger}=2^{-1 / 2}(\underset{\sim}{x}-i \underset{\sim}{p})
$$

$$
\mathbf{a}^{\dagger}|n\rangle=(n+1)^{1 / 2}|n+1\rangle
$$

"number"
$\mathbf{a}^{\dagger} \mathbf{a}\left(\right.$ not $\left.\mathbf{a a}^{\dagger}\right)$

$$
\mathbf{a}^{\dagger} \mathbf{a}|\mathrm{n}\rangle=\mathrm{n}|\mathrm{n}\rangle
$$

"commutator"

$$
\left[\mathbf{a}, \mathbf{a}^{+}\right]=+\mathbb{1}
$$

5.73 Lecture \#14

a little more:

$$
a_{01}=1^{1 / 2}
$$

$$
\mathbf{a}=\left(\begin{array}{ccccc}
0 & \sqrt{1} & 0 & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 & 0 \\
0 & 0 & 0 & \sqrt{3} & 0 \\
0 & 0 & 0 & 0 & \ddots \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

$$
\mathbf{a}^{\mathrm{n}}=\left(\begin{array}{ccccc}
0 & \cdots & (\mathrm{n}!)^{1 / 2} & 0 & 0 \\
0 & 0 & \cdots & \left(\frac{(\mathrm{n}+1)!}{1!}\right)^{1 / 2} & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & \cdots & \left(\frac{(\mathrm{n}+\mathrm{q})!}{\mathrm{q}!}\right)^{1 / 2}
\end{array}\right) \quad \begin{gathered}
\\
\text { (n steps } \\
\text { to right) }
\end{gathered}
$$

selection rule for $\mathrm{a}_{i j}^{\mathrm{n}} \quad j-i=\mathrm{n}$
selection rule for $\mathrm{a}_{i j}^{\dagger} \quad j-i=-\mathrm{n}$
$|\mathrm{n}\rangle=[\mathrm{n}!]^{-1 / 2}\left(\mathbf{a}^{\dagger}\right)^{\mathrm{n}}|0\rangle$
$\left[\left(\mathbf{a}^{\dagger}\right)^{\mathrm{m}}(\mathbf{a})^{\mathrm{n}}\right]_{\mathrm{jk}}=\underbrace{\delta_{j, k-n+\mathrm{m}}}_{\text {selection rule }}\left[\frac{(\mathrm{k}!)}{(\mathrm{k}-\mathrm{n})!} \frac{(\mathrm{j}!)}{(\mathrm{j}-\mathrm{m})!}\right]^{1 / 2}$

Selection rules are obtained simply by counting the numbers of \mathbf{a}^{\dagger} and \mathbf{a} and taking the difference.

The actual value of the matrix element depends on the order in which individual \mathbf{a}^{\dagger} and a factors are arranged, but the selection rule does not.

Lots of nice tricks and shortcuts using a, \mathbf{a}^{\dagger} and $\mathbf{a}^{\dagger} \mathbf{a}$

One of the places where these tricks come in handy is perturbation theory.
We already have: 1. WKB: local solution, local $k(x)$, stationary phase
2. Numerov-Cooley: exact solution - no restrictions
3. Discrete Variable Representation: exact solution, ψ as linear combination of H-O.

Why perturbation theory?

- replace exact \mathbf{H} which is usually of ∞ dimension by $\mathbf{H}^{\text {eff }}$ which is of finite dimension. Truncate infinite matrix so that any eigenvalue and eigenfunction can be computed with error < some preset tolerance.
Fit model that is physical (because it makes localization and coupling mechanisms explicit) yet parametrically parsimonious
- derive explicit functional relationship between the n -dependent observable and n e.g. $\frac{\mathrm{E}_{\mathrm{n}}}{\mathrm{hc}}=\omega_{\mathrm{e}}(\mathrm{n}+1 / 2)-\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}(\mathrm{n}+1 / 2)^{2}+\omega_{\mathrm{e}} \mathrm{y}_{\mathrm{e}}(\mathrm{n}+1 / 2)^{3}$
- establish relationship between a molecular constant $\left(\omega_{e}, \omega_{e} x_{e}, \ldots\right)$ and the parameters that define $V(x)$ e.g. $\omega_{e} x_{e} \leftrightarrow a^{3}$
There are 2 kinds of garden variety perturbation theory:

