Variational Method

(See CTDL 1148-1155, [Variational Method] 252-263, 295-307[Density Matrices])

Last time:

Quasi-Degeneracy
$$\rightarrow$$
 Diagonalize a part of infinite **H**

* sub-matrix : $H^{(0)} + H^{(1)}$

* corrections for effects of out-of-block elements: $\mathbf{H}^{(2)}$ (the Van Vleck transformation) *diagonalize $\mathbf{H}^{\text{eff}} = \mathbf{H}^{(0)} + \mathbf{H}^{(1)} + \mathbf{H}^{(2)}$

coupled H-O's 2 : 1 ($\omega_1 \approx 2\omega_2$) Fermi resonance example: polyads

- 1. Perturbation Theory vs. Variational Method
- 2. Variational Theorem
- 3. Stupid nonlinear variation
- 4. Linear Variation \rightarrow new kind of secular Equation
- 5. Linear combined with nonlinear variation
- 6. Strategies for criteria of goodness various kinds of variational calculations
- 1. Perturbation Theory vs. Variational Method

Perturbation Theory in effect uses ∞ basis set

goals: parametrically parsimonious fit model, H^{eff}

fit parameters (molecular constants) \leftrightarrow parameters that define V(x)

order - sorting $\frac{H_{nk}^{(1)}}{E_n^{(0)} - E_k^{(0)}} < 1$ — errors less than this "mixing angle" times the previous order non-zero correction term

(n is in-block, k is out-of block) because diagonalization is ∞ order (within block).

Variational Method

best possible estimate for lowest few E_{n}, ψ_{n} (and properties derivable from these) using finite basis set and exact form of **H**.

Vast majority of computer time in Chemistry is spent in variational calculations Goal is numbers. Insight is secondary.

"Ab Initio" vs. "semi-empirical" or "fitting"

[intentionally bad basis set: Hückel, tight binding – qualitative behavior obtained by a fit to a few microscopic–<u>like</u> control parameters]

2. Variational Theorem

any observable

If ϕ is approximation to eigenfunction of $\mathbf{\hat{A}}$

belonging to lowest eigenvalue a_0 , then

$$\alpha \equiv \frac{\left\langle \phi | \mathbf{A} | \phi \right\rangle}{\left\langle \phi | \phi \right\rangle} \ge \mathbf{a}_0$$

the variational Theorem

PROOF: eigenbasis (which we do not know - but know it must exist)

$$\mathbf{A}|\mathbf{n}\rangle = \mathbf{a}_{\mathbf{n}}|\mathbf{n}\rangle$$

expand ϕ in eigenbasis of A, exploiting completeness

$$\begin{split} |\phi\rangle &= \sum_{n} |n\rangle \langle n |\phi\rangle \\ \langle \phi | \mathbf{A} | \phi \rangle &= \sum_{n,n'} \langle \phi | n \rangle \overline{\langle \mathbf{n} | \mathbf{A} | \mathbf{n'} \rangle} \langle \mathbf{n'} | \phi \rangle = \sum_{n} |\langle \phi | n \rangle|^{2} \mathbf{a}_{n} \\ \langle \phi | \phi \rangle &= \sum_{n} \langle \phi | \mathbf{n} \rangle \langle n | \phi \rangle = \sum_{n} |\langle \phi | \mathbf{n} \rangle|^{2} \\ \alpha &= \frac{\langle \phi | \mathbf{A} | \phi \rangle}{\langle \phi | \phi \rangle} = \frac{\sum_{n}^{n} |\langle \mathbf{n} | \phi \rangle|^{2}}{\sum_{n'} |\langle \mathbf{n'} | \phi \rangle|^{2}} \quad \text{all terms in both sums are} \ge 0 \end{split}$$

subtract a_0 from both sides

$$\alpha - a_0 = \frac{\sum_{n} (a_n - a_0) |\langle n | \phi \rangle|^2}{\sum_{n'} |\langle n' | \phi \rangle|^2} \ge 0 \quad \begin{array}{l} \text{again, all terms in} \\ \text{both sums are} \ge 0 \\ \\ \text{modified 10/9/02 10:21 AIV} \end{array}$$

because, by definition of $a_0, a_n \ge a_0$ for all n and all terms in sum are $\therefore \ge 0$.

