Density Matrices I

(See CTDL pp. 252-263, 295-307**, 153-163, 199-202, 290-294)
Last time: Variational Method
$[$ Linear variation: $0=|\mathbf{H}-\varepsilon \mathbf{S}| \Rightarrow 0=|\tilde{\tilde{\mathrm{H}}}-\varepsilon \mathbf{\}|$

$$
\psi=\sum_{\mathrm{n}} \mathrm{c}_{\mathrm{n}} \phi_{\mathrm{n}} \quad \frac{\mathrm{~d} \varepsilon}{\mathrm{dc}_{\mathrm{n}}}=0
$$

[Variation vs. pert. theory

TODAY

ψ phase ambiguity - but for all observables each state always appears as a bra and a ket.
what is needed to encode motion in the probability density? A superposition of eigenstates belonging to several different values of E.
coherent superposition vs. statistical mixture: think about polarized light
$\rho \quad$ no phase ambiguity
"coherences" in off-diagonal position
"populations" along diagonal
$\langle\mathbf{A}\rangle=\operatorname{Tr}(\boldsymbol{\rho} \mathbf{A})=\operatorname{Tr}(\mathbf{A} \boldsymbol{\rho})$
Quantum Beats
prepared state $\rightarrow \boldsymbol{\rho}$
detection $\rightarrow \mathbf{D}$ (detect or destroy coherences)
$\mathbf{\rho}(t)$
$\langle\mathbf{A}\rangle_{t}$

$$
\begin{aligned}
& \frac{d}{d t}\langle\mathbf{A}\rangle=\frac{i}{\hbar}\langle[\mathbf{H}, \mathbf{A}]\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle \\
& i h \frac{d \mathbf{\rho}}{d t}=[\mathbf{H}(t), \mathbf{\rho}] \quad \text { * state: }
\end{aligned}
$$

* evolution: H
* detection: D

Let us define a quantity called "Density Matrix"

$$
\boldsymbol{\rho} \equiv|\psi\rangle\langle\boldsymbol{\psi}| \quad \text { a pure state }
$$

$\boldsymbol{\psi}$ can be any sort of QM wavefunction

* eigenstate of \mathbf{H}
* coherent superposition of several eigenstates of \mathbf{H}
but $\boldsymbol{\psi}$ cannot represent a statistical (i.e. incoherent) mixture of several different $\boldsymbol{\psi} \boldsymbol{\prime}$ s
However, $\rho \underline{\text { can }}$ represent a statistical (i.e. equilibrium) mixture of states

$$
\begin{gathered}
\boldsymbol{\rho} \equiv \sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}}\left|\psi_{\mathrm{k}}\right\rangle\left\langle\psi_{\mathrm{k}}\right|=\sum_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} \boldsymbol{\rho}_{\mathrm{k}} \\
\sum \mathrm{p}_{\mathrm{k}}=1
\end{gathered}
$$

Example

* one beam of linarly polarized light, with the polarization axis (ε-field)

$$
\hat{\mathrm{e}}=2^{-1 / 2}\left(\hat{\mathrm{e}}_{\mathrm{x}}+\hat{\mathrm{e}}_{\mathrm{y}}\right)
$$

* two beams of linearly polarized light, 50% along $\hat{e}_{x}, 50 \%$ along \hat{e}_{y}.

These 2 cases seem to be identical if you make 2 measurements with analyzer polarizers along \hat{e}_{x} then $\hat{\mathrm{e}}_{\mathrm{y}}$. But they are different with respect to 2 measurements with analyzer polarizers along $2^{-1 / 2}\left(\hat{e}_{x}+\hat{e}_{y}\right)$ then $2^{-1 / 2}\left(\hat{e}_{x}-\hat{e}_{y}\right)$.
In the statistical mixture, it does not matter how the analyzer is oriented.

5.73 Lecture \#19

What are the properties of ρ ?

1. $\boldsymbol{\rho}$ for a pure state is Hermitian with positive elements along diagonal and other elements off-diagonal.

$$
\begin{aligned}
& \rho_{\mathrm{nm}}=\langle\mathrm{n} \mid \psi\rangle\langle\psi \mid \mathrm{m}\rangle \\
& \begin{aligned}
\rho_{\mathrm{nm}}=\mathrm{c}_{\mathrm{n}} \mathrm{c}_{\mathrm{m}}^{*}
\end{aligned} \\
& \text { but }\left(\mathbf{\rho}^{\dagger}\right)_{\mathrm{nm}}=\rho_{\mathrm{mn}}^{*}=[\langle\mathrm{m} \mid \psi\rangle\langle\psi \mid \mathrm{n}\rangle]^{*} \\
& \\
& =\langle\psi \mid \mathrm{m}\rangle\langle\mathrm{n} \mid \psi\rangle=\langle\mathrm{n} \mid \psi\rangle\langle\psi \mid \mathrm{m}\rangle=\rho_{\mathrm{nm}}^{*}
\end{aligned} \begin{aligned}
& \substack{\text { can expand }|\psi\rangle \\
\text { in any basis set } \\
\text { but } \mathrm{H} \text { eigenbasis } \\
\text { is most useful. }}
\end{aligned}
$$