1. Nondegenerate (Rayleigh-Schrödinger) P.T. \rightarrow simple formulas
2. Quasi-Degenerate P.T. \rightarrow matrix $\mathbf{H}^{\text {eff }}$
finite $\mathbf{H}^{\text {eff }}$ is corrected for "out-of-block" perturbers by "van Vleck" or "contact" transformation
$\xrightarrow{\sim 4 \text { Lectures }}$

Derive Perturbation Theory Formulas $\quad * \quad$ correct E_{n} and ψ_{n} directly for "neglected" terms in exact \mathbf{H}

* correct all other observables indirectly through corrected ψ

5.73 Lecture \#14

14-4
Formal treatment

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{n}}=\lambda^{0} \mathrm{E}_{\mathrm{n}}^{(0)}+\lambda^{1} \mathrm{E}_{\mathrm{n}}^{(1)}+\lambda^{2} \mathrm{E}_{\mathrm{n}}^{(2)} & \text { usually stop at } \lambda^{2} \\
\psi_{\mathrm{n}}=\lambda^{0} \psi_{\mathrm{n}}^{(0)}+\lambda^{1} \psi_{\mathrm{n}}^{(1)} & \begin{array}{l}
\text { usually stop at } \lambda^{1} \\
\mathbf{H}=\lambda^{0} \mathbf{H}^{(0)}+\lambda^{1} \mathbf{H}^{(1)}
\end{array} \\
\text { (because all observables involve } \left.\psi \times \psi^{\prime}\right) \\
\text { order-sorting is MURKY }
\end{array}
$$

λ is an order-sorting parameter with no physical significance. Set $\lambda=1$ after all is done. $\lambda=0 \rightarrow 1$ is like turning on the effect of $\mathbf{H}^{(1)}$. Equations must be valid for $0 \leq \lambda \leq 1$.

Plug 3 equations into Schr. Equation $\mathbf{H} \psi_{\mathrm{n}}=\mathrm{E}_{\mathrm{n}} \psi_{\mathrm{n}}$ and collect terms according to order of λ.
λ^{0} terms

$$
\mathbf{H}^{(0)}\left|\psi_{\mathrm{n}}^{(0)}\right\rangle=\mathrm{E}_{\mathrm{n}}^{(0)}\left|\psi_{\mathrm{n}}^{(0)}\right\rangle
$$

left multiply by $\left\langle\psi_{\mathrm{m}}^{(0)}\right|$

$$
\mathrm{H}_{\mathrm{mn}}^{(0)}=\mathrm{E}_{\mathrm{n}}^{(0)} \delta_{\mathrm{mn}}
$$

5.73 Lecture \#14

So we choose $\mathbf{H}^{(0)}$ to be the part of \mathbf{H} for which:

* it is easy to write a complete set of eigenfunctions and eigenvalues
* it is easy to evaluate matrix elements of common "perturbation" terms in this basis set
* sometimes choice of basis set is based on convenience rather than "goodness" - doesn't matter as long as the basis is complete.
$\begin{array}{lll}\text { examples: } & \text { Harmonic Oscillator } & \mathrm{V}(\mathrm{x})=\frac{1}{2} \mathrm{kx}^{2} \\ & \text { Morse Oscillator } & \mathrm{V}(\mathrm{x})=\mathrm{D}\left[1-\mathrm{e}^{-\mathrm{ax}}\right]^{2} \\ & \text { Quartic Oscillatr } & \mathrm{V}(\mathrm{x})=\mathrm{bx}^{4} \\ & \mathrm{n} \text {-fold hindered rotor } & \mathrm{V}_{\mathrm{n}}(\phi)=\left(\mathrm{V}_{\mathrm{n}}^{0} / 2\right)(1-\cos \mathrm{n} \phi)\end{array}$

