Variational Method
 (See CTDL 1148-1155, [Variational Method]
 252-263, 295-307[Density Matrices])

Last time:
Quasi-Degeneracy \rightarrow Diagonalize a part of infinite \mathbf{H}

* sub-matrix : $\mathbf{H}^{(0)}+\mathbf{H}^{(1)}$
* corrections for effects of out-of-block elements: $\mathbf{H}^{(2)}$
(the Van Vleck transformation)
*diagonalize $\mathbf{H}^{\text {eff }}=\mathbf{H}^{(0)}+\mathbf{H}^{(1)}+\mathbf{H}^{(2)}$
coupled H-O's 2 : $1\left(\omega_{1} \approx 2 \omega_{2}\right)$ Fermi resonance example: polyads

1. Perturbation Theory vs. Variational Method
2. Variational Theorem
3. Stupid nonlinear variation
4. Linear Variation \rightarrow new kind of secular Equation
5. Linear combined with nonlinear variation
6. Strategies for criteria of goodness - various kinds of variational calculations
7. Perturbation Theory vs. Variational Method

Perturbation Theory in effect uses ∞ basis set goals: parametrically parsimonious fit model, $\mathbf{H}^{\text {eff }}$
fit parameters (molecular constants) \leftrightarrow parameters that define $\mathrm{V}(\mathrm{x})$
order - sorting $\frac{\mathrm{H}_{\mathrm{nk}}^{(1)}}{\mathrm{E}_{\mathrm{n}}^{(0)}-\mathrm{E}_{\mathrm{k}}^{(0)}}<1 \quad \begin{aligned} & - \text { errors less than this "mixing } \\ & \text { angle" times the previous order }\end{aligned}$ non-zero correction term
(n is in-block, k is out-of block) because diagonalization is ∞ order (within block).

Variational Method

best possible estimate for lowest few $\mathrm{E}_{\mathrm{n}}, \psi_{\mathrm{n}}$ (and properties derivable from these) using finite basis set and exact form of \mathbf{H}.

Vast majority of computer time in Chemistry is spent in variational calculations Goal is numbers. Insight is secondary.
"Ab Initio" vs. "semi-empirical" or "fitting"
[intentionally bad basis set: Hückel, tight binding qualitative behavior obtained by a fit to a few microscopic-like control parameters]
2. Variational Theorem

If ϕ is approximation to eigenfunction of $\hat{\mathbf{A}}$
belonging to lowest eigenvalue a_{0}, then

$$
\alpha \equiv \frac{\langle\phi| \mathbf{A}|\phi\rangle}{\langle\phi \mid \phi\rangle} \geq \mathrm{a}_{0}
$$

the variational Theorem

PROOF: eigenbasis (which we do not know - but know it must exist)
$\mathbf{A}|\mathrm{n}\rangle=\mathrm{a}_{\mathrm{n}}|\mathrm{n}\rangle$
expand ϕ in eigenbasis of \mathbf{A}, exploiting completeness

$$
\begin{aligned}
& |\phi\rangle=\sum|\mathrm{n}\rangle\langle\mathrm{n} \mid \phi\rangle \\
& \langle\phi| \mathbf{A}|\phi\rangle=\sum_{\mathrm{n}, \mathrm{n}^{\prime}}\langle\phi \mid \mathrm{n}\rangle \underset{\substack{\mathrm{a}_{\mathrm{n}} \delta_{\mathrm{n}^{\prime}} \\
\text { eigenbasis }}}{\stackrel{\downarrow \mathrm{n}|\mathbf{A}| \mathrm{n}^{\prime}}{\downarrow}\left\langle\mathrm{n}^{\prime} \mid \phi\right\rangle=\sum_{\mathrm{n}}|\langle\phi \mid \mathrm{n}\rangle|^{2} \mathrm{a}_{\mathrm{n}},{ }^{\text {completeness }}} \\
& \langle\phi \mid \phi\rangle=\sum_{\mathrm{n}}\langle\phi \mid \mathrm{n}\rangle\langle\mathrm{n} \mid \phi\rangle=\sum_{\mathrm{n}}|\langle\phi \mid \mathrm{n}\rangle|^{2} \\
& \alpha \equiv \frac{\langle\phi| \mathbf{A}|\phi\rangle}{\langle\phi \mid \phi\rangle}=\frac{\sum_{\mathrm{n}} \mathrm{a}_{\mathrm{n}}|\langle\mathrm{n} \mid \phi\rangle|^{2}}{\sum_{\mathrm{n}^{\prime}}\left|\left\langle\mathrm{n}^{\prime} \mid \phi\right\rangle\right|^{2}}
\end{aligned}
$$

