Density Matrices II

Read CTDL, pages 643-652.

Last time: $\quad \psi,| \rangle, \rho=|X|$
coherent superposition vs. statistical mixture
populations along diagonal, coherences off diagonal $\langle\mathbf{A}\rangle=\operatorname{Trace}(\mathbf{\rho A})=\operatorname{Trace}(\mathbf{A} \boldsymbol{\rho})$

Today: Quantum Beats prepared state $\boldsymbol{\rho}$
detection as projection operator \mathbf{D}
What part of \mathbf{D} samples a specific off-diagonal element of $\boldsymbol{\rho}$?
Optimize magnitude of beats
[partial traces]
system consisting of 2 parts - e.g. coupled oscillators motion in state-space vs. motion in coordinate space.

Example: Quantum Beats

Preparation, evolution, detection

magically prepare some coherent superposition state $\Psi(\mathrm{t})$

$$
\begin{aligned}
& \Psi(\mathrm{t})=\mathrm{N} \sum \mathrm{a}_{\mathrm{n}} \psi_{\mathrm{n}} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{\mathrm{n}} \mathrm{t} / \hbar} \\
& \text { n Several eigenstates of } \mathrm{H} \text {. } \\
& \text { Evolve freely without } \\
& \text { any time-dependent } \\
& \text { intervention } \\
& \boldsymbol{\rho}(\mathrm{t})=|\Psi(\mathrm{t})\rangle\langle\Psi(\mathrm{t})|
\end{aligned}
$$

Case (1): Detection: only one of the eigenstates, ψ_{1}, in the superposition is capable of giving fluorescence that our detector can "see".

Thus

$$
\mathbf{D}=\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|=\left(\begin{array}{ccc}
1 & 0 & \cdots \\
0 & 0 & 0 \\
\vdots & 0 & 0
\end{array}\right) \quad \quad \begin{aligned}
& \text { a projection operator } \\
& \text { (designed to project out only }\left|\psi_{1}\right\rangle
\end{aligned}
$$ part of state vector or ρ_{11} part of ρ.

$\boldsymbol{\rho}=\mathrm{N}^{2}\left(\begin{array}{ccc}\left|\mathrm{a}_{1}\right|^{2} \mathrm{a}_{1} \mathrm{a}_{2}^{*} \mathrm{e}^{-\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \mathrm{t} / \hbar} & \cdots \\ & \left|\mathrm{a}_{2}\right|^{2} & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{array}\right.$

$$
\begin{aligned}
& \rho_{12}=\langle 1 \mid \Psi\rangle\langle\Psi \mid 2\rangle \\
& \rho_{12}=\mathrm{N}^{2} \mathrm{a}_{1} \mathrm{e}^{-\mathrm{E}_{1} \mathrm{t} / \hbar} \mathrm{a}_{2}^{*} \mathrm{e}^{+\mathrm{iE}_{2} \mathrm{t} / \hbar}
\end{aligned}
$$

$\langle\mathbf{D}\rangle_{\mathrm{t}}=\operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=\mathrm{N}^{2}$ Trace $\left(\begin{array}{c}\left|\mathrm{a}_{1}\right|^{2} \\ 0 \\ \vdots\end{array}\right.$
$=\mathrm{N}^{2}\left|\mathrm{a}_{1}\right|^{2}$
D picks out only 1st row of ρ.

no time dependence!
case (2): a particular linear combination of eigenstates is bright: the initial

$$
\begin{aligned}
& \text { state } 2^{-1 / 2}\left(\psi_{1}+\psi_{2}\right) \text { has }\langle\mathbf{D}\rangle=1 \text {. } \\
& \mathbf{D}=\frac{1}{2}\left(\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle\right)\left(\left\langle\psi_{1}\right|+\left\langle\psi_{2}\right|\right) \\
& =\frac{1}{2}\left[\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|+\left|\psi_{2}\right\rangle\left\langle\psi_{1}\right|\right] \\
& =\frac{1}{2}\left[\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)+\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right)\right] \\
& =\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 0 & \cdots \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\vdots & 0 & 0 & 0
\end{array}\right) \\
& \text { if the bright state had been } \left.2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right) \text {, then } \mathbf{D}=\frac{1}{2}\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)\right] \\
& \operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=\frac{1}{2} \mathbf{N}^{2} \text { Trace } \quad \text { why do we need to look at } \\
& \text { only the } 1,2 \text { block of } \rho \text { ? } \\
& (\mathbf{D} \boldsymbol{\rho})_{11}=\frac{1}{2} \mathrm{~N}^{2}\left[\left|\mathrm{a}_{1}\right|^{2}+\mathrm{a}_{1}^{*} \mathrm{a}_{2} \mathrm{e}^{+\mathrm{i}\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \mathrm{t} / \hbar}\right] \\
& (\mathbf{D} \boldsymbol{\rho})_{22}=\frac{1}{2} \mathbf{N}^{2}\left[\left|\mathrm{a}_{2}\right|^{2}+\mathrm{a}_{1} \mathrm{a}_{2}^{*} \mathrm{e}^{-\mathrm{i}\left(\mathrm{E}_{1}-\mathrm{E}_{2}\right) \mathrm{t} / \hbar}\right] \\
& \operatorname{Trace}(\mathbf{D} \boldsymbol{\rho})=\frac{1}{2} \mathrm{~N}^{2}\left[\left|\mathrm{a}_{1}\right|^{2}+\left|\mathrm{a}_{2}\right|^{2}+2 \operatorname{Re}\left[\mathrm{a}_{1}^{*} \mathrm{a}_{2} \mathrm{e}_{\uparrow}^{+\mathrm{i} \omega_{12} \mathrm{t}}\right]\right] \\
& \text { beat note at } \omega_{12}
\end{aligned}
$$