Now return to the Schr. Eq. and examine the λ^{1} and λ^{2} terms.
λ^{1} terms

$$
\mathbf{H}^{(1)}\left|\psi_{\mathrm{n}}^{(0)}\right\rangle+\mathbf{H}^{(0)}\left|\psi_{\mathrm{n}}^{(1)}\right\rangle=\mathrm{E}_{\mathrm{n}}^{(1)}\left|\psi_{\mathrm{n}}^{(0)}\right\rangle+\mathrm{E}_{\mathrm{n}}^{(0)}\left|\psi_{\mathrm{n}}^{(1)}\right\rangle
$$

multiply by $\left\langle\psi_{\mathrm{n}}^{(0)}\right|$

$$
\begin{gathered}
\mathrm{H}_{\mathrm{nn}}^{(1)}+\mathrm{E}_{\mathrm{n}}^{(0)}\left\langle\psi_{\mathrm{n}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle \\
\mathrm{E}_{\mathrm{n}}^{(1)}+\mathrm{E}_{\mathrm{n}}^{(0)}\left\langle\psi_{\mathrm{n}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle \\
\text { same } \\
\begin{array}{c}
\text { get rid of them } \\
\begin{array}{c}
\text { could also require } \left.\left\langle\psi_{\mathrm{n}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle=0\right) \\
\text { we do require this later }
\end{array}
\end{array}
\end{gathered}
$$

5.73 Lecture \#14

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{nn}}^{(1)}=\mathrm{E}_{\mathrm{n}}^{(1)} & \begin{array}{l}
\text { 1st-order correction to } \mathrm{E} \text { is just } \\
\text { expectation value of perturbation term in } \\
\mathbf{H}: \mathbf{H}^{(1)} .
\end{array}
\end{array}
$$

return to λ^{1} equation and this time multiply by $\left\langle\psi_{\mathrm{m}}^{(0)}\right|$

$$
\begin{gathered}
\mathrm{H}_{\mathrm{mn}}^{(1)}+\mathrm{E}_{\mathrm{m}}^{(0)}\left\langle\psi_{\mathrm{m}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle=0+\mathrm{E}_{\mathrm{n}}^{(0)}\left\langle\psi_{\mathrm{m}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle \\
\mathrm{H}_{\mathrm{mn}}^{(1)}=\left\langle\psi_{\mathrm{m}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle\left(\mathrm{E}_{\mathrm{n}}^{(0)}-\mathrm{E}_{\mathrm{m}}^{(0)}\right) \\
\left\langle\psi_{\mathrm{m}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle=\frac{\mathrm{H}_{\mathrm{mn}}^{(1)}}{\mathrm{E}_{\mathrm{n}}^{(0)}-\mathrm{E}_{\mathrm{m}}^{(0)}} \\
\text { completeness of }\left\{\psi^{(0)}\right\}: \sum_{\mathrm{k}}^{\sum_{\mathrm{k}}}\left|\psi_{(0)}^{(0)}\right\rangle\left\langle\psi_{\mathrm{k}}^{(0)}\right| \\
\psi_{\mathrm{n}}^{(1)}=\sum_{\mathrm{k}} \mid \psi_{\mathrm{k}}^{(0)} \underbrace{\left\langle\left\langle\psi_{\mathrm{k}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle\right.}_{\text {but we know this }}
\end{gathered}
$$

$$
\psi_{\mathrm{n}}^{(1)}=\sum_{\mathrm{k}}\left|\psi_{\mathrm{k}}^{(0)}\right\rangle \frac{\mathrm{H}_{\mathrm{kn}}^{(1)}}{\mathrm{E}_{\mathrm{n}}^{(0)}-\mathrm{E}_{\mathrm{k}}^{(0)}}
$$

$*$ index of $\psi_{\mathrm{n}}^{(1)}$ matches 1st index in denominator
$* \mathrm{n}=\mathrm{k}$ is problematic. Insist $\Sigma_{\mathrm{k}}^{\prime}$ exclude $\mathrm{k}=\mathrm{n}$.
$*$ we could have demanded $\left\langle\psi_{\mathrm{n}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle=0$

5.73 Lecture \#14

λ^{2} terms

most important in real problems although excluded from many text books.

