Perturbation Theory II

(See CTDL 1095-1104, 1110-1119)
Last time:

$$
\left.\begin{array}{cl}
\mathbf{H}^{(0)} \psi_{\mathrm{n}}^{(0)}=\mathrm{E}_{\mathrm{n}}^{(0)} \psi_{\mathrm{n}}^{(0)} & \begin{array}{l}
\mathbf{H}^{(0)} \text { is diagonal } \\
\left\{\psi_{\mathrm{n}}^{(0)}\right\},\left\{\mathrm{E}_{\mathrm{n}}^{(0)}\right\} \text { are }
\end{array} \\
\text { basis functions and } \\
\text { zero - order energies }
\end{array}\right\}
$$

Today:

1. cubic anharmonic perturbation

$$
\begin{aligned}
& \mathbf{x}^{3} \text { vs. } \mathbf{a}, \mathbf{a}^{\dagger} \\
& {\underset{\Lambda}{3}}^{3} \quad \stackrel{\omega x}{ } \text { and } Y_{00} \text { contributions }
\end{aligned}
$$

2. nonlecture Morse oscillator \leftrightarrow pert. theory for ax^{3}
3. transition probabilities - orders and convergence of p.t. Mechanical and electronic anharmonicities.

need matrix elements of \mathbf{x}^{3}
one (longer) way $\mathrm{x}_{\mathrm{i} \ell}^{3}=\sum_{\mathrm{j}, \mathrm{k}} \mathrm{x}_{\mathrm{ij}} \mathrm{x}_{\mathrm{jk}} \mathrm{x}_{\mathrm{k} \ell}$

4 different selection rules: $\ell-\mathrm{i}=3,1,-1,-3$ one path $\ell-\mathrm{i}=3 \quad \mathrm{i} \rightarrow \mathrm{i}+1, \mathrm{i}+1 \rightarrow \mathrm{i}+2, \mathrm{i}+2 \rightarrow \mathrm{i}+3$
$[(i+1)(i+2)(i+3)]^{1 / 2}$
$\ell-\mathrm{i}=1 \quad \mathrm{i} \rightarrow \mathrm{i}+1, \mathrm{i}+1 \rightarrow \mathrm{i}+2, \mathrm{i}+2 \rightarrow \mathrm{i}+1$
$\mathrm{i} \rightarrow \mathrm{i}-1, \mathrm{i}-1 \rightarrow \mathrm{i}, \mathrm{i} \rightarrow \mathrm{i}+1$
$\mathrm{i} \rightarrow \mathrm{i}+1, \mathrm{i}+1 \rightarrow \mathrm{i}, \mathrm{i} \rightarrow \mathrm{i}+1$
There are three 3 -step paths from i to $i+1$. Add them.

$$
[(\mathrm{i}+1)(\mathrm{i}+2)(\mathrm{i}+2)]^{1 / 2}+[(\mathrm{i})(\mathrm{i})(\mathrm{i}+1)]^{1 / 2}+[(\mathrm{i}+1)(\mathrm{i}+1)(\mathrm{i}+1)]^{1 / 2}
$$

algebraically complicated
other (shorter) alternative: $\mathbf{a}, \mathbf{a}^{\dagger}$, and $\mathbf{a}^{\dagger} \mathbf{a}$

$$
\begin{aligned}
& \mathbf{x}^{3}=\left(\frac{\hbar}{m \omega}\right)^{3 / 2} \stackrel{\mathbf{x}}{ }^{3}=\left(\frac{\hbar}{m \omega}\right)^{3 / 2}\left[2^{-1 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)\right]^{3} \\
&=\left(\frac{\hbar}{2 m \omega}\right)^{3 / 2}\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{3} \\
&\left(\mathbf{a}+\mathbf{a}^{\dagger}\right)^{3}=\mathbf{a}^{3}+\left[\mathbf{a}^{\dagger} \mathbf{a a}+\mathbf{a} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a}^{\dagger}\right]+\left[\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right]+\mathbf{a}^{\dagger}
\end{aligned}
$$

four terms, four different selection rules.