subtract a_{0} from both sides

$$
\alpha-\mathrm{a}_{0}=\frac{\sum_{\mathrm{n}}\left(\mathrm{a}_{\mathrm{n}}-\mathrm{a}_{0}\right)|\langle\mathrm{n} \mid \phi\rangle|^{2}}{\sum_{\mathrm{n}^{\prime}}\left|\left\langle\mathrm{n}^{\prime} \mid \phi\right\rangle\right|^{2}} \geq 0
$$

5.73 Lecture \#18

because, by definition of $\mathrm{a}_{0}, \mathrm{a}_{\mathrm{n}} \geq \mathrm{a}_{0}$ for all n and all terms in sum are $\therefore \geq 0$.

$$
\therefore \alpha \geq \mathrm{a}_{0} . \quad \text { QED } \quad\binom{\text { but useless because we }}{\text { can' } \mathrm{t} \text { know } \mathrm{a}_{\mathrm{n}} \text { or }\langle\mathrm{n} \mid \phi\rangle}
$$

It is possible to perform a variational calculation for any \mathbf{A}, not limited to \mathbf{H}.
3. Stupid Nonlinear Variation

Use the wrong functional form or the wrong variational criterion to get poor results - illustrates that the variational function must have sufficient flexibility and the variational criterion must be as it is specified in the variational theorem, as opposed to a clever shortcut.

The H atom Schr. Eq. $(\ell=0)$

$$
\mathbf{H}=-\underbrace{-\frac{1}{2} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}}_{T} \underbrace{-\frac{1}{\mathrm{r}}}_{\mathrm{V}}
$$

and we know $\left\{\begin{array}{l}\psi_{1 s}(r)=\langle r \mid 1 s\rangle=\pi^{-1 / 2} e^{-r} \\ E_{1 s}=-1 / 2 \mathrm{au}\end{array} \quad\left[\begin{array}{ll}\left.1 \mathrm{au}=219475 \mathrm{~cm}^{-1}\right]\end{array}\right.\right.$

$$
\begin{array}{ll}
\text { but try }\langle r \mid \phi\rangle=\left[\xi^{3} / 2 \pi\right]^{1 / 2}(\xi r) e^{-\xi r} & \text { normalized } \\
\text { for all } \xi
\end{array}
$$

ξ is a scale factor that controls overall size of $\phi(\mathrm{r})$
[actually this is the form of $\psi_{2 \mathrm{p}}(\mathrm{r})$] which is necessarily orthogonal to $\psi_{1 \mathrm{~s}}!$ STUPID!

$$
\begin{array}{r}
\left(\phi(0)=0 \quad \text { but } \quad \psi_{1 s}(0)=\pi^{-1 / 2}\right) \\
\varepsilon=\frac{\langle\phi| \mathbf{H}|\phi\rangle}{\langle\phi \mid \phi\rangle}=\frac{4}{3}\left(\frac{\xi^{2}-3 \xi}{8}\right) \quad \begin{array}{l}
\text { skipped a lot } \\
\text { of algebra }
\end{array}
\end{array}
$$

$\operatorname{minimize} \varepsilon: \quad \frac{d \varepsilon}{d \xi}=0 \quad \xi_{\min }=3 / 2 \rightarrow \varepsilon_{\min }=-3 / 8$ au