$$
\begin{aligned}
& \mathbf{H}^{(1)}\left|\psi_{\mathrm{n}}^{(1)}\right\rangle=\mathrm{E}_{\mathrm{n}}^{(1)}\left|\psi_{\mathrm{n}}^{(1)}\right\rangle+\mathrm{E}_{\mathrm{n}}^{(2)}\left|\psi_{\mathrm{n}}^{(0)}\right\rangle \\
& \begin{aligned}
\text { multiply by } \left.\left\langle\begin{array}{l}
\left\langle\psi_{\mathrm{n}}^{(0)}\right| \\
\left.\left\langle\psi_{\mathrm{n}}^{(0)}\right| \mathbf{H}^{(1)}\left|\psi_{\mathrm{n}}^{(0)}\right| \psi_{\mathrm{n}}^{(1)}\right\rangle \\
\uparrow
\end{array}\right)=0+\mathrm{E}_{\mathrm{n}}^{(2)}\right\rangle=0
\end{aligned} \\
& \text { completeness } \\
& \sum_{\mathrm{k}}\left\langle\psi_{\mathrm{n}}^{(0)}\right| \mathbf{H}^{(1)}\left|\psi_{\mathrm{k}}^{(0)}\right\rangle\left\langle\psi_{\mathrm{k}}^{(0)} \mid \psi_{\mathrm{n}}^{(1)}\right\rangle=\mathrm{E}_{\mathrm{n}}^{(2)} \\
& \mathrm{H}_{\mathrm{n}, \mathrm{k}}^{(1)} \quad \sum_{\mathrm{k}}^{\prime} \frac{\mathrm{H}_{\mathrm{k}, \mathrm{n}}^{(1)}}{\mathrm{E}_{\mathrm{n}}^{(0)}-\mathrm{E}_{\mathrm{k}}^{(0)}} \\
& \text { matrix element squared } \\
& \text { over } \\
& \text { energy difference in "energy } \\
& \text { denominator" }
\end{aligned}
$$

we have derived all needed formulas

$$
\mathrm{E}_{\mathrm{n}}^{(0)}, \mathrm{E}_{\mathrm{n}}^{(1)}, \mathrm{E}_{\mathrm{n}}^{(2)} ; \psi_{\mathrm{n}}^{(0)}, \psi_{\mathrm{n}}^{(1)}
$$

Examples

$$
\begin{aligned}
& \mathrm{V}(\mathrm{x})=\frac{1}{2} \mathrm{kx}^{2}+\mathrm{ax}^{3} \quad(\mathrm{a}<0) \\
& \mathrm{H}^{(0)}=\frac{1}{2} \mathrm{kx}^{2}+\frac{\mathrm{p}^{2}}{2 \mathrm{~m}} \\
& \mathrm{H}^{(1)}=\mathrm{ax}^{3}
\end{aligned}
$$

(actually ax^{3} term with a <0 makes all potentials unbound. How can we pretend that this catastrophe does not affect the results from perturbation theory?)

5.73 Lecture \#14

14-8
need matrix elements of \mathbf{x}^{3}
two ways to do this

* matrix multiplication $\mathrm{x}_{\mathrm{i} \ell}^{3}=\sum_{\mathrm{j}, \mathrm{k}} \mathrm{x}_{\mathrm{ij}} \mathrm{x}_{\mathrm{jk}} \mathrm{x}_{\mathrm{k} \ell}$
${ }^{*} \mathbf{a}, \mathbf{a}^{\dagger}$ tricks

$$
\begin{aligned}
\mathbf{x}^{3} & =\left(\frac{\hbar}{m \omega}\right)^{3 / 2}{\underset{\sim}{\mathbf{x}}}^{3}=\left(\frac{\hbar}{m \omega}\right)^{3 / 2}\left[2^{-1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)\right]^{3} \\
& =\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2}\left[\mathbf{a}^{3}+\left(\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}\right)+\left(\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right)+\mathbf{a}^{\dagger 3}\right]
\end{aligned}
$$

each group in () has their own Δv selection rule (see pages 13-8 and 9): simplify using $\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=1$

Goal is to manipulate each mixed $\mathbf{a}, \mathbf{a}^{\dagger}$ term so that "the number operator" appears at the far right and exploit $\mathbf{a}^{\dagger} \mathbf{a}|n\rangle=n|n\rangle$

Only nonzero elements:

