Density Matrices I

(See CTDL pp. 252-263, 295-307**, 153-163, 199-202, 290-294)

Last time: Variational Method

Linear variation: $0 = |\mathbf{H} - \varepsilon \mathbf{S}| \Rightarrow 0 = \left| \tilde{\mathbf{H}} - \varepsilon \mathbf{I} \right|$

$$\psi = \sum_{n} c_n \phi_n \quad \frac{dc}{dc_n} = 0$$

[Variation vs. pert. theory

TODAY

 ψ phase ambiguity – but for all observables each state always appears as a bra and a ket.

what is needed to encode motion in the probability density? A superposition of eigenstates belonging to several different values of E.

coherent superposition vs. statistical mixture: think about polarized light

ρ no phase ambiguity

"**coherences**" in off-diagonal position "**populations**" along diagonal

 $\langle \mathbf{A} \rangle = \mathrm{Tr}(\boldsymbol{\rho}\mathbf{A}) = \mathrm{Tr}(\mathbf{A}\boldsymbol{\rho})$

Quantum Beats

prepared state $\rightarrow \rho$

detection $\rightarrow D$ (detect or destroy coherences)

$\rho(t)$

$$\langle \mathbf{A} \rangle_t$$

$$\frac{d}{dt} \langle \mathbf{A} \rangle = \frac{i}{\hbar} \langle [\mathbf{H}, \mathbf{A}] \rangle + \left\langle \frac{\partial \mathbf{A}}{\partial t} \right\rangle$$
$$ih \frac{d\mathbf{\rho}}{dt} = [\mathbf{H}(t), \mathbf{\rho}] \qquad \text{* state:} \qquad \mathbf{\rho}$$
$$\stackrel{\text{* evolution:}}{\text{+ detection:}} \mathbf{H}$$

19 - 2

Let us define a quantity called "Density Matrix"

 $\rho \equiv |\psi\rangle\langle\psi|$ a pure state

 $\boldsymbol{\psi}$ can be any sort of QM wavefunction

* eigenstate of H * coherent superposition of several eigenstates of H

but $\boldsymbol{\psi}$ cannot represent a <u>statistical</u> (i.e. incoherent) mixture of several different $\boldsymbol{\psi}$ s

However, **p** can represent a statistical (i.e. equilibrium) mixture of states

$$\boldsymbol{\rho} \equiv \sum_{k} p_{k} |\psi_{k}\rangle \langle\psi_{k}| = \sum_{k} p_{k} \boldsymbol{\rho}_{k}$$
$$\boxed{\sum p_{k} = 1}$$

Example

* one beam of linarly polarized light, with the polarization axis (ɛ-field)

y
$$\hat{e}_{45^{\circ}}$$
 $\hat{e} = 2^{-1/2} (\hat{e}_x + \hat{e}_y)$

two beams of linearly polarized light, 50% along \hat{e}_{x} , 50% along \hat{e}_{y} . *

These 2 cases seem to be identical if you make 2 measurements with analyzer polarizers along \hat{e}_x then \hat{e}_y . But they are different with respect to 2 measurements with analyzer polarizers along $2^{-1/2}(\hat{e}_x + \hat{e}_y)$ then $2^{-1/2}(\hat{e}_x - \hat{e}_y)$.

In the statistical mixture, it does not matter how the analyzer is oriented.

19 - 3

What are the properties of ρ ?

1. ρ for a pure state is Hermitian with positive elements along diagonal and other elements off-diagonal.

$$\rho_{nm} = \langle n | \psi \rangle \langle \psi | m \rangle$$

$$c_n \quad | \psi \rangle = \sum c_n | n \rangle$$

$$in \text{ any basis set}$$

$$\mu \text{ by } = \sum c_n | n \rangle$$

$$in \text{ any basis set}$$

$$hut \text{ H eigenbasis}$$

$$\rho_{nm} = c_n c_m^*$$

but
$$(\mathbf{\rho}^{\dagger})_{nm} = \rho_{mn}^{*} = [\langle m | \psi \rangle \langle \psi | n \rangle]^{*}$$

= $\langle \psi | m \rangle \langle n | \psi \rangle = \langle n | \psi \rangle \langle \psi | m \rangle = \rho_{nm}$

$$\rho_{nn} = \langle n | \psi \rangle \langle \psi | n \rangle = c_n c_n^* = |c_n|^2 \ge 0$$

positive along diagonal

2. <u>2 × 2 Example</u> <u>Coherent Superposition</u> vs. <u>Statistical Mixture</u>

$$|\psi\rangle = 2^{-1/2} \begin{pmatrix} 1\\ \pm 1 \end{pmatrix}$$
$$\boldsymbol{\rho}_{cs} = \frac{1}{2} \begin{pmatrix} 1\\ \pm 1 \end{pmatrix} (1 \pm 1) = \frac{1}{2} \begin{pmatrix} 1\\ \pm 1 \end{bmatrix} (1 \pm 1)$$