5.73 Lecture \#15

Use simple $\mathbf{a}, \mathbf{a}^{\dagger}$ algebra to work out all matrix elements and selection rules by inspection.
recall: $\mathbf{a}^{\dagger}|\mathrm{n}\rangle=(\mathrm{n}+1)^{1 / 2}|\mathrm{n}+1\rangle, \quad \mathbf{a}|\mathrm{n}\rangle=\mathrm{n}^{1 / 2}|\mathrm{n}-1\rangle, \quad \mathbf{a}^{\dagger} \mathbf{a}|\mathrm{n}\rangle=\mathrm{n}|\mathrm{n}\rangle$

$$
\left[\mathbf{a}, \mathbf{a}^{\dagger}\right]=1 \quad \therefore \quad \mathbf{a}^{\dagger}=1+\mathbf{a}^{\dagger} \mathbf{a} \quad \begin{aligned}
& \text { prescription for } \\
& \text { permuting a thru } \mathbf{a}^{\dagger}
\end{aligned}
$$

$$
\begin{array}{ll}
\Delta \mathrm{n}=-3 & \mathbf{a}_{\mathrm{n}-3, \mathrm{n}}^{3}=[(\mathrm{n}-2)(\mathrm{n}-1)(\mathrm{n})]^{1 / 2} \\
\Delta \mathrm{n}=+3 & \mathbf{a}_{\mathrm{n}+3, \mathrm{n}}^{\dagger 3}=[(\mathrm{n}+3)(\mathrm{n}+2)(\mathrm{n}+1)]^{1 / 2} \\
\Delta \mathrm{n}=-1 & {\left[\mathbf{a}^{\dagger} \mathbf{a a}+\mathbf{a a}^{\dagger} \mathbf{a}+\mathbf{a} \mathbf{a} \mathbf{a}^{\dagger}\right]_{\mathrm{n}-1, \mathrm{n}}}
\end{array}
$$

goal is to rearrange each product so that it has number operator at right

$\Delta \mathrm{n}=-1 \quad[\quad]_{\mathrm{n}-1, \mathrm{n}}=3\left(\mathbf{a a}^{\dagger} \mathbf{a}\right)_{\mathrm{n}-1, \mathrm{n}}=\langle\mathrm{n}-1| 3 \mathbf{a}\left(\mathbf{a}^{\dagger} \mathbf{a}\right)|\mathrm{n}\rangle=3 \mathrm{n}^{3 / 2}$
$\Delta \mathrm{n}=+1 \quad\left[\mathbf{a a}^{\dagger} \mathbf{a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a a}^{\dagger}+\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}\right]$

$3\langle\mathrm{n}+1|\left(\mathbf{a}^{\dagger} \mathbf{a}^{\dagger} \mathbf{a}+\mathbf{a}^{\dagger}\right)|\mathrm{n}\rangle=3\left(\mathrm{n}(\mathrm{n}+1)^{1 / 2}+(\mathrm{n}+1)^{1 / 2}\right)=3(\mathrm{n}+1)^{3 / 2}$
all done - not necessary to massage the algebra as it would have been for \mathbf{x}^{3} by direct \mathbf{x} multiplication!

