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Perturbation Theory III
Last time

V(x) = 1
2

kx2 + ax3 cubic anharmonic oscillator

algebra with x3 vs.  operator with a,a†

a x Yx3
00↔ ω &

can’t know sign of a from vibrational
information alone.  [Can know it if rotation-
vibration interaction is included.]

Morse Oscillator V(x) = D 1 − e−αx[ ]2
* D,α ↔ ω ,ωx,m

*
d3V

dx3 = 6a = − 3h

2
ω 2α3

ωx
= d3Vmorse

dx3
x=0

* ωx = 2 a2h

m3ω 4  direct from Morse vs.  
15
4

a2h

m3ω 4

from pert.  theory on 
1
2

kx2 + ax3

1.

2.

Today: 1. Effect of cubic anharmonicity on transition probability
orders of pert. theory, convergence [last class: #15-6,7,8].

2. Use of harmonic oscillator basis sets in wavepacket calculations.
3. What happens when H(0) has degenerate

Diagonalize block which contains (near) degeneracies.
“Perturbations” — accidental and systematic.

4. 2 coupled non-identical harmonic oscillators:  polyads.

En
(0)’s?

 

∴ωx = 2 a2h

m3ω 4

from pert.  theory (#15 - 4)   ωx = 15
4

a2h

m3ω 4










same functional form
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One reason that the result from second-order perturbation theory applied
directly to V(x) = kx2/2 + ax3 and the term-by-term comparison of the power
series expansion of the Morse oscillator are not identical is that contributions
are neglected from higher derivatives of the Morse potential to the (n + 1/2)2

term in the energy level expression.  In particular

En
(1) = ′′′′V 0( )x4 4! = 7 / 2 hω 2α 4

ωx













x4 24

n x4 n = h

2mω






2
4 n +1 / 2( )2 + 2[ ]

contributes in first order of perturbation theory to the (n + 1/2)2 term in En.

En
(1) = 7

12
ωx n +1 / 2( )2 + 7

24
ωx

Example 2    Compute some property other than Energy (repeat of
pages 15-6, 7, 8)

need ψn = ψn
(0) + ψn

(1)

P ′n ←n ∝ xn ′n
2transition probability:  for electric dipole transitions

For H - O   n → n ±1 only

xnn+1
2 = h

2mω




 n +1( )

for perturbed H-O H(1) = ax3

 

ψn = ψn
(0) + ′Σ

k

Hkn
(1)

En
(0) − Ek

(0) ψk
(0)

ψn = ψn
(0) +

Hnn+3
(1)

−3hω
ψn+3

(0) +
Hnn+1

(1)

−hω
ψn+1

(0) + +
Hnn−1

(1)

hω
ψn−1

(0) +
Hnn−3

(1)

3hω
ψn−3

(0)
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n+4

n+2

n+1

n

n–1

n–2

n–4

nn

n+3

n+1

n–1

n–3

n+7 , n+5, n+4, n+3, n+1

n+5, n+3, n+2, n+1, n–3

n+4, n+2, n+1, n, n–2

n+3, n+1, n, n–1, n–3
n+2, n, n–1, n–2, n–4

n+1, n–1, n–2, n–3, n–5

n-1, n-3, n-4, n-5, n-7

effect
of x

anharmonic
final state

ψn
(0) + ψn

(1)initial
state

ψn
(0)

Many paths which interfere constructively and destructively in xn ′n
2

′n = n + 7,n + 5,n + 4,n + 3,n + 2,n +1,n,n – 1,n − 2,n − 3,n − 4,n − 5,n − 7

only paths for H-O!

The transition strengths may be divided into 3 classes

1.  direct:  n → n ± 1

2.  one anharmonic step   n → n + 4, n + 2, n, n – 2, n – 4
3.  2 anharmonic steps    n → n + 7, n + 5, n + 3, n + 1, n – 1, n – 3, n – 5, n – 7

Work thru the ∆n = –7 path

n x n + 7 = h
2mω







3/2+3/2+1/2 a2

−3hω( )2












n +1( ) n + 2( ) n + 3( )
xn,n+3

1 2444 3444
n + 4( )

xn+3,n+4
123

n + 5( ) n + 6( ) n + 7( )
xn+4,n+7

1 2444 3444

















1/2

xn,n+3
3

xn+3,n+4

xn+4,n+7
3

xnn+7
2 ∝ h3a4n7

3427m7ω11
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* you show that the single-step anharmonic terms go as

xnn+4 ∝ h

2mω






3/2+1/2 a
−3hω( )

n +1( ) n + 2( ) n + 3( ) n + 4( )[ ]1/2

xnn+4
2 ∝ h2a2n4

3224 m4ω 6

* Direct term

 
xnn+1

2 ∝ h1

32m1ω1 n +1( )

each higher order term gets smaller by a factor
which is a very small dimensionless factor.
RAPID CONVERGENCE OF PERTURBATION THEORY!

hn3a2

3223m3ω 5







What about Quartic perturbing term bx4?