2. $\underline{2 \times 2}$ Example $\quad \underline{\text { Coherent Superposition vs. Statistical Mixture }}$

$$
\begin{aligned}
& |\psi\rangle=2^{-1 / 2}\binom{1}{ \pm 1} \\
& \boldsymbol{\rho}_{c s}=\frac{1}{2}\binom{1}{ \pm 1}\left(\begin{array}{ll}
1 & \pm 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
1 & \pm 1 \\
\pm 1 & 1
\end{array}\right)
\end{aligned}
$$

Trace $\boldsymbol{\rho}=1$

Now consider a statistical mixture state.

$$
\begin{aligned}
\boldsymbol{\rho}_{\mathrm{sm}} & =\frac{1}{2}\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)+\frac{1}{2}\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \operatorname{trace} \boldsymbol{\rho}=1
\end{aligned}
$$

The difference is in the off-diagonal positions of ρ
diagonal elements \rightarrow "populations" (statistical mixture states have off-diagonal elements \rightarrow "coherences" strictly diagonal $\boldsymbol{\rho}$)

Expectation values of $\hat{\mathbf{A}}$ in terms of $\boldsymbol{\rho}$

$$
\begin{aligned}
\langle\mathbf{A}\rangle=\langle\psi| \mathbf{A}|\psi\rangle & =\sum_{\mathrm{j}, \mathrm{k}}\langle\psi \mid \mathrm{k}\rangle\langle\mathrm{k}| \mathbf{A}|\mathrm{j}\rangle\langle\mathrm{j} \mid \psi\rangle \\
& =\sum_{\mathrm{j}, \mathrm{k}}\langle\mathrm{j} \mid \psi\rangle\langle\psi \mid \mathrm{k}\rangle \\
\rho_{\mathrm{jk}} & \mathbf{A}_{\mathrm{kj}} \\
& =\sum_{\mathrm{j}}(\mathbf{\rho} \mathbf{A})_{\mathrm{jj}} \equiv \operatorname{Trace}(\mathbf{\rho} \mathbf{A})
\end{aligned}
$$

$\left[\right.$ Could have arranged the factors $\left.\sum_{\mathrm{j}, \mathrm{k}} \mathbf{A}_{\mathrm{kj}}\langle\mathrm{j} \mid \psi\rangle\langle\psi \mid \mathrm{k}\rangle=\sum_{\mathrm{k}}(\mathbf{A} \boldsymbol{\rho})_{\mathrm{kk}}=\operatorname{Trace}(\mathbf{A} \boldsymbol{\rho})\right]$

$$
\langle\mathbf{A}\rangle=\operatorname{Trace}(\mathbf{A} \boldsymbol{\rho})=\operatorname{Trace}(\boldsymbol{\rho} \mathbf{A})
$$

So $\boldsymbol{\rho}$ describes state of system, \boldsymbol{A} describes a measurement to be made on the system
simple prescription for calculating $\langle\mathbf{A}\rangle$

The separation between initial preparation, evolution, and measurement of a specific observable is very convenient and instructive.

Example: Quantum Beats
Preparation, evolution, detection
magically prepare some coherent superposition state $\Psi(\mathrm{t})$

Case (1): Detection: only one of the eigenstates, ψ_{1}, in the superposition is capable of giving fluorescence that our detector can "see".

Thus

$$
\begin{array}{ll}
\mathbf{D}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|=\left(\begin{array}{ccc}
1 & 0 & \cdots \\
0 & 0 & 0 \\
\vdots & 0 & 0
\end{array}\right) & \begin{array}{l}
\text { a projection operator } \\
\text { (designed to project out only }\left|\psi_{1}\right\rangle \\
\text { part of state vector or } \rho_{11} \text { part of } \rho .
\end{array} \\
\boldsymbol{\rho}=\mathrm{N}^{2}\left(\begin{array}{cc}
\left|\mathrm{a}_{1}\right|^{2} & \mathrm{a}_{1} \mathrm{a}_{2}^{*} \mathrm{e}^{-\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \mathrm{t} / \hbar} \\
& \left|\mathrm{a}_{2}\right|^{2}
\end{array}\right. & \cdots \\
& \\
& \\
& \\
& \\
& \left.\mathrm{a}_{3}\right|^{2} \\
\ddots
\end{array}
$$