5.73 Lecture \#15

Now do the perturbation theory:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}}=\mathrm{E}_{\mathrm{n}}^{(0)}+\mathrm{E}_{\mathrm{n}}^{(1)}+\mathrm{E}_{\mathrm{n}}^{(2)}=\hbar \omega(\mathrm{n}+1 / 2)+0+\sum_{\mathrm{k}} \frac{\left|\mathrm{H}_{\mathrm{nk}}^{(1)}\right|^{2}}{\mathrm{E}_{\mathrm{n}}^{(0)}-\mathrm{E}_{\mathrm{k}}^{(0)}} \\
& \left|\mathrm{H}_{\mathrm{nk}}^{(1)}\right|^{2} \\
& \mathrm{E}_{\mathrm{n}}^{(0)}-\mathrm{E}_{\mathrm{k}}^{(0)} \\
& k=n-3 \quad a^{2}\left(\frac{\hbar}{2 m \omega}\right)^{3}(n-2)(n-1)(n) \quad+3 \hbar \omega \\
& \mathrm{k}=\mathrm{n}-1 \quad \mathrm{a}^{2}\left(\frac{\hbar}{2 \mathrm{~m} \omega}\right)^{3} 9 \mathrm{n}^{3} \quad+1 \hbar \omega \\
& \mathrm{k}=\mathrm{n}+3 \quad \mathrm{a}^{2}\left(\frac{\hbar}{2 \mathrm{~m} \omega}\right)^{3} 9(\mathrm{n}+1)^{3} \quad-1 \hbar \omega \\
& k=n+3 \quad a^{2}\left(\frac{\hbar}{2 m \omega}\right)^{3}(n+3)(n+2)(n+1) \quad-3 \hbar \omega \\
& E_{n}^{(2)}=\underbrace{\frac{a^{2}\left(\frac{\hbar}{2 m \omega}\right)^{3}}{\hbar \omega}}_{\begin{array}{c}
\text { all of the } \\
\text { constants }
\end{array}}\left[\frac{(n-2)(n-1)(n)}{3}-\frac{(n+3)(n+2)(n+1)}{3}+\frac{9 n^{3}}{1}-\frac{9(n+1)^{3}}{1}\right] \\
& \mathrm{E}_{\mathrm{n}}^{(2)}=\frac{\mathrm{a}^{2} \hbar^{2}}{8 \mathrm{~m}^{3} \omega^{4}}\left[-30(\mathrm{n}+1 / 2)^{2}-3.5\right] \quad \text { algebra } \\
& \mathrm{E}_{\mathrm{n}}^{(2)}=-\frac{\mathrm{a}^{2} \hbar^{2}}{\mathrm{~m}^{3} \omega^{4}}\left[\frac{15}{4}(\mathrm{n}+1 / 2)^{2}+\frac{7}{16}\right] \quad\left(\mathrm{m}^{3} \omega^{4}=\mathrm{mk}^{2}\right)
\end{aligned}
$$

all levels shifted down regardless of sign of a - can't measure sign of cubic anharmonicity constant, a, from vibrational structure alone

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{n}}=\hbar \omega(\mathrm{n}+1 / 2)-\frac{\hbar \frac{15}{4}\left(\frac{\mathrm{a}^{2} \hbar}{\mathrm{~m}^{3} \omega^{4}}\right)(\mathrm{v}+1 / 2)^{2}-\hbar \frac{7}{16}\left(\frac{\mathrm{a}^{2} \hbar}{\mathrm{~m}^{3} \omega^{4}}\right)}{\hbar \omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}} \\
& \mathrm{E}_{\mathrm{n}}=\hbar\left[\mathrm{Y}_{00}+\omega_{\mathrm{e}}(\mathrm{v}+1 / 2)-\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}(\mathrm{v}+1 / 2)^{2}+\omega_{\mathrm{e}} \mathrm{y}_{\mathrm{e}}(\mathrm{v}+1 / 2)^{3} \ldots\right]
\end{aligned}
$$

ax^{3} makes contributions exclusively to Y_{00} and $\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}$

5.73 Lecture \#15

15-5

Nonlecture

Morse Oscillator via perturbation theory

$$
\mathrm{V}(\mathrm{x})=\mathrm{D}\left[1-\mathrm{e}^{-\alpha \mathrm{x}}\right]^{2}
$$

$$
\mathrm{E}_{\mathrm{n}}=\hbar\left[(\mathrm{n}+1 / 2) \omega-(\mathrm{n}+1 / 2)^{2} \omega \mathrm{x}\right] \quad \begin{aligned}
& \text { known in advance - compare to pert. theory } \\
& \text { applied to Tavlor series expansion of } \mathrm{V}(\mathrm{x})
\end{aligned}
$$ applied to Taylor series expansion of $\mathrm{V}(\mathrm{x})$