Note that E(1) = n bx4 n ≠ 0
and is directly sensitive to sign of b!
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2.  What about wave packet calculations?

ψ ψ

ψ

ψ ψ

n k

k

k

iE tx t e n

 expressed as superposition of  terms

x,0  expanded as superposition of  terms (usually only 

one term, called the “bright state”).  But we must also expand

  as a superposition of eigenbasis, , terms.

 oscillates at 

k

( )

( )

( )

,

0

0

0

Ψ

Ψ

( )

( ) − h

En = En
(0) + En

(1) + En
(2)

A state which is initially in a pure ψn
(0) will 

dephase,  then exhibit partial recurrences at

m2π ≈ ωt t = m2π
ω

but * not perfect since

En − Em ≠ hω(n − m)

not quite integer multiples!

* time of 1st recurrence will

depend on E !

because 
En+1 − En−1

2
 decreases as n increases.
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Philosophy:

Degenerate and Near Degenerate En
(0)

Ordinary nondegenerate p.t. treats H as if it can be “diagonalized” by simple
algebra.
 CTDL, pages 1104-1107 →  find linear combination of degenerate         for which
H(1) lifts degeneracy.
This problem is usually treated in an abstract way by people who never actually
use perturbation theory!

ψn
(0)

Whenever 
Hnk

(1)

En
(0) − Ek

(0) ≈ 1 must diagonalize the n,k 2 × 2
block of H = H(0) + H(1)

accidental degeneracy — spectroscopic perturbations
systematic degeneracy — 2-D isotropic H-O, “polyads”
quasi-degeneracy — safe chunk of H
effects of remote states — Van Vleck Pert. Theroy - next time

Continuum

En

0

Want a model that replaces ∞ dimension H by simpler finite one that does
really well for the class of states sampled by particular experiment.

particular class of experiments does not look
at all En’s - only a given E range and only a
given E resolution!

NMR nuclear spins (hyperfine) don't care about excited vib. or electronic
IR vibr. and rotation don't care about Zeeman

UV electronic don't care about Zeeman

*

*

*
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each finite block along the diagonal is an Heffective fit model.  We want these fit
models to be as accurate and physically realistic as possible.

* fold important out-of-block effects into N × N block → 2 stripes of H
* diagonalize augmented N × N block - refine parameters that define

the block against observed energy levels.

4. Best to illustrate with an example — 2 coupled harmonic oscillators:  “Fermi
Resonance” [approx. integer ratios between characteristic frequencies of
subsystems]

next time review V-V
transformation

H = p1
2

2m
+ 1

2
k1x1

2











+ p2
2

2m
+ 1

2
k2x2

2











+ k122x1x2
2

why not k12x1x2?

En1
(0) = hω1 n1 +1 / 2( )

En2
(0) = hω2 n2 +1 / 2( )

Enm
(0) = h ω1 n +1 / 2( ) + ω2 n +1 / 2( )[ ]

H1
(0) H2

(0)

let ω1 = 2ω2 m1 = m2 , k1 = 4k2( )

systematic degeneracies

H = N × N

 

 

 
 
 
 
 
 
 
 
 
 
  

 

 

 
 
 
 
 
 
 
 
 
 
  

quasidegenerate block 
sampled by our 
specific experiment

quasidegenerate blocks 
sampled by other 
experiments

ψ ψ ψn n n nx x
1 2 1 2

0 1
1

0
2

( ) ( ) ( )= ( ) ( )
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H x x a a a a a a a a

aa a a a a

( )
/ /

† † † †

† † †

1
122 1 2

2
122

3 2

1 2
2

1 2

1 1 2
2

2
2

2 2 2 22
1

2 1

= = 













 +( ) + + +( )[ ]

+ = +

k k
m
h

ω ω

                     
Hnm;kl

(1)

n – k m – l H(1)

a1a2
2

–1 –2 n +1( ) m + 2( ) m +1( )[ ]1/2

a1a2
†2

–1 +2 n +1( ) m( ) m −1( )[ ]1/2

a1 2a2
†a2 +1( ) –1 0 n m+( ) +( )[ ]1 2 1

2 1 2/

a1
†a2

2
+1 –2 n( ) m + 2( ) m +1( )[ ]1/2

a1
†a2

†2
+1 +2 n( ) m( ) m −1( )[ ]1/2

a1
† 2a2

†a2 +1( ) +1 0 n m( ) +( )[ ]2 1
2 1 2/

H(1) = (constants)

6 types
of terms

Seems complicated – but all we need to do is look for systematic near
degeneracies Recall ω1 = 2ω2

List of      Poly ads    by
Membership

E(0)/hω2 P = 2n1 + n2

[2(n1 + 1/2) + (n2 + 1/2)]

(n1, n2) degeneracy

(0,0) 1 1+ 1/2 = 3/2 0

(0,1) 1 1 + 3/2 = 5/2 1

(1,0), (0,2) 2 3 + 1/2 = 7/2 2

(1,2), (0,3) 2 3 + 3/2 = 9/2; 1 + 7/2 = 9/2 3

(2,0), (1,2), (0,4) 3 11/2 4

3 13/3 5

4 15/2 6

4 17/2 7

etc. 19/2 8
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General P block:

