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Perturbation Theory II
(See CTDL 1095-1104, 1110-1119)

Last time:
H(0)ψn

(0) = En
(0)ψn

(0)
H(0) is diagonal

ψn
(0){ }, En

(0){ } are
basis functions and 
zero - order energies

En
(1) = Hnn

(1) expectation value of
perturbation operator

En
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k

Hnk
(1) 2

En
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(0)

sum excludes k = n
matrix element vs. energy denominator

En = En
(0) + En

(1) + En
(2)

ψn
(1) = ′Σ

k

Hnk
(1)

En
(0) − Ek

(0) ψk
(0)

sum excludes k = n

1st index

mixing coefficient, order
sorting parameter,
convergence criterion

Today:

1. cubic anharmonic perturbation
x3 vs. a,a†

ax3 ωx and Y00 contributions

2. nonlecture Morse oscillator ↔ pert. theory for ax3

3. transition probabilities — orders and convergence of p.t.
Mechanical and electronic anharmonicities.
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Example 1.   H = p2

2m
+ 1

2
kx2 +ax3

H(0)
H(1)

x

V(x)

(a < 0)

unphysical

need matrix elements of x3

one (longer) way xil
3 = xijx jkxkl

j,k
∑

4 different selection rules:  l – i = 3, 1, –1, –3
l – i = 3 i → i +1, i + 1 → i + 2, i + 2 → i + 3

l – i = 1 i → i + 1, i + 1 → i + 2, i + 2 → i + 1
i → i – 1, i – 1→ i, i → i + 1
i → i + 1, i + 1 → i, i → i + 1

i +1( ) i + 2( ) i + 3( )[ ]1/2

i +1( ) i + 2( ) i + 2( )[ ]1/2 + i( ) i( ) i +1( )[ ]1/2 + i +1( ) i +1( ) i +1( )[ ]1/2

algebraically complicated

other (shorter) alternative:  a, a†, and a†a
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a + a†( )3
= a3 + a†aa + aa†a + aaa†[ ] + aa†a† + a†aa† + a†a†a[ ] + a†3

four terms, four different selection rules.

one path

There are three 3-step paths from i to i + 1.  Add them.
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Use simple a,a† algebra to work out all matrix elements and selection
rules by inspection.

recall: a† n = n +1( )1/2 n +1 , a n = n1/2 n −1 , a†a n = n n

a,a†[ ] = 1 ∴
aa† = 1 + a†a prescription for

permuting a thru a†

∆n = –3 an−3,n
3 = n − 2( ) n −1( ) n( )[ ]1/2

∆n = +3 an+3,n
†3 = n + 3( ) n + 2( ) n +1( )[ ]1/2

∆n = −1 a†aa + aa†a + aaa†[ ]n−1,n goal is to rearrange each product so that it
has number operator at right

a†aa = aa†a − a
aaa† = aa†a + a
aa†a = aa†a

3aa†a + 0

∆n = –1    [ ]n−1,n = 3 aa†a( )
n−1,n

= n −1 3a a†a( ) n = 3n3/2

∆n = +1 aa†a† + a†aa† + a†a†a[ ]

aa†a† = a†aa† + a† = a†a†a + 2a†

a†aa† = a†a†a + a†

a†a†a = a†a†a
3a†a†a + 3a†

3 n +1 a†a†a + a†( ) n = 3 n n +1( )1/2 + n +1( )1/2( ) = 3 n +1( )3/2

all done — not necessary to massage the algebra as it would have
been for x3 by direct x multiplication!
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Now do the perturbation theory:

En = En
(0) + En

(1) + En
(2) = hω n +1 / 2( ) + 0 + ′Σ
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all levels shifted down regardless of sign of a — can’t measure sign
of cubic anharmonicity constant, a, from vibrational structure alone

  

En = hω n +1 / 2( ) − h
15
4

a2h

m3ω 4






v +1 / 2( )2 − h

7
16

a2h

m3ω 4







En = h Y00 + ωe v +1 / 2( ) − ωexe v +1 / 2( )2 + ωeye v +1 / 2( )3…[ ] hωexe hY00

ax3 makes contributions exclusively to Y00 and ωexe
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Nonlecture

Morse Oscillator via perturbation theory

V x( ) = D 1 − e−αx[ ]2
En = h n +1 / 2( )ω − n +1 / 2( )2ωx[ ] known in advance — compare to pert. theory

applied to Taylor series expansion of V(x)

Our initial goal is to re-express the Morse potential in terms of ω and ωx rather than
D and α.  Then we will expand VMORSE in a Taylor series and look at the coefficient of

the x3 term.  First we must take derivatives of Ev with respect to  v ≡ n + 1/2

  

at dissociation,  
dE
dv

n x

x
n

v

D

= = − +( )( )

= +

0 2 1 2

2
1 2

h ω ω

ω
ω

/

/

at dissociation asymptote

∴D = EnD
= h

ω
2ωx

ω − ω 2

4ωx2 ωx






nD + 1 2/

  
D = h

ω 2

4ωx

now expand V(x)