Our initial goal is to re-express the Morse potential in terms of ω and $\omega \mathrm{x}$ rather than D and α. Then we will expand $\mathrm{V}^{\text {MORSE }}$ in a Taylor series and look at the coefficient of the \mathbf{x}^{3} term. First we must take derivatives of E_{v} with respect to $v \equiv n+1 / 2$
at dissociation, $\frac{d E_{v}}{d v}=0=\hbar(\omega-2(n+1 / 2) \omega x)$

$$
\begin{aligned}
& \frac{\omega}{2 \omega x}=\bigwedge^{n_{D}+1 / 2} \\
& \therefore \mathrm{D}=\mathrm{E}_{\mathrm{n}_{\mathrm{D}}}=\hbar\left(\sum_{\sum_{n_{D}+1 / 2}^{2 \omega \mathrm{x}}}^{\omega} \omega-\frac{\omega^{2}}{\frac{4 \omega \mathrm{x}^{2}}{\left(n_{D}+1 / 2\right)^{2}}} \omega \mathrm{x}\right) \\
& \mathrm{D}=\hbar \frac{\omega^{2}}{4 \omega \mathrm{x}}
\end{aligned}
$$

now expand $\mathrm{V}(\mathrm{x})$

$$
\begin{aligned}
& \mathrm{V}(0)=0 \\
& \mathrm{~V}^{\prime}(\mathrm{x})=\frac{\hbar \omega^{2}}{4 \omega \mathrm{x}}\left[+2 \alpha \mathrm{e}^{-\alpha \mathrm{x}}-2 \alpha \mathrm{e}^{-2 \alpha \mathrm{x}}\right], \quad \mathrm{V}^{\prime}(0)=0 \\
& \mathrm{~V}^{\prime \prime}(\mathrm{x})=\frac{\hbar \omega^{2}}{4 \omega \mathrm{x}}\left[-2 \alpha^{2} \mathrm{e}^{-\alpha \mathrm{x}}+4 \alpha^{2} \mathrm{e}^{-2 \alpha \mathrm{x}}\right], \quad, \quad \mathrm{V}^{\prime \prime}(0)=\frac{\hbar \omega^{2}}{4 \omega \mathrm{x}} 2 \alpha^{2}=\frac{\hbar \alpha^{2} \omega^{2}}{2 \omega \mathrm{x}} \\
& \mathrm{~V}^{\prime \prime \prime}(\mathrm{x})=\frac{\hbar \omega^{2}}{4 \omega \mathrm{x}}\left[+2 \alpha^{3} \mathrm{e}^{-\alpha \mathrm{x}}-8 \alpha^{3} \mathrm{e}^{-2 \alpha \mathrm{x}}\right], \quad, \quad \mathrm{V}^{\prime \prime \prime}(0)=-\frac{3 \hbar \omega^{2} \alpha^{3}}{2 \omega \mathrm{x}}
\end{aligned}
$$

but

$$
\begin{aligned}
& \mathrm{V}^{\prime \prime}(0) \equiv \mathrm{k}=\mathrm{m} \omega^{2}=\frac{\hbar \alpha^{2} \omega^{2}}{2 \omega \mathrm{x}} \rightarrow \alpha=\left(\frac{2 \mathrm{~m} \omega \mathrm{x}}{\hbar}\right)^{1 / 2} \\
& \mathrm{~V}^{\prime \prime \prime}(0)=-\frac{3}{2} \frac{\hbar \omega^{2}}{\omega \mathrm{x}}\left(\frac{2 \mathrm{~m} \omega \mathrm{x}}{\hbar}\right)^{3 / 2} \\
& \mathrm{~V}(\mathrm{x})=\frac{1}{2} \mathrm{kx}^{2}+\mathrm{ax}^{3} \text { thus } \mathrm{V}^{\prime \prime \prime}(\mathrm{x})=6 \mathrm{a} \\
& \mathrm{a}=-\frac{1}{4} \frac{\hbar \omega^{2}}{\omega \mathrm{x}}\left(\frac{2 \mathrm{~m} \omega \mathrm{x}}{\hbar}\right)^{3 / 2} \rightarrow \mathrm{a}^{2}=\frac{1}{2} \frac{\omega^{4} \mathrm{~m}^{3} \omega \mathrm{x}}{\hbar}
\end{aligned}
$$