FAILURE! $\quad\left[\right.$ c.f. the true values: $\left.\mathrm{E}_{1 \mathrm{~s}}=-1 / 2 \mathrm{au}, \mathrm{E}_{2 \mathrm{~s}}=-\frac{1}{8} \mathrm{au}\right]$

5.73 Lecture \#18

Try somethng clever (but lazy):
What is the value of ξ that maximizes $\langle\phi \mid 1 \mathrm{~s}\rangle$?
for the best variational $\xi=3 / 2, C_{1 s} \equiv\langle\phi(\xi=3 / 2) \mid 1 s\rangle=0.9775$
if we maximize $C_{1 s}$ wrt. $\xi: \xi=5 / 3 \rightarrow C_{1 s}=0.9826$ better?
but $\varepsilon=-0.370$ results, a poorer bound than $\xi=3 / 2 \rightarrow \varepsilon=-0.375$

* need flexibility in ϕ
* can@improve on $\frac{\mathrm{d} \varepsilon}{\mathrm{d} \xi}$ by employing an alternative variational strategy

This was stupid anyway because we would never use the variational method when we already know the answer!
4. Linear Variation \rightarrow Secular Equation

$$
\begin{aligned}
& \phi=\sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{n}} \chi_{\mathrm{n}} \\
& \left\langle\chi_{\mathrm{n}}\right| \mathbf{H}\left|\chi_{\mathrm{n}^{\prime}}\right\rangle=\mathrm{H}_{\mathrm{nn}^{\prime}} \\
& \left\langle\chi_{\mathrm{n}} \mid \chi_{\mathrm{n}^{\prime}}\right\rangle=\mathrm{S}_{\mathrm{nn}^{\prime}} \\
& \text { overlap integrals } \\
& \text { (non-orthogonal basis sets are often } \\
& \text { convenient) } \\
& \varepsilon=\frac{\langle\phi| \mathbf{H}|\phi\rangle}{\langle\phi \mid \phi\rangle}=\frac{\sum_{n, n^{\prime}} c_{n} c_{n^{\prime}} H_{n n^{\prime}}}{\sum_{m, m^{\prime}} c_{m} c_{m^{\prime}} S_{m m^{\prime}}} \quad \text { rearrange this equation } \\
& \begin{array}{ll}
\varepsilon \sum_{\mathrm{m}, \mathrm{~m}^{\prime}} \mathrm{c}_{\mathrm{m}} \mathrm{c}_{\mathrm{m}} \mathrm{~S}_{\mathrm{mm}^{\prime}}=\sum_{\mathrm{n}, \mathrm{n}^{\prime}} \mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{n}^{\prime}} \mathrm{H}_{\mathrm{nn}^{\prime}} & \text { to find minimum value of } \varepsilon, \\
& \text { take } \frac{\partial}{\partial \mathrm{c}_{\mathrm{j}}} \text { for each } j \text { and require that }
\end{array} \\
& \frac{\partial \varepsilon}{\partial c_{j}}=0 \text { for each } \mathrm{j} \text { linear variation! } \\
& \text { because we are seeking to minimize } \varepsilon \text { with respect to each } c_{j} \text {. } \\
& \text { Find the global minimum of the } \varepsilon\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots \mathrm{c}_{\mathrm{N}}\right) \text { hypersurface. }
\end{aligned}
$$

the only terms that survive $\frac{\partial}{\partial c_{j}}$ are those that include c_{j}.

$$
\begin{aligned}
& \varepsilon \sum_{\mathrm{m}} \mathrm{c}_{\mathrm{m}}\left(\mathrm{~S}_{\mathrm{mj}}+\mathrm{S}_{\mathrm{jm}}\right)=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}}\left(\mathrm{H}_{\mathrm{jn}}+\mathrm{H}_{\mathrm{nj}}\right) \\
& \text { if }\left\{\chi_{\mathrm{n}}\right\} \text { are real } \quad \mathrm{S}_{\mathrm{ij}}=\mathrm{S}_{\mathrm{ji}}, \mathrm{H}_{\mathrm{ij}}=\mathrm{H}_{\mathrm{ji}} \\
& 0=\sum_{\mathrm{n}=1}^{\mathrm{N}} \mathrm{c}_{\mathrm{n}}\left(\mathrm{H}_{\mathrm{jn}}-\varepsilon \mathrm{S}_{\mathrm{jn}}\right)
\end{aligned}
$$