V 0( ) = 0

′V (x) = hω 2

4ωx
+2αe−αx − 2αe−2αx[ ] , ′V (0) = 0

′′V (x) = hω 2

4ωx
−2α 2e−αx + 4α 2e−2αx[ ] , ′′V (0) = hω 2

4ωx
2α 2 = hα 2ω 2

2ωx

′′′V (x) = hω 2

4ωx
+2α3e−αx − 8α3e−2αx[ ] , ′′′V (0) = − 3hω 2α3

2ωx

but

 

′′V (0) ≡ k = mω 2 = hα 2ω 2

2ωx
→ α = 2mωx

h






1/2

′′′V (0) = − 3
2

hω 2

ωx
2mωx

h






3/2

V(x) = 1
2

kx2 + ax3 thus  ′′′V (x) = 6a

a = − 1
4

hω 2

ωx
2mωx

h






3/2
→ a2 = 1

2
ω 4m3ωx

h

now we can eliminate α from
higher derivatives (at x = 0).
This is to be compared to V′′′(0)
for the cubic anharmonic
potential.

nD +( )1 2 2/

by WKB or DVR
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∴ωx = 2 a2h

m3ω 4

from pert.  theory (#15 - 4)   ωx = 15
4

a2h

m3ω 4










same functional form but different
numerical factor (2 vs. 3.75)

One reason that the result from second-order perturbation theory applied
directly to V(x) = kx2/2 + ax3 and the term-by-term comparison of the power
series expansion of the Morse oscillator are not identical is that contributions
are neglected from higher derivatives of the Morse potential to the (n + 1/2)2

term in the energy level expression.  In particular

 

En
(1) = ′′′′V 0( )x4 4! = 7 / 2 hω 2α 4

ωx













x4 24

n x4 n = h

2mω






2
4 n +1 / 2( )2 + 2[ ]

contributes in first order of perturbation theory to the (n + 1/2)2 term in En.

En
(1) = 7

12
ωx n +1 / 2( )2 + 7

24
ωx

P ′n ←n ∝ xn ′n
2

Example 2    Use perturbation theory to compute some property other than Energy

need ψn = ψn
(0) + ψn

(1)

for example, transition probability, x:  for electric dipole transitions, transition
probability is

For H - O   n → n ±1 only

xnn+1
2 = h

2mω




 n +1( )

for perturbed H-O H(1) = ax3

ψn = ψn
(0) + ′Σ

k

Hkn
(1)

En
(0) − Ek

(0) ψk
(0)

ψn = ψn
(0) +

Hnn+3
(1)

−3hω
ψn+3

(0) +
Hnn+1

(1)

−hω
ψn+1

(0) + +
Hnn−1

(1)

hω
ψn−1

(0) +
Hnn−3

(1)

3hω
ψn−3

(0)

to calculate matrix elements of the operator in question,

Standard result.  Now allow for
mechanical and electronic
anharmonicity.
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n+4

n+2

n+1

n

n–1

n–2

n–4

nn

n+3

n+1

n–1

n–3

n+7 , n+5, n+4, n+3, n+1

n+5, n+3, n+2, n+1, n–3

n+4, n+2, n+1, n, n–2

n+3, n+1, n, n–1, n–3
n+2, n, n–1, n–2, n–4

n+1, n–1, n–2, n–3, n–5

n-1, n-3, n-4, n-5, n-7

effect
of x

anharmonic
final state

ψn
(0) + ψn

(1)initial
state

ψn
(0)

Many paths which interfere constructively and destructively in xn ′n
2

′n = n + 7,n + 5,n + 4,n + 3,n + 2,n +1,n,n – 1,n − 2,n − 3,n − 4,n − 5,n − 7

only paths for H-O!

The transition strengths may be divided into 3 classes

1.  direct:  n → n ± 1

2.  one anharmonic step   n → n + 4, n + 2, n, n – 2, n – 4
3.  2 anharmonic steps    n → n + 7, n + 5, n + 3, n + 1, n – 1, n – 3, n – 5, n – 7

Work thru the ∆n = –7 path

n x n + 7 = h
2mω







3/2+3/2+1/2 a2

−3hω( )2












n +1( ) n + 2( ) n + 3( )
xn,n+3

1 2444 3444
n + 4( )

xn+3,n+4
123

n + 5( ) n + 6( ) n + 7( )
xn+4,n+7

1 2444 3444

















1/2

xn,n+3
3

xn+3,n+4

xn+4,n+7
3

xnn+7
2 ∝ h3a4n7

3427m7ω11
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* you show that the single-step anharmonic terms go as

xnn+4 ∝ h

2mω






3/2+1/2 a
−3hω( )

n +1( ) n + 2( ) n + 3( ) n + 4( )[ ]1/2

xnn+4
2 ∝ h2a2n4

3224 m4ω 6

* Direct term

 
xnn+1

2 ∝ h1

32m1ω1 n +1( )

each higher order term gets smaller by a factor
which is a very small dimensionless factor.
RAPID CONVERGENCE OF PERTURBATION THEORY!

hn3a2

3223m3ω 5







What about Quartic perturbing term bx4?

Note that E(1) = n bx4 n ≠ 0
and is directly sensitive to sign of b!