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{n}-3 \mathrm{n}}^{3}=[\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)]^{1 / 2} \\
& \mathbf{a}_{\mathrm{n}+3 \mathrm{n}}^{+3}=[(\mathrm{n}+3)(\mathrm{n}+2)(\mathrm{n}+1)]^{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\left(\mathbf{a}^{\dagger} \mathbf{a a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a a a}^{\dagger}\right) & =3 \mathbf{\mathbf { a } ^ { \dagger } \mathbf { a }} \\
\text { because } \mathbf{a}^{\dagger} \mathbf{a a} & =\mathbf{a a}^{\dagger} \mathbf{a}+\left[\mathbf{a}^{\dagger}, \mathbf{a}\right] \mathbf{a}=\mathbf{a a}^{\dagger} \mathbf{a}-\mathbf{a} \\
\mathbf{a} \mathbf{a} \mathbf{a}^{\dagger} & =\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a}\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a} \\
\left(\mathbf{a a}^{\dagger} \mathbf{a}\right)_{\mathrm{n}-1 \mathrm{n}} & =\mathrm{n}^{3 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\left(\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right) & =3 \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+3 \mathbf{a}^{\dagger} \\
{\left[3 \mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+3 \mathbf{a}^{\dagger}\right]_{\mathrm{n}+1 \mathrm{n}} } & =3 \mathrm{n}(\mathrm{n}+1)^{1 / 2}+3(\mathrm{n}+1)^{1 / 2}=3(\mathrm{n}+1)^{3 / 2}
\end{aligned}
$$

So we have worked out all \mathbf{x}^{3} matrix elements - leave the rest to P.S. \#5.

Property other than E_{n} ? Use $\psi_{\mathrm{n}}=\psi_{\mathrm{n}}^{(0)}+\psi_{\mathrm{n}}^{(1)}$
e.g. transition probability (electric dipole allowed vibrational transitions)

$$
\mathrm{P}_{\mathrm{nn}^{\prime}} \propto\left|\mathrm{x}_{\mathrm{nn}^{\prime}}\right|^{2}
$$

for $\mathrm{H}-\mathrm{O}$

$$
\begin{gathered}
\left|\mathrm{x}_{\mathrm{nn}^{\prime}}\right|^{2}=\left(\frac{\hbar}{2\left(\frac{1 \pi)^{1 / 2}}{m}\right)}\right) \mathrm{n}_{>} \delta_{\mathrm{n}_{>}, \mathrm{n}_{<}+1} \\
\text { (only } \Delta \mathrm{n}= \pm 1 \text { transitions) }
\end{gathered}
$$

for a perturbed $\mathrm{H}-\mathrm{O}$, e.g. $\mathbf{H}^{(1)}=\mathrm{ax}^{3}$

$$
\begin{aligned}
& \left|\psi_{n}\right\rangle=\left|\psi_{n}^{(0)}\right\rangle+\sum_{k}^{\prime} \frac{H_{n k}^{(1)}}{E_{n}^{(0)}-E_{k}^{(0)}}\left|\psi_{k}^{(0)}\right\rangle \\
& \left|\psi_{n}\right\rangle=\left|\psi_{n}^{(0)}\right\rangle+\frac{H_{n n+3}^{(1)}}{-3 \hbar \omega}\left|\psi_{n+3}^{(0)}\right\rangle+\frac{H_{n n+1}^{(1)}}{-\hbar \omega}\left|\psi_{n+1}^{(0)}\right\rangle+\frac{H_{n n-1}^{(1)}}{+\hbar \omega}\left|\psi_{n-1}^{(0)}\right\rangle+\frac{H_{n n-3}^{(1)}}{+3 \hbar \omega}\left|\psi_{n-3}^{(0)}\right\rangle
\end{aligned}
$$

For matrix elements of \mathbf{X}.
cubic anharmonicity of $\mathrm{V}(\mathrm{x})$ can give rise to $\Delta \mathrm{n}= \pm 7, \pm 5, \pm 4, \pm 3, \pm 2, \pm 1,0$ transition

$$
\begin{aligned}
\langle\mathrm{n}| \mathrm{x}|\mathrm{n}+7\rangle & =\left(\frac{\hbar}{2\left(\frac{\mathrm{kmm}}{\mathrm{~m}}\right)^{1 / 2}}\right)^{7 / 2} \frac{\mathrm{a}^{2}}{(-3 \hbar \omega)^{2}} \frac{\left[\frac{(\mathrm{n}+7)!}{\mathrm{n}!}\right]^{1 / 2}}{\approx \mathrm{n}^{7 / 2}} \\
\left|\mathrm{x}_{\mathrm{nn}+7}\right|^{2} & \approx \frac{\mathrm{a}^{4}}{\mathrm{~m}^{7} \omega^{11}} \mathrm{n}^{7}
\end{aligned}
$$

other less extreme $\Delta \mathrm{n}$ transitions go as lower powers of $\frac{1}{\omega}$ and n