N linear homogeneous equations in N unknown c_{n} 's
Non trivial $\left\{\mathrm{c}_{\mathrm{n}}\right\}$ only if $|\mathbf{H}-\varepsilon \mathbf{S}|=0$
(Not same form as $|\mathbf{H}-\mathbb{1} \mathbf{E}|=0$)

The result is N special values of ε that satisfy this equation.
CTDL show: all $N \varepsilon_{n}$ values are upper bounds to the lowest $N E_{n}$'s and all $\left\{\phi_{n}\right\}$'s are othogonal! (provided that they belong to different values of E_{n})
How to solve $|\mathbf{H}-\mathbf{\varepsilon} \mathbf{S}|=0$

1. Diagonalize \mathbf{S}

$$
\mathbf{U}^{\dagger} \mathbf{S U}=\tilde{\mathbf{S}} \quad \tilde{S}_{i j}=s_{i} \delta_{i j}
$$

(orthogonalize $\{\chi\}$ basis)
2. Normalize $\tilde{\mathbf{S}}$

$$
\underbrace{\left.(\tilde{\mathbf{S}})^{-1 / 2} \tilde{\mathbf{S}} \tilde{\mathbf{S}}\right)^{-1 / 2}}_{\begin{array}{c}
3 \text { diagonal } \\
\text { matrices }
\end{array}}=\mathbf{1} \equiv \tilde{\mathbf{S}}=\mathbf{T}^{\dagger} \mathbf{S T} \quad \text { where } \mathbf{T}=\mathbf{U S}^{-1 / 2} \quad\left(\boldsymbol{\$}^{-1 / 2}\right)^{\leq}=\boldsymbol{\$}^{-1 / 2}=\left(\begin{array}{ccc}
\mathrm{s}_{1}^{-1 / 2} & 0 & 0 \\
0 & \mathrm{~s}_{2}^{-1 / 2} & 0 \\
0 & 0 & \ddots
\end{array}\right)
$$

unitary

This is not an orthogonal transformation, but it does not destroy orthogonality because each function is only being multiplied by a constant.

5.73 Lecture \#18

18-6
3. Transform \mathbf{H} to orthonormalized basis set

$$
\tilde{\mathbf{H}}=\underbrace{\boldsymbol{\xi}^{-1 / 2}\left(\mathbf{U}^{\leq} \mathbf{H} \mathbf{U}\right) \boldsymbol{S}^{-1 / 2}}_{\mathbf{T}^{\dagger}} \underset{\mathbf{T}}{ }
$$

\mathbf{U} diagonalizes \mathbf{S} not H
new secular equation

$$
\begin{aligned}
& |\tilde{\tilde{\mathbf{H}}}-\varepsilon \tilde{\tilde{\mathbf{S}}}|=0 \quad \text { but } \quad \tilde{\mathbf{S}}=\mathbf{1} \\
& |\tilde{\tilde{\mathbf{H}}-\varepsilon \mathbf{l}}|=0 \quad \text { usual } \quad \tilde{\tilde{\mathbf{H}}} \quad \begin{array}{l}
\text { diagonalized by } \\
\text { usual procedure! }
\end{array}
\end{aligned}
$$

5. Combine Linear and Nonlinear Variation

typically done in $a b$ initio electronic structure calculations
Basis set: $\quad \chi_{n}\left(\xi_{n} r\right)$ linear variation where ε_{n} is a radial scale factor

$$
\psi=\sum_{n} c_{n} \chi_{n}(\xi_{n} r \underbrace{}_{\text {nonlinear variation }}
$$

$$
S_{n n^{\prime}}\left(\xi_{n}, \xi_{n^{\prime}}\right), H_{n n^{\prime}}\left(\xi_{n}, \xi_{n^{\prime}}\right)
$$

