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Variational Method
(See CTDL 1148-1155, [Variational Method]

252-263, 295-307[Density Matrices])

Last time:
Quasi-Degeneracy → Diagonalize a part of infinite H

* sub-matrix : H(0) + H(1)

* corrections for effects of out-of-block elements:  H(2)

(the Van Vleck transformation)
*diagonalize Heff =H(0) + H(1) + H(2)

coupled H-O’s 2 : 1 (ω1≈2ω2) Fermi resonance example: polyads

1. Perturbation Theory vs. Variational Method
2. Variational Theorem
3. Stupid nonlinear variation
4. Linear Variation → new kind of secular Equation
5. Linear combined with nonlinear variation
6. Strategies for criteria of goodness — various kinds of variational

calculations

1. Perturbation Theory vs. Variational Method

Perturbation Theory in effect uses ∞ basis set
goals:  parametrically parsimonious fit model, Heff

fit parameters (molecular constants) ↔ parameters that define V(x)

order - sorting
Hnk

(1)

En
(0) − Ek

(0) < 1 — errors less than this “mixing
angle” times the  previous order
non–zero correction term

(n is in-block, k is out-of block) because diagonalization is ∞ order
(within block).

Variational Method

best possible estimate for lowest few En, ψn (and properties derivable from
these) using finite basis set and exact form of H.
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Vast majority of computer time in Chemistry is spent in variational calculations
Goal is numbers.  Insight is secondary.
“Ab Initio” vs. “semi-empirical” or  “fitting”

[intentionally bad basis set:  Hückel, tight binding –
qualitative behavior obtained by a fit to a few microscopic–like
control parameters]

2. Variational Theorem

not necessarily
normalized

any observable

α ≡
φ A φ
φ φ
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If φ is approximation to eigenfunction of Â

belonging to lowest eigenvalue a0,  then

PROOF:  eigenbasis (which we do not know – but know it must exist)
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subtract a0 from both sides

α − a0 =
an − a0( ) n φ 2

n
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≥ 0

expand φ in eigenbasis of A, exploiting completeness

the variational Theorem

all terms in both sums are ≥ 0

again, all terms in
both sums are ≥ 0

eigenbasis
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because, by definition of a0, an ≥ a0 for all n and all terms in sum are ∴ ≥ 0.

 ∴ α ≥ a0.  QED
but useless because we
can' t know an or n φ







3. Stupid Nonlinear Variation
Use the wrong functional form or the wrong variational criterion to get poor
results — illustrates that the variational function must have sufficient
flexibility and the variational criterion must be as it is specified in the
variational  theorem, as opposed to a clever shortcut.

The H atom Schr. Eq. (l = 0)
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 ξ is a scale factor that controls overall size of φ(r)

[actually this is the form of ψ2p(r)] which is necessarily orthogonal to ψ1s!  STUPID!

φ ψ( ) ( ) /0 0 01
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skipped a lot
of algebra

minimize :ε ε
ξ

ξ εd

d
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FAILURE!

It is possible to perform a variational calculation for any A, not limited to H.
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Try somethng clever (but lazy):
What is the value of ξ that maximizes 〈φ1s〉?

for the best variational 

if we maximize 

ξ φ ξ

ξ ξ

= ≡ =( ) =

= → =

3 2 3 2 1 0 9775

5 3 0 9826
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 .   :  / .

C s

C wrt C

s

s s better?

but ε  = –0.370 results, a poorer bound than ξ = 3/2 → ε = –0.375

* need flexibility in 

* can©t improve on 
d
d

 by employing an alternative variational strategy

φ
ε
ξ

This was stupid anyway because we would never use the
variational method when we already know the answer!

