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Density Matrices II

Last time: ψ,  〉, ρρρρ =  〉〈 
coherent superposition vs. statistical mixture
populations along diagonal, coherences off diagonal
〈A〉 = Trace(ρρρρA) = Trace(Aρρρρ)

Today: Quantum Beats
prepared state ρρρρ
detection as projection operator D

What part of D samples a specific off-diagonal element of ρρρρ?
Optimize magnitude of beats

[partial traces]

system consisting of 2 parts — e.g. coupled oscillators
motion in state-space vs. motion in coordinate space.

Read CTDL, pages 643-652.

The material on
pages 20–2, –3,
–5, and –7 is an

exact duplication
of pages 19–5, –6,

–7 and –8.
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Example:  Quantum Beats

Preparation, evolution, detection

magically prepare some coherent superposition state Ψ(t)

 

Ψ t( ) = N anψne−iEn t h

n
∑

ρρ t( ) = Ψ(t) Ψ(t)

Several eigenstates of H.
Evolve freely without
any time-dependent
intervention
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D picks out only 1st
row of ρρρρ.

Case (1):  Detection: only one of the eigenstates, ψ1, in the superposition is
capable of giving fluorescence that our detector can “see”.

a projection operator
(designed to project out only |ψ1〉
part of state vector or ρ11 part of ρρρρ.

no time dependence!
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case (2):  a particular linear combination of eigenstates is bright: the initial
state 2–1/2(ψ1 + ψ2) has 〈D〉 = 1.
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[if the bright state had been 2–1/2(ψ1–ψ2), then Tr(Dρρρρ) would
be the same except for –2Re[      ]  ]

beat note at ω12

Trace N a2
1Dρ ω( ) = ±[ ]2

121 cos t

QUANTUM BEAT!   modulation!  100%

If and   real1 2  , ,a a a a1

2

2

2= ( )

why do we need to look at
only the 1,2 block of ρρρρ?

a projection operator.
How much of the original
state is present in the
evolved state?

(N2 = 1/2)
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if a1
2 = a2
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what happens if a
as mixing fractions

1
2

2
2

2 2

1
2

2
2

1 2
2 1 2

1

1

2 2 1

≠
−

+ =

= −( ) ( )

a
try

a a

a a

?
,  

/

α α

α α

2a1a2

D t

α



20 - 55.73 Lecture #20

revised October 21, 2002

So we see that the same Ψ(x,t) or ρρρρ(t) can look simple or complicated depending on
the nature of the measurement operator!  The measurement operator is designed to
be sensitive only to specific coherences (i.e. locations in ρρρρ) which oscillate at ωij.
THIS IS THE REASON WHY WE SEPARATE PREPARATION AND
OBSERVATION SO CLEANLY.

Time evolution of ρnm and A
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for time-independent H we know
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, Heisenberg Equation

of Motion

  
Recall i

t
h

∂
∂

=
Ψ

ΨH

Start with the time-dependent Schrödinger equation:

This is a scalar equation, not a matrix equation.  It tells us about the motion of
the “center” of a wavepacket.  Note that nothing has been assumed about the
time-dependence of H.
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Nonlecture

ihρ̇ jk = jHρρ − ρρH k

= Ejρ jk − ρ jkEk = Ej − Ek( )ρ jk

ρ̇ jk = − i
h

Ej − Ek( )ρ jk

no requirement that H be independent of t.

But if H is independent of t, then take matrix elements of both
sides of equation.
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Time evolution of all coherences in the
absence of external manipulation!
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If H is
time

dependent

If A commutes with H (regardless of whether H is time-dependent), there
is no dynamics as far as observable A is concerned.  However, if A does not
commute with H, there can be dynamics of 〈A〉 even if both A and H are
time-independent.

  
Similarly (as on page 20 - 6) can derive i  evolution of  under (t).h

∂
∂

=
ρρ

ρρ ρρ
t

t[ ( ), ]H H

This is a matrix equation.
It specifies the time
dependence of each
element of ρρρρ.

Summarize

〈A〉 = Tr(ρρρρA) = Tr(Aρρρρ)

info about state on which
measurement is to be made

info about quantity
being measured

ih
∂ρρ
∂t

= H,ρρ[ ]
statetime

evolution

initial state: ρρ
time evolution of ρρ:   H

observable quantity:  A







each expressed independently in
the form of matrices which can be
easily read (or designed!).

NMR pulse gymnastics

statistical mixture states - use same machinery BUT add the independent ρρρρk

matrices with weights pk that correspond to their fractional populations.

ρρρρ is Hermitian so can be diagonalized by T†ρρρρT =   . However, if ρρρρ is
time-dependent, T would have to be time-dependent.  This
transformation gives a representation without any coherences in
even if we started with a coherent superposition state.  No problem
because this transformation will undiagonalize H, thereby
reintroducing time dependencies.

ρ̂ρ

ƒρρ
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Systems consisting of 2 parts:  method of partial traces

e.g. coupled harmonic oscillators

direct product representation

ψ x1,x2( ) = ψ1,n1
x1( )ψ2,n2

x2( ) n1,n2

ρρ = ρρ(1) ⊗ ρρ(2)

ρρ has 4 indices
ρ ψ ψn n n n n n n n

1 2 1 2 1 2 2 1; ′ ′ = ′ ′

We might want to measure expectation value of operator that
operates on both systems 1 and 2:  A(1,2)

A = Trace ρρA( )

= ρρA( )n1n2 ;n1n2n1,n2

∑

Alternatively, we might want to measure expectation value of an
operator that operates only on system 1: B(1).
To use Trace(ρρρρB) method, need concept of partial traces and
need to formally extend B to act as dummy operator on system 2.

B̃ 1( ) = B 1( ) ⊗1 2( )

recall anharmonically coupled oscillators, k q q q q

q qv v

122 1 2
2

1 2

1 21 2

, , ,

( ) ( )

ψ
ψ ψ

( )
=











Several types of initial preparation are possible:
1. pure state of 1 ⊗ 2 (a “tensor product” state)
2. statistical mixture in 1, pure state in 2.
3. statistical mixture in both.

Entanglement!  Handout from 10/11/02.   Science.

Several types of observation are possible:
1. separate observation of subsystem 1 or 2
2. simultaneous measurement of both systems
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CTDL use this definition of B̃(1) (page 306) to prove that

B̃(1) = Tr ρρ(1)B(1)( ) calculated as if
system 1 were
isolated from

system 2

for coupled H–O system

operator of type (1,2)

type (1)

or (2)

or (1 + 2)

a1
†a1a2

†a2

a1
†a1

a2
†a2

a1
†a1 + a2

†a2( )

t = 0 wavepacket is located at turning point of v2 = 5 in oscillator #2
and at x1 = 0 for oscillator #1

Ψ x1,x2 , t = 0( ) = an2
n2 =0

∞
∑ 0,n2

(0)

suppose we have  polyads.

and only the 0,P  state is "bright" (i.e. excitation is initially

in oscillator #2)

1ω ω= = +2 22 1 2
0

P n n
( )

need to write 0,P (0)  as bn
n=0

P/2
∑ n,P − 2n

eigenvectors of H(1,2)
expressed in H–O Basis

set

T†HPT

columns of T

(a correlated property of two
parts of the system)

The initial state is a coherent superposition of several polyads.  Motion occurs
in both coordinate space and state space.  Each kind of motion is sampled by a
different class of diagnostic.
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so that we can use Ep,n in e
-iEp,n t h

to express Ψ x1,x2 , t( )

get motion of pieces of state vector within each Polyad P.

Could want expectation values of quantities like

get motion of w.p. on
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V(x2)