0. pick arbitrary set of $\left\{\xi_{i}\right\}$
1. calculate all $\mathrm{H}_{\mathrm{ij}}\left(\xi_{\mathrm{i}}, \xi_{\mathrm{j}}\right) \& \mathrm{~S}_{\mathrm{ij}}\left(\xi_{\mathrm{i}}, \xi_{\mathrm{j}}\right)$
2. Solve $|\mathbf{H}-\varepsilon \mathbf{S}|=0$
a. $\quad \mathbf{S} \rightarrow \tilde{\mathbf{S}}$ diagonalize $\mathbf{S} \quad$ (orthogonalize)
b. $(\tilde{\mathbf{S}})^{-1 / 2} \quad$ (normalize)
c. $\quad \mathbf{H} \rightarrow \tilde{\tilde{\mathbf{H}}}$
d. diagonalize $\tilde{\tilde{\mathbf{H}}}$
nonlinear variation begins - find global minimum of $\varepsilon_{\text {lowest }}$ with respect to each ξ_{i}
3. change ξ_{1} from $\xi_{1}^{(0)} \rightarrow \xi_{1}^{(1)}=\xi_{1}^{(0)}+\delta$
4. recalculate all integrals in \mathbf{H} and \mathbf{S} involving χ_{1}
5. Solve $|\mathbf{H}-\varepsilon \mathbf{S}|=0$ to obtain a new set of $\left\{\varepsilon_{i}\right\}$.

Pick lowest ε_{i}.
6. calculate $\frac{\partial \varepsilon_{\text {lowest }}}{\partial \xi_{1}}=\frac{\varepsilon_{\text {lowest }}^{\text {old }}-\varepsilon_{\text {lowest }}^{\text {new }}}{\xi_{1}^{(0)}-\xi_{1}^{(1)}}$
7. repeat $\# 3-6$ for each ξ_{i} (always looking only at lowest ε_{i})

This defines a gradient on a multidimensional $\varepsilon\left(\xi_{1}, \ldots \xi_{N}\right)$ surface. We seek the minimum of this hypersurface. Take a step in direction of steepest descent by an amount determined by $\left|\partial \varepsilon / \partial \xi_{\text {steepest }}\right|$ (small slope, small step; large slope, large step).

This completes 1 st iteration. All values of $\left\{\xi_{i}\right\}$ are improved.
8. Return to \#3, iterate \#3-7 until convergence is obtained.

Nonlinear variations are much slower than linear variations.
Typically use ENORMOUS LINEAR $\{\chi\}$ basis set.
Contract this basis set by optimizing nonlinear parameters (exponential scale factors) in a SMALL BASIS SET to match the lowest \{ $\phi\}$'s that had initially been expressed in large basis set.

5.73 Lecture \#18

18-8

6. Alternative Strategies

* rigorous variational minimization of $\mathrm{E}_{\text {lowest }}$: " $a b$ initio"
* constrain variational function to be orthogonal to specific subset of functions
e.g. orthogonal to ground state - to get variational convergence. Applies only to higher members of specific symmetry class
or orthogonal to core: frozen-core approximation.
"Pseudopotentials" (use some observed energy levels to determine $\mathrm{Z}^{\text {eff }}(\mathrm{r})$ of frozen core)
* least squares fitting
minimize differences between a set of measured energy levels (or other properties) and a set of computed variational eigen-energies (or other properties computed from variational wavefunctions).
$\left\{\right.$ observed $\left.\mathrm{E}_{\mathrm{n}}\right\} \leftrightarrow\left\{\right.$ parameters in $\left.\mathbf{H}^{\text {eff }}\right\}$
molecular constants
\Downarrow
experimental ψ 's in finite
variational basis set
* semi-empirical model
replace exact $\hat{\mathbf{H}}$ by a grossly simplified form and restrict basis set to a simple form too.
Then adjust parameters in \mathbf{H} to match some observed pattern of energy splittings. Use parameters to predict unobserved properties or use values of fit parameters to build insight.