Trace $\rho = 1$

Now consider a statistical mixture state.

$$\boldsymbol{\rho}_{\rm sm} = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix} (1 \ 0) + \frac{1}{2} \begin{pmatrix} 0 \\ 1 \end{pmatrix} (0 \ 1)$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \text{trace } \boldsymbol{\rho} = 1$$

The difference is in the off-diagonal positions of $\boldsymbol{\rho}$

diagonal elements \rightarrow "populations"	(statistical mixture states have
off-diagonal elements \rightarrow "coherences"	strictly diagonal $\boldsymbol{\rho}$)

Expectation values of \hat{A} in terms of ρ

$$\langle \mathbf{A} \rangle = \langle \boldsymbol{\psi} | \mathbf{A} | \boldsymbol{\psi} \rangle = \sum_{j,k} \langle \boldsymbol{\psi} | \mathbf{k} \rangle \langle \mathbf{k} | \mathbf{A} | \mathbf{j} \rangle \langle \mathbf{j} | \boldsymbol{\psi} \rangle$$

=
$$\sum_{j,k} \langle \underline{j} | \boldsymbol{\psi} \rangle \langle \boldsymbol{\psi} | \mathbf{k} \rangle \mathbf{A}_{kj}$$

=
$$\sum_{j} (\boldsymbol{\rho} \mathbf{A})_{jj} \equiv \operatorname{Trace}(\boldsymbol{\rho} \mathbf{A})$$

Could have arranged the factors $\sum_{j,k} \mathbf{A}_{kj} \langle j | \psi \rangle \langle \psi | k \rangle = \sum_{k} (\mathbf{A} \boldsymbol{\rho})_{kk} = \text{Trace}(\mathbf{A} \boldsymbol{\rho})$

$$\langle \mathbf{A} \rangle = \operatorname{Trace}(\mathbf{A}\boldsymbol{\rho}) = \operatorname{Trace}(\boldsymbol{\rho}\mathbf{A})$$

So $\boldsymbol{\rho}$ describes state of system, \boldsymbol{A} describes a measurement to be made on the system

simple prescription for calculating $\langle A \rangle$

The separation between initial preparation, evolution, and measurement of a specific observable is very convenient and instructive.

Example: Quantum Beats

Preparation, evolution, detection

magically prepare some coherent superposition state $\Psi(t)$

$$\Psi(t) = N \sum_{\substack{n \\ \text{N} \\ \text{Several eigenstates of H.} \\ \text{Evolve freely without} \\ \text{any time-dependent} \\ \text{intervention}}} P(t) = |\Psi(t)\rangle \langle \Psi(t)|$$

$$N = \left[\sum_{\substack{n \\ n}} |a_n|^2\right]^{-1/2}$$
normalization

Case (1): Detection: only one of the eigenstates, ψ_1 , in the superposition is capable of giving fluorescence that our detector can "see".

Thus
$$\mathbf{D} = |\psi_1\rangle\langle\psi_1| = \begin{pmatrix} 1 & 0 & \cdots \\ 0 & 0 & 0 \\ \vdots & 0 & 0 \end{pmatrix}$$
 a projection operator
(designed to project out only $|\psi_1\rangle$)
part of state vector or ρ_{11} part of \mathbf{p} .
$$\mathbf{p} = N^2 \begin{pmatrix} |a_1|^2 & a_1 a_2^* e^{-(E_1 - E_2)t/\hbar} & \cdots \\ |a_2|^2 & & \ddots \\ |a_3|^2 & \ddots \\ \rho_{12} = N^2 a_1 e^{-E_1 t/\hbar} a_2^* e^{+iE_2 t/\hbar} & \mathbf{D} \text{ picks out only 1st} \\ \gamma_{12} = N^2 a_1 e^{-E_1 t/\hbar} a_2^* e^{+iE_2 t/\hbar} & \mathbf{D} \text{ picks out only 1st} \\ \langle \mathbf{D} \rangle_t = \text{Trace}(\mathbf{D}\mathbf{p}) = N^2 \text{ Trace} \begin{pmatrix} |a_1|^2 & a_1 a_2^* e^{-i\omega_{12}t} & \text{stuff} & \cdots \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} \\ = N^2 |a_1|^2 & \text{no time dependence!} \end{cases}$$

case (2): a particular linear combination of eigenstates is bright: the initial state $2^{-1/2}(\psi_1 + \psi_2)$ has $\langle \mathbf{D} \rangle = 1$.