4. Linear Variation → Secular Equation

φ = cnχn
n=1

N
∑

χn H χ ′n = Hn ′n

χn χ ′n = Sn ′n
overlap integrals
(non-orthogonal basis sets are often
convenient)
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= 0 for each j

the only terms that survive 
c

 are those that include c
j

j
∂

∂
.

rearrange this equation

linear variation!

to find minimum value of ,

take 
c

 for each  and require that
j

ε
∂

∂
j

KEY
TOPIC for
this lecture

because we are seeking to minimize ε with respect to each cj.
Find the global minimum of the ε(c1,c2,…cN) hypersurface.
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ε cm
m
∑ Smj + Sjm( ) = cn

n
∑ Hjn + Hnj( )

if χn{ } are real Sij = Sji,  Hij = Hji

0 = cn
n=1

N
∑ Hjn − εSjn( )

one such equation for each j (same set of unknown {cn})

N linear homogeneous equations in N unknown cn’s
Non trivial {cn} only if |H – εS| = 0
(Not same form as |H – 1E| = 0)

CTDL show:  all N εn values are upper bounds to the lowest N En’s
  and all {φn}’s are othogonal! (provided that

they belong to
different
values of En)How to solve |H – εS| = 0

1. Diagonalize S

U SU S† ˜ ˜= =S sij i ijδ

(orthogonalize {χ} basis)

2. Normalize S̃

S̃( )−1/2
S̃ S̃( )−1/2

= 1 ≡ S
≈

= T†ST

where  T = US−1/23 diagonal
matrices

This is not an orthogonal transformation, but it does not destroy
orthogonality because each function is only being multiplied by a
constant.

unitary

The result is N special values of ε that satisfy this equation.
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These are all of the surviving terms
(i.e. those that include j).  Each j term
appears twice in both sums, once as a
bra and once as a ket.
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3. Transform H to orthonormalized basis set

H S U U S
≈

− −= ( )ƒ ƒ/ ≤ /1 2 1 2H

T† T

U diagonalizes S
not H

new secular equation

H
≈

− ε S
≈

= 0 but S
≈

=1

H
≈

− ε1 = 0 usual H
≈

diagonalized by
usual  procedure!

5. Combine Linear and Nonlinear Variation

typically done in ab initio electronic structure calculations
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linear variation where εn is a radial scale factor

nonlinear variation

0. pick arbitrary set of ξi{ }
1. calculate all Hij ξi ,ξ j( )  &  Sij ξi ,ξ j( )
2. Solve H - εS = 0

Basis set:

a

c

d

. ˜

˜
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H H
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→
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diagonalize (orthogonalize)

b. (normalize)

diagonalize 

1 2

nonlinear variation begins – find global minimum of εlowest

with respect to each ξi
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7. repeat #3 – 6 for each ξi (always looking only at lowest εi)
This defines a gradient on a multidimensional ε(ξ1,…ξN) surface.  We
seek the minimum of this hypersurface. Take a step in direction of
steepest descent by an amount determined by |∂ε/∂ξsteepest| (small slope,
small step; large slope, large step).

This completes 1st iteration.  All values of {ξi}are improved.

8. Return to #3, iterate #3-7 until convergence is obtained.

Nonlinear variations are much slower than linear variations.
Typically use ENORMOUS LINEAR {χ} basis set.
Contract this basis set by optimizing nonlinear parameters (exponential scale

factors) in a SMALL BASIS SET to match the lowest {φ}’s that had initially
been expressed in large basis set.
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6. Alternative Strategies

* rigorous variational minimization of Elowest: “ab initio”
* constrain variational function to be orthogonal to specific subset of functions

e.g. orthogonal to ground state – to get variational convergence.
Applies only to higher members of specific symmetry class

or orthogonal to core:  frozen-core approximation.
“Pseudopotentials” (use some observed energy levels to
determine Zeff(r) of frozen core)

* least squares fitting

minimize differences between a set of measured energy levels (or other
properties) and a set of computed variational eigen-energies (or other
properties computed from variational wavefunctions).

observed En{ } ↔ parameters in Heff{ }
molecular constants

⇓
experimental ψ ‘s in finite

variational basis set

* semi-empirical model

replace exact     by a grossly simplified form and restrict basis set to a simple
form too.
Then adjust parameters in H to match some observed pattern of energy
splittings.  Use parameters to predict unobserved properties or use values of
fit parameters to build insight.

Ĥ