$$
\begin{aligned}
& \rho_{12}=\langle 1 \mid \Psi\rangle\langle\Psi \mid 2\rangle \\
& \rho_{12}=\mathrm{N}^{2} \mathrm{a}_{1} \mathrm{e}^{-\mathrm{E}_{1} \mathrm{t} / \hbar} \mathrm{a}_{2}^{*} \mathrm{e}^{+\mathrm{iE}_{2} \mathrm{t} / \hbar}
\end{aligned}
$$

$$
\langle\mathbf{D}\rangle_{\mathrm{t}}=\operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=\mathrm{N}^{2} \text { Trace }\left(\begin{array}{c}
\left|\mathrm{a}_{1}\right|^{2} \\
0 \\
\vdots
\end{array}\right.
$$

D picks out only 1st row of ρ.

$$
=\mathrm{N}^{2}\left|\mathrm{a}_{1}\right|^{2}
$$

no time dependence!

$$
\begin{aligned}
& \Psi(\mathrm{t})=\mathrm{N} \sum \mathrm{a}_{\mathrm{n}} \psi_{\mathrm{n}} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{\mathrm{n}} \mathrm{t} / \hbar} \\
& \text { n Several eigenstates of } H \text {. } \\
& \text { Evolve freely without } \\
& \text { any time-dependent } \\
& \text { intervention } \\
& \boldsymbol{\rho}(\mathrm{t})=|\Psi(\mathrm{t})\rangle\langle\Psi(\mathrm{t})|
\end{aligned}
$$

case (2): a particular linear combination of eigenstates is bright: the initial

$$
\begin{aligned}
& \text { state } 2^{-1 / 2}\left(\psi_{1}+\psi_{2}\right) \text { has }\langle\mathbf{D}\rangle=1 \text {. } \\
& \mathbf{D}=\frac{1}{2}\left(\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle\right)\left(\left\langle\psi_{1}\right|+\left\langle\psi_{2}\right|\right) \\
& =\frac{1}{2}\left[\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{1}\right|\right] \\
& =\frac{1}{2}\left[\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)\right] \\
& =\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 0 & \cdots \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right) \\
& \text { if the bright state had been } \left.2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right) \text {, then } \mathbf{D}=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right] \\
& \operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=\frac{1}{2} \mathbf{N}^{2} \text { Trace } \quad \text { why do we need to look at } \\
& \text { only the } 1,2 \text { block of } \rho \text { ? } \\
& (\mathbf{D} \boldsymbol{\rho})_{11}=\frac{1}{2} \mathrm{~N}^{2}\left[\left|\mathrm{a}_{1}\right|^{2}+\mathrm{a}_{1}^{*} \mathrm{a}_{2} \mathrm{e}^{+\mathrm{i}\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \mathrm{t} / \hbar}\right] \\
& (\mathbf{D} \boldsymbol{\rho})_{22}=\frac{1}{2} \mathrm{~N}^{2}\left[\left|\mathrm{a}_{2}\right|^{2}+\mathrm{a}_{1} \mathrm{a}_{2}^{*} \mathrm{e}^{-\mathrm{i}\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \mathrm{t} / \hbar}\right] \\
& \operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=\frac{1}{2} \mathrm{~N}^{2}\left[\left|\mathrm{a}_{1}\right|^{2}+\left|\mathrm{a}_{2}\right|^{2}+2 \operatorname{Re}\left[\mathrm{a}_{1}^{*} \mathrm{a}_{2} \mathrm{e}_{\uparrow}^{+\mathrm{i} \omega_{12} \mathrm{t}}\right]\right] \\
& \text { beat note at } \omega_{12}
\end{aligned}
$$

[if the bright state had been $2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right)$, then $\operatorname{Tr}(\mathbf{D} \boldsymbol{\rho})$ would be the same except for $\underset{\uparrow}{ }-2 \operatorname{Re}$]]

If $\left|a_{1}\right|^{2}=\left|a_{2}\right|^{2} \quad\left(\right.$ and a_{1}, a_{2} real $), \operatorname{Trace}(\mathbf{D} \rho)=\mathrm{N}^{2}\left|\mathrm{a}_{1}\right|^{2}\left[1 \pm \cos \omega_{12} t\right] \quad\left(\mathrm{N}^{2}=1 / 2\right)$
QUANTUM BEAT! 100% modulation!

So we see that the same $\Psi(\mathrm{x}, \mathrm{t})$ or $\rho(\mathrm{t})$ can look simple or complicated depending on the nature of the measurement operator! The measurement operator is designed to be sensitive only to specific coherences (i.e. locations in $\boldsymbol{\rho}$) which oscillate at ω_{ij}.
THIS IS THE REASON WHY WE SEPARATE PREPARATION AND OBSERVATION SO CLEANLY.