[if the bright state had been $2^{-1/2}(\psi_1 - \psi_2)$, then $\operatorname{Tr}(\mathbf{D}\boldsymbol{\rho})$ would be the same except for $\overline{-2\operatorname{Re}}[$]] If $|a_1|^2 = |a_2|^2$ (and a_1 , a_2 real), $\operatorname{Trace}(\mathbf{D}\boldsymbol{\rho}) = \operatorname{N}^2 |a_1|^2 [1 \pm \cos \omega_{12}t]$ (N² = 1/2) QUANTUM BEAT! 100% modulation!

So we see that the same $\Psi(x,t)$ or $\rho(t)$ can look simple or complicated depending on the nature of the measurement operator! The measurement operator is designed to be sensitive only to specific coherences (i.e. locations in ρ) which oscillate at ω_{ij} . THIS IS THE REASON WHY WE SEPARATE PREPARATION AND OBSERVATION SO CLEANLY.

Time evolution of $ho_{\rm nm}$ and $\langle {f A}
angle$

Start with the time-dependent Schrödinger equation:

$$H\Psi = i\hbar \frac{\partial \Psi}{\partial t} \quad \begin{cases} H|\Psi\rangle = i\hbar \frac{\partial}{\partial t}|\Psi\rangle \\ \\ \langle\Psi|H = -i\hbar \frac{\partial}{\partial t}\langle\Psi| \end{cases}$$

for time-independent **H** we know $\Psi(t) = \sum_{n} a_n \psi_n e^{-iE_n t/\hbar}$

1. **ρ**(t)

$$\boldsymbol{\rho}(t) = |\Psi(t)\rangle \langle \Psi(t)|$$
$$\rho_{nn}(t) = \langle n|\Psi(t)\rangle \langle \Psi(t)|n\rangle = |a_n|^2$$

a time independent "**population**" in state *n*.

$$\rho_{nm}(t) = a_n a_m^* e^{-i(E_n - E_m)t/\hbar} = a_n a_m^* e^{-i\omega_{nm}t} \quad \text{a "coherence" which} \\ \text{oscillates at } \omega_{nm} \text{ (eigenstate energy differences }/\hbar)$$

2. $\langle \mathbf{A} \rangle_{t}$

Recall
$$i\hbar \frac{\partial \Psi}{\partial t} = \mathbf{H}\Psi$$

 $\frac{\partial}{\partial t} \langle \mathbf{A} \rangle = \left[\frac{\partial}{\partial t} \langle \Psi | \right] \mathbf{A} | \Psi \rangle + \left\langle \Psi | \frac{\partial \mathbf{A}}{\partial t} | \Psi \rangle + \left\langle \Psi | \mathbf{A} \left[\frac{\partial}{\partial t} | \Psi \rangle \right] \right]$
 $= \frac{-1}{i\hbar} \left[\langle \Psi | \mathbf{H}] \mathbf{A} | \Psi \rangle + \left\langle \frac{\partial \mathbf{A}}{\partial t} \right\rangle + \left\langle \Psi | \mathbf{A} \left[\frac{1}{i\hbar} \mathbf{H} | \Psi \rangle \right] \right]$
 $= \frac{i}{\hbar} \langle [\mathbf{H}, \mathbf{A}] \rangle + \left\langle \frac{\partial \mathbf{A}}{\partial t} \right\rangle$
Heisenberg Equation of Motion

Note that nothing has been assumed about the time-dependence of **H**.

If **A** commutes with **H** (regardless of whether **H** is time-dependent), there is no dynamics as far as observable **A** is concerned. However, if **A** does not commute with **H**, there can be dynamics of $\langle \mathbf{A} \rangle$ even if both **A** and **H** are time-independent.

Summarize

NMR pulse gymnastics

statistical mixture states - use same machinery BUT add the independent \mathbf{p}_k matrices with weights p_k that correspond to their fractional populations.

 ρ is Hermitian so can be diagonalized by $T^{\dagger}\rho T$. However, if ρ is time-dependent, T would have to be time-dependent. This transformation gives a representation without any coherences in $\hat{\rho}$ even if we started with a coherent superposition state. No problem because this transformation will undiagonalize H, thereby reintroducing time dependencies.