now we can eliminate α from higher derivatives (at $\mathrm{x}=0$). This is to be compared to $\mathrm{V}^{\prime \prime \prime}(0)$ for the cubic anharmonic potential.

$$
\therefore \omega \mathrm{x}=2 \frac{\mathrm{a}^{2} \hbar}{\mathrm{~m}^{3} \omega^{4}}
$$

from pert. theory (\#15-4) $\quad \omega \mathrm{x}=\frac{15}{4} \frac{\mathrm{a}^{2} \hbar}{\mathrm{~m}^{3} \omega^{4}}$
same functional form but different numerical factor (2 vs. 3.75)

One reason that the result from second-order perturbation theory applied directly to $\mathrm{V}(\mathrm{x})=\mathrm{k} \mathbf{x}^{2} / 2+\mathrm{a} \mathbf{x}^{3}$ and the term-by-term comparison of the power series expansion of the Morse oscillator are not identical is that contributions are neglected from higher derivatives of the Morse potential to the $(n+1 / 2)^{2}$ term in the energy level expression. In particular

$$
\begin{aligned}
\mathrm{E}_{\mathrm{n}}^{(1)}=\mathrm{V}^{\prime \prime \prime \prime}(0) \mathbf{x}^{4} / 4! & =\left[7 / 2 \frac{\hbar \omega^{2} \alpha^{4}}{\omega \mathbf{x}}\right] \mathrm{x}^{4} / 24 \\
\langle\mathrm{n}| \mathbf{x}^{4}|\mathrm{n}\rangle & =\left(\frac{\hbar}{2 \mathrm{~m} \omega}\right)^{2}\left[4(\mathrm{n}+1 / 2)^{2}+2\right]
\end{aligned}
$$

contributes in first order of perturbation theory to the $(n+1 / 2)^{2}$ term in E_{n}.

$$
\mathrm{E}_{\mathrm{n}}^{(1)}=\frac{7}{12} \omega \mathrm{x}(\mathrm{n}+1 / 2)^{2}+\frac{7}{24} \omega \mathrm{x}
$$

Example 2 Use perturbation theory to compute some property other than Energy need $\psi_{\mathrm{n}}=\psi_{\mathrm{n}}^{(0)}+\psi_{\mathrm{n}}^{(1)}$ to calculate matrix elements of the operator in question, for example, transition probability, \mathbf{x} : for electric dipole transitions, transition probability is $\mathrm{P}_{\mathrm{n}^{\prime} \leftarrow \mathrm{n}} \propto\left|\mathrm{x}_{\mathrm{nn}}\right|^{2}$

For $\mathrm{H}-\mathrm{O} \quad \mathrm{n} \rightarrow \mathrm{n} \pm 1$ only

$$
\left|\mathrm{x}_{\mathrm{nn}+1}\right|^{2}=\left(\frac{\hbar}{2 \mathrm{~m} \omega}\right)(\mathrm{n}+1)
$$