Time evolution of ρ_{nm} and $\langle\mathbf{A}\rangle$
Start with the time-dependent Schrödinger equation:

$$
\mathrm{H} \Psi=\mathrm{i} \hbar \frac{\partial \Psi}{\partial \mathrm{t}}\left\{\begin{array}{l}
\mathrm{H}|\Psi\rangle=\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}}|\Psi\rangle \\
\langle\Psi| \mathrm{H}=-\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}}\langle\Psi|
\end{array}\right.
$$

for time-independent \mathbf{H} we know $\Psi(\mathrm{t})=\sum_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \psi_{\mathrm{n}} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{\mathrm{n}} \mathrm{t} / \hbar}$

1. $\rho(\mathrm{t})$

$$
\begin{aligned}
\boldsymbol{\rho}(\mathrm{t}) & =|\Psi(\mathrm{t})\rangle\langle\Psi(\mathrm{t})| \\
\rho_{\mathrm{nn}}(\mathrm{t}) & =\langle\mathrm{n} \mid \Psi(\mathrm{t})\rangle\langle\Psi(\mathrm{t}) \mid \mathrm{n}\rangle=\left|\mathrm{a}_{\mathrm{n}}\right|^{2} \quad \begin{array}{l}
\text { a time independent } \\
\text { "population" in state } n .
\end{array}
\end{aligned}
$$

$$
\rho_{\mathrm{nm}}(\mathrm{t})=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{m}}^{*} \mathrm{e}^{-\mathrm{i}\left(\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{m}}\right) \mathrm{t} / \hbar}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{m}}^{*} \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{nm}} \mathrm{t}}
$$

a "coherence" which oscillates at ω_{nm} (eigenstate
2. $\langle\mathbf{A}\rangle_{\mathrm{t}}$ energy differences $/ \hbar$)

$$
\begin{aligned}
& \text { Recall } i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi \\
& \begin{aligned}
& \frac{\partial}{\partial t}\langle\mathbf{A}\rangle=\left[\frac{\partial}{\partial t}\langle\Psi|\right] \mathbf{A}|\Psi\rangle+\langle\Psi| \frac{\partial \mathbf{A}}{\partial t}|\Psi\rangle+\langle\Psi| \mathbf{A}\left[\frac{\partial}{\partial t}|\Psi\rangle\right] \\
&=\frac{-1}{i \hbar}[\langle\Psi| \mathbf{H}] \mathbf{A}|\Psi\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle+\langle\Psi| \mathbf{A}\left[\frac{1}{i \hbar} \mathbf{H}|\Psi\rangle\right] \\
&=\frac{i}{\hbar}\langle[\mathbf{H}, \mathbf{A}]\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle \mathrm{c}_{\text {Heisenberg Equation }} \\
& \text { of Motion }
\end{aligned}
\end{aligned}
$$

Note that nothing has been assumed about the time-dependence of \mathbf{H}.

If \mathbf{A} commutes with \mathbf{H} (regardless of whether \mathbf{H} is time-dependent), there is no dynamics as far as observable \mathbf{A} is concerned. However, if \mathbf{A} does not commute with \mathbf{H}, there can be dynamics of $\langle\mathbf{A}\rangle$ even if both \mathbf{A} and \mathbf{H} are time-independent.
Similarly can derive $\mathrm{i} \hbar \frac{\partial \boldsymbol{\rho}}{\partial t}=[\mathbf{H}(t), \boldsymbol{\rho}]$ evolution of $\boldsymbol{\rho}$ under $\mathbf{H}(\mathrm{t})$. This is a matrix equation. It specifies the time dependence of each element of ρ.

If \mathbf{H} is
time dependent

Summarize

$\left.\begin{array}{l}\text { initial state: } \boldsymbol{\rho} \\ \text { time evolution of } \boldsymbol{\rho}: \mathbf{H}\end{array}\right\}$ observable quantity: \mathbf{A}
each expressed independently in the form of matrices which can be easily read (or designed!).

NMR pulse gymnastics
statistical mixture states - use same machinery BUT add the independent $\boldsymbol{\rho}_{\mathrm{k}}$ matrices with weights p_{k} that correspond to their fractional populations.
$\boldsymbol{\rho}$ is Hermitian so can be diagonalized by $\mathbf{T}^{\dagger} \boldsymbol{\rho} \mathbf{T}$. However, if $\boldsymbol{\rho}$ is time-dependent, \mathbf{T} would have to be time-dependent. This transformation gives a representation without any coherences in $\hat{\boldsymbol{\rho}}$ even if we started with a coherent superposition state. No problem because this transformation will undiagonalize \mathbf{H}, thereby reintroducing time dependencies.