 $\therefore \alpha \ge a_0. \qquad \text{QED} \qquad \begin{pmatrix} \text{but useless because we} \\ \text{can' t know } a_n \text{ or } \langle n | \phi \rangle \end{pmatrix}$

It is possible to perform a variational calculation for any A, not limited to H.

3. Stupid Nonlinear Variation

Use the wrong functional form or the wrong variational criterion to get poor results — illustrates that the variational function must have sufficient flexibility and the variational criterion must be as it is specified in the variational theorem, as opposed to a clever shortcut.

The H atom Schr. Eq. ($\ell = 0$)

H = -	$-\frac{1}{2}\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r}$	$-\frac{1}{r}$
	с Т	V
	-	•

and we know
$$\begin{cases} \psi_{1s}(r) = \langle r | 1s \rangle = \pi^{-1/2} e^{-r} \\ E_{1s} = -1/2 \ au \qquad \qquad \begin{bmatrix} 1 & au = 219475 \ cm^{-1} \end{bmatrix} \end{cases}$$

but try $\langle r | \phi \rangle = \left[\xi^3 / 2\pi \right]^{1/2} (\xi r) e^{-\xi r}$ normalized for all ξ

 ξ is a scale factor that controls overall size of $\phi(\mathbf{r})$

[actually this is the form of $\psi_{2p}(\mathbf{r})$] which is necessarily orthogonal to ψ_{1s} ! STUPID!

 $\begin{pmatrix} \phi(0) = 0 & but & \psi_{1s}(0) = \pi^{-1/2} \end{pmatrix}$ $\varepsilon = \frac{\langle \phi | \mathbf{H} | \phi \rangle}{\langle \phi | \phi \rangle} = \frac{4}{3} \left(\frac{\xi^2 - 3\xi}{8} \right) \quad \text{skipped a lot} \\ \text{of algebra}$ $\text{minimize } \varepsilon: \quad \frac{d\varepsilon}{d\xi} = 0 \quad \xi_{\min} = 3/2 \rightarrow \varepsilon_{\min} = -3/8 \quad au$ $\text{FAILURE!} \quad \left[\text{c.f. the true values: } E_{1s} = -1/2 \text{ au}, E_{2s} = -\frac{1}{8} \text{ au} \right]$

Try something clever (but lazy): What is the value of ξ that maximizes $\langle \phi | 1_{\delta} \rangle$?

for the best variational $\xi = 3/2$, $C_{1s} \equiv \langle \phi(\xi = 3/2) | 1s \rangle = 0.9775$ if we maximize C_{1s} wrt. $\xi : \xi = 5/3 \rightarrow C_{1s} = 0.9826$ better?

but $\epsilon~$ = –0.370 results, a poorer bound than ξ = 3/2 \rightarrow ϵ = –0.375

* need flexibility in ϕ

* can@improve on $\frac{d\epsilon}{d\xi}$ by employing an alternative variational strategy

This was stupid anyway because we would never use the variational method when we already know the answer!

4. Linear Variation \rightarrow Secular Equation

$$\begin{split} \phi &= \sum_{n=1}^{N} c_n \chi_n & \text{KEY} \\ \text{TOPIC for this lecture} \\ &\langle \chi_n | \mathbf{H} | \chi_{n'} \rangle = \mathbf{H}_{nn'} \\ &\langle \chi_n | \chi_{n'} \rangle = \mathbf{S}_{nn'} & \text{overlap integrals} \\ &(\text{non-orthogonal basis sets are often convenient}) \\ &\varepsilon &= \frac{\langle \phi | \mathbf{H} | \phi \rangle}{\langle \phi | \phi \rangle} = \frac{\sum_{n,n'} c_n c_{n'} H_{nn'}}{\sum_{m,m'} c_m c_{m'} S_{mm'}} & \text{rearrange this equation} \\ &\varepsilon &\sum_{m,m'} c_m c_m S_{mm'} = \sum_{n,n'} c_n c_{n'} H_{nn'} & \text{to find minimum value of } \varepsilon, \\ &take & \frac{\partial}{\partial c_j} &\text{for each } j & \text{for each } j & \text{and require that} \\ &\frac{\partial \varepsilon}{\partial c_j} &= 0 &\text{for each } j & \text{linear variation!} \\ &\text{because we are seeking to minimize } \varepsilon & \text{with respect to each } c_j. \end{split}$$