E n n PP
( ) /0

2 1 2
3
2

2 3 2hω = + +( ) = +

#  of terms in P block depends on whether P is even or odd

P P
n n

P
P

P P
n P

+
= =





= −





…( )

+
=

−
=





…( )

2
2 2

0
2

1 2 0

1
2

1
2

1 0

2 1

2

states even P n

states odd P n

1

1

, , , , ,

, , ,

HP
(0)

hω2
=

P + 3 / 2 0 0 0
0 P + 3 / 2 0 0
0 0 O 0
0 0 0 P + 3 / 2



















POLYAD

Note that all matrix elements may be written in terms of a general
formula — computer decides membership in polyad and sets up matrix

(even P)

0
2

2 1 0 0 0

0
2

1 3 4 0 0

0 0 0

0 0 0 1 1

0 0 0 0

1 2

1 2

1 2

P

sym
P

sym

sym P P

sym






( )











−





( )











−[ ]



























•

•

( )( )( )

/

/

/
L

HP
( )1

stuff
=

n m, P
2

0,
P
2

1 2− ,
P
2

2 4− , L L0, P

P
2

0,

P
2

1 2− ,

M

1 2, P −

H(1)

h3/2m−3/2ω1
−1/2ω2

−1k122 2−3/2









 = a1a2

†2 + a1
†a2

2 + a1a2
2 + a1

†a2
†2 + a1 2a2

†a2 +1( ) + a1
† 2a2

†a2 +1( )
0 0 –4 +4 –2 +2∆P=
inside polyad between polyad blocks

not 0 because
P = 2n1 + n2 is odd

0, P
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So now we have listed ALL of the connections of P = 6 to all other blocks!
So we use these results to add some correction terms to the P = 6 block according to
the formula suggested by Van Vleck.

HPnm

(2) =
Hnk

(1)Hkm
(1)

En
(0) + Em

(0)

2
− Ek

(0)′P
∑

for our case*,  the denominator is hω2 P − ′P[ ]
* For this particular example there are no cases where there are nonzero

elements for n ≠ m (many other problems exist where there are nonzero n ≠ m
terms)

  

hω2H6
(2)

h3m−3ω1
−1ω2

−2k122
2 2−3 =

30
22
14
06

3
2

− 4
2

− 8
4

= − 5
2

50
2

− 75
3

+ 4
4

− 36
4

= −8
81
2

− 162
2

+ 12
4

− 60
4

= −105
2

−169
2

− 56
4

= −197
2

























Computers can easily set these things up.
Could add additional perturbation terms such as diagonal anharmonicities that
cause ω1 : ω2     2 : 1 resonance to detune.

dimensionless
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For concreteness, look at P = 6 polyad
(3,0), (2,2), (1,4), (0,6)

H6
(1)

stuff

30 22 14 06
30 0 3 ⋅ 2 ⋅1( )1/2 0 0
22 sym 0 2 ⋅ 4 ⋅ 3( )1/2 0
14 0 sym 0 1⋅ 5 ⋅ 6( )1/2

06 0 0 sym 0

 now what are all of the out of block elements of          that affect the P = 6 block?

H(1)/stuff

∆P = –2
P = 6 ~ P = 4

3,0 ~ 2,0 31/2 +2hω 2

2,2 ~ 1,2 21/2⋅5 +2hω 2
1,4 ~ 0,4 11/2 ⋅ 9 +2hω 2
0,6 ~ — — —

∆P = +2 3,0 ~ 4,0 41/2 –2hω 2
2,2 ~ 3,2 31/2 ⋅ 5 –2hω 2
1,4 ~ 2,4 21/2 ⋅ 9 –2hω 2
0,6 ~ 1,6 11/2 ⋅ 13 –2hω 2

∆P = –4 3,0 ~ — — —
2,2 ~ 1,0 21/2(2 ⋅ 1)1/2 +4hω 2
1,4 ~ 0,2 11/2(4 ⋅ 3)1/2 +4hω 2
0,6 ~ — — —

∆P = +4 3,0 ~ 4,2 [4⋅2⋅1]1/2 –4hω 2
2,2 ~ 3,4 [3⋅4⋅3]1/2 –4hω 2
1,4 ~ 2,6 [2⋅6⋅5]1/2 –4hω 2

  
0,6 ~ 1,8 [1⋅8⋅7]1/2 –4hω 2

EP
(0) − EP−2

(0)

a1 2a2
†a2 +1( )

a1
† 2a2

†a2 +1( )

a1a2
2

a1
†a2

†2

HP=6
eff = H6

(0) + H6
(1) + H6

(2)

hω2 6 + 3 / 2( )
0 0 0

0 0 0
0 0 0
0 0 0















0 0 0
0 0

0 0
0 0 0















x x1 2
2