for perturbed H-O $\quad \mathbf{H}^{(1)}=a \mathbf{x}^{3}$

$$
\begin{aligned}
& \psi_{\mathrm{n}}=\psi_{\mathrm{n}}^{(0)}+\underset{\mathrm{k}}{\sum^{\prime} \frac{\mathrm{H}_{\mathrm{kn}}^{(1)}}{\mathrm{E}_{\mathrm{n}}^{(0)}-\mathrm{E}_{\mathrm{k}}^{(0)}} \psi_{\mathrm{k}}^{(0)}} \\
& \psi_{\mathrm{n}}=\psi_{\mathrm{n}}^{(0)}+\frac{\mathrm{H}_{\mathrm{nn}+3}^{(1)}}{-3 \hbar \omega} \psi_{\mathrm{n}+3}^{(0)}+\frac{\mathrm{H}_{\mathrm{nn}+1}^{(1)}}{-\hbar \omega} \psi_{\mathrm{n}+1}^{(0)}++\frac{\mathrm{H}_{\mathrm{nn}-1}^{(1)}}{\hbar \omega} \psi_{\mathrm{n}-1}^{(0)}+\frac{\mathrm{H}_{\mathrm{nn}-3}^{(1)}}{3 \hbar \omega} \psi_{\mathrm{n}-3}^{(0)}
\end{aligned}
$$

Many paths which interfere constructively and destructively in $\left|\mathrm{x}_{\mathrm{nn}}\right|^{2}$

$$
\begin{gathered}
\mathrm{n}^{\prime}=\mathrm{n}+7, \mathrm{n}+5, \mathrm{n}+4, \mathrm{n}+3, \mathrm{n}+2, \underset{\text { only paths for H-O! }}{\frac{\mathrm{n}+1, \mathrm{n}, \mathrm{n}-1, \mathrm{n}}{\sim}-2, \mathrm{n}-3, \mathrm{n}-4, \mathrm{n}-5, \mathrm{n}-7}
\end{gathered}
$$

The transition strengths may be divided into 3 classes

1. direct: $\mathrm{n} \rightarrow \mathrm{n} \pm 1$
2. one anharmonic step $\mathrm{n} \rightarrow \mathrm{n}+4, \mathrm{n}+2$, $\mathrm{n}, \mathrm{n}-2, \mathrm{n}-4$
3. 2 anharmonic steps $\mathrm{n} \rightarrow \mathrm{n}+7, \mathrm{n}+5, \mathrm{n}+3, \mathrm{n}+1, \mathrm{n}-1, \mathrm{n}-3, \mathrm{n}-5, \mathrm{n}-7$

Work thru the $\Delta \mathrm{n}=-7$ path

$$
\begin{aligned}
& \left|\mathrm{x}_{\mathrm{nn}+7}\right|^{2} \propto \frac{\hbar^{3} \mathrm{a}^{4} \mathrm{n}^{7}}{3^{4} 2^{7} \mathrm{~m}^{7} \omega^{11}}
\end{aligned}
$$

5.73 Lecture \#15

15-8

* you show that the single-step anharmonic terms go as

$$
\begin{aligned}
\left|\mathrm{x}_{\mathrm{nn}+4}\right| & \propto\left(\frac{\hbar}{2 \mathrm{~m} \omega}\right)^{3 / 2+1 / 2} \frac{\mathrm{a}}{(-3 \hbar \omega)}[(\mathrm{n}+1)(\mathrm{n}+2)(\mathrm{n}+3)(\mathrm{n}+4)]^{1 / 2} \\
\left|\mathrm{x}_{\mathrm{nn}+4}\right|^{2} & \propto \frac{\hbar^{2} \mathrm{a}^{2} \mathrm{n}^{4}}{3^{2} 2^{4} \mathrm{~m}^{4} \omega^{6}}
\end{aligned}
$$

* Direct term

$$
\left|\mathrm{x}_{\mathrm{nn}+1}\right|^{2} \propto \frac{\hbar^{1}}{32 \mathrm{~m}^{1} \omega^{1}}(\mathrm{n}+1)
$$

each higher order term gets smaller by a factor $\left(\frac{\hbar \mathrm{n}^{3} \mathrm{a}^{2}}{3^{2} 2^{3} \mathrm{~m}^{3} \omega^{5}}\right)$ which is a very small dimensionless factor.
RAPID CONVERGENCE OF PERTURBATION THEORY!
What about Quartic perturbing term $b \mathbf{x}^{4}$?

Note that $E^{(1)}=\langle n| b \mathbf{x}^{4}|n\rangle \neq 0$
and is directly sensitive to sign of b !