Find the global minimum of the $\varepsilon(c_1, c_2, ..., c_N)$ hypersurface.

the only terms that survive $\frac{\partial}{\partial c_j}$ are those that include c_j .

 $\varepsilon \sum_{m} c_{m} (S_{mj} + S_{jm}) = \sum_{n} c_{n} (H_{jn} + H_{nj})$ if $\{\chi_n\}$ are real $S_{ij} = S_{ji}, H_{ij} = H_{ji}$ $0 = \sum_{n=1}^{N} c_n (H_{jn} - \varepsilon S_{jn})$

These are all of the surviving terms (i.e. those that include j). Each j term appears twice in both sums, once as a bra and once as a ket.

one such equation for each j (same set of unknown $\{c_n\}$)

N linear homogeneous equations in N unknown c_n's Non trivial $\{c_n\}$ only if $|\mathbf{H} - \varepsilon \mathbf{S}| = 0$ (Not same form as $|\mathbf{H} - \mathbb{1}\mathbf{E}| = 0$)

The result is N special values of ε that satisfy this equation.

CTDL show: all N ε_n values are upper bounds to the lowest N E_n 's		
and all $\{\phi_n\}$'s are othogonal!	(provided that	
and an (φ_n) is are consignal.	they belong to	
	different	
How to solve $ \mathbf{H} - \varepsilon \mathbf{S} = 0$	values of E _n)	

1. Diagonalize S

 $\mathbf{U}^{\dagger}\mathbf{S}\mathbf{U} = \tilde{\mathbf{S}} \qquad \tilde{S}_{ii} = s_i \delta_{ii}$

(orthogonalize $\{\chi\}$ basis)

Normalize \tilde{S} 2.

$$\underbrace{\left(\tilde{\mathbf{S}}\right)^{-1/2}\tilde{\mathbf{S}}\left(\tilde{\mathbf{S}}\right)^{-1/2} = \mathbf{1} \equiv \tilde{\tilde{\mathbf{S}}} = \mathbf{T}^{\dagger}\mathbf{S}\mathbf{T}}_{\text{3 diagonal matrices}} \quad \text{where } \mathbf{T} = \mathbf{U}\mathbf{S}^{-1/2} \qquad \left(\mathbf{S}^{-1/2}\right)^{\leq} = \mathbf{S}^{-1/2} = \begin{bmatrix} s_1^{-1/2} & 0 & 0\\ 0 & s_2^{-1/2} & 0\\ 0 & 0 & \ddots \end{bmatrix}$$

unitary

This is not an orthogonal transformation, but it does not destroy orthogonality because each function is only being multiplied by a constant.

3. Transform H to orthonormalized basis set

$$\widetilde{\widetilde{\mathbf{H}}} = \underbrace{\$^{-1/2} \left(\mathbf{U}^{\leq} \mathbf{H} \mathbf{U} \right) \$^{-1/2}}_{\mathbf{T}^{\dagger}} \qquad \qquad \underbrace{\mathbf{U} \text{ diagonalizes } \mathbf{S}}_{\text{not } \mathbf{H}}$$

new secular equation

$$\begin{vmatrix} \tilde{\tilde{H}} - \varepsilon \tilde{\tilde{S}} \end{vmatrix} = 0 \quad \text{but} \quad \tilde{\tilde{S}} = \mathbf{1} \\ \begin{vmatrix} \tilde{\tilde{H}} - \varepsilon \mathbf{1} \end{vmatrix} = 0 \quad \text{usual} \quad \tilde{\tilde{H}} \quad \text{diagonalized by} \\ \text{usual procedure!} \end{vmatrix}$$

5. Combine Linear and Nonlinear Variation

typically done in *ab initio* electronic structure calculations

Basis set:
$$\chi_n(\xi_n r)$$
 linear variation where ε_n is a radial scale factor
 $\Psi = \sum_n c_n \chi_n(\xi_n r)$ nonlinear variation
 $S_{nn'}(\xi_n, \xi_{n'}), H_{nn'}(\xi_n, \xi_{n'})$

- 0. pick arbitrary set of $\{\xi_i\}$
- 1. calculate all $H_{ij}(\xi_i, \xi_j)$ & $S_{ij}(\xi_i, \xi_j)$
- 2. Solve $|\mathbf{H} \boldsymbol{\varepsilon} \mathbf{S}| = 0$
 - a. $\mathbf{S} \to \tilde{\mathbf{S}}$ diagonalize \mathbf{S} (orthogonalize) b. $(\tilde{\mathbf{S}})^{-1/2}$ (normalize) c. $\mathbf{H} \to \tilde{\mathbf{H}}$ d. diagonalize $\tilde{\mathbf{H}}$

nonlinear variation begins – find global minimum of $\epsilon_{\rm lowest}$ with respect to each ξ_i

- 3. change ξ_1 from $\xi_1^{(0)} \to \xi_1^{(1)} = \xi_1^{(0)} + \delta$
- 4. recalculate all integrals in **H** and **S** involving χ_1
- 5. Solve $|\mathbf{H} \varepsilon \mathbf{S}| = 0$ to obtain a new set of $\{\varepsilon_i\}$. Pick lowest ε_i .

6. calculate
$$\frac{\partial \varepsilon_{\text{lowest}}}{\partial \xi_1} = \frac{\varepsilon_{\text{lowest}}^{\text{old}} - \varepsilon_{\text{lowest}}^{\text{new}}}{\xi_1^{(0)} - \xi_1^{(1)}}$$

7. repeat #3 – 6 for each ξ_i (always looking only at lowest ϵ_i) This defines a gradient on a multidimensional $\epsilon(\xi_1,...,\xi_N)$ surface. We seek the minimum of this hypersurface. Take a step in direction of steepest descent by an amount determined by $|\partial \epsilon/\partial \xi_{steepest}|$ (small slope, small step; large slope, large step).

This completes 1st iteration. All values of $\{\xi_i\}$ are improved.

8. Return to #3, iterate #3-7 until convergence is obtained.

Nonlinear variations are much slower than linear variations. Typically use ENORMOUS LINEAR $\{\chi\}$ basis set.

Contract this basis set by optimizing nonlinear parameters (exponential scale factors) in a SMALL BASIS SET to match the lowest {\$\phi\$}'s that had initially been expressed in large basis set.

6. Alternative Strategies

- * <u>rigorous variational minimization</u> of E_{lowest}: "*ab initio*"
 * constrain variational function to be orthogonal to specific subset of functions
 - e.g. orthogonal to ground state to get variational convergence. Applies only to higher members of specific symmetry class
 - orthogonal to core: frozen-core approximation. or "Pseudopotentials" (use some observed energy levels to determine Z^{eff}(r) of frozen core)
- * least squares fitting

minimize differences between a set of measured energy levels (or other properties) and a set of computed variational eigen-energies (or other properties computed from variational wavefunctions).

 $\left\{ observed \: E_n \right\} \leftrightarrow \left\{ parameters \text{ in } \mathbf{H}^{eff} \right\}$ molecular constants experimental ψ 's in finite

variational basis set

```
* semi-empirical model
```

replace exact $\hat{\mathbf{H}}$ by a grossly simplified form and restrict basis set to a simple form too.

Then adjust parameters in **H** to match some observed pattern of energy splittings. Use parameters to predict unobserved properties or use values of fit parameters to build insight.