[if the bright state had been $2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right)$, then $\operatorname{Tr}(\mathbf{D} \boldsymbol{\rho})$ would be the same except for $-2 \operatorname{Re}[\quad]$

If $\left|a_{1}\right|^{2}=\left|a_{2}\right|^{2} \quad\left(\right.$ and a_{1}, a_{2} real $), \operatorname{Trace}(\mathbf{D} \rho)=\mathrm{N}^{2}\left|\mathrm{a}_{1}\right|^{2}\left[1 \pm \cos \omega_{12} t\right] \quad\left(\mathrm{N}^{2}=1 / 2\right)$
QUANTUM BEAT! 100% modulation!
if $\left|a_{1}\right|^{2}=\left|a_{2}\right|^{2} \quad a_{1}, a_{2}$ real

bright state $2^{-1 / 2}\left(\psi_{1}+\psi_{2}\right)$
$\mathbf{D}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$

bright state $2^{-1 / 2}\left(\psi_{1}-\psi_{2}\right)$
$\mathbf{D}=\left(\begin{array}{ccc}1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$

Usually $\left|a_{1}\right|_{t}^{2}=e^{-t / \tau}$ - exponential decay: beats superposed on decay

$$
\begin{array}{ll}
\text { what happens if } & \left|a_{1}\right|^{2} \neq\left|a_{2}\right|^{2} ? \\
\text { try } & 1-\alpha^{2}, \alpha^{2} \quad \text { as mixing fractions } \\
& \left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}=1 \\
& 2 a_{1} a_{2}=2\left(1-\alpha^{2}\right)^{1 / 2}(\alpha)
\end{array}
$$

max. beat amplitude
when $\left|\mathrm{a}_{1}\right|^{2}=\left|\mathrm{a}_{2}\right|^{2}$

So we see that the same $\Psi(\mathrm{x}, \mathrm{t})$ or $\rho(\mathrm{t})$ can look simple or complicated depending on the nature of the measurement operator! The measurement operator is designed to be sensitive only to specific coherences (i.e. locations in $\boldsymbol{\rho}$) which oscillate at ω_{ij}.
THIS IS THE REASON WHY WE SEPARATE PREPARATION AND OBSERVATION SO CLEANLY.
$\underline{\text { Time evolution of } \rho_{\mathrm{nm}} \text { and }\langle\mathbf{A}\rangle}$
Start with the time-dependent Schrödinger equation:

$$
\mathrm{H} \Psi=\mathrm{i} \hbar \frac{\partial \Psi}{\partial \mathrm{t}}\left\{\begin{array}{l}
\mathrm{H}|\Psi\rangle=\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}}|\Psi\rangle \\
\langle\Psi| \mathrm{H}=-\mathrm{i} \hbar \frac{\partial}{\partial \mathrm{t}}\langle\Psi|
\end{array}\right.
$$

for time-independent \mathbf{H} we know $\Psi(\mathrm{t})=\sum_{\mathrm{n}} \mathrm{a}_{\mathrm{n}} \psi_{\mathrm{n}} \mathrm{e}^{-\mathrm{i} \mathrm{E}_{\mathrm{n}} \mathrm{t} / \hbar}$

1. $\rho(\mathrm{t})$

$$
\begin{aligned}
\boldsymbol{\rho}(\mathrm{t}) & =|\Psi(\mathrm{t})\rangle\langle\Psi(\mathrm{t})| \\
\rho_{\mathrm{nn}}(\mathrm{t}) & =\langle\mathrm{n} \mid \Psi(\mathrm{t})\rangle\langle\Psi(\mathrm{t}) \mid \mathrm{n}\rangle=\left|\mathrm{a}_{\mathrm{n}}\right|^{2} \quad \begin{array}{l}
\text { a time independent } \\
\text { "population" in state } n .
\end{array}
\end{aligned}
$$

$$
\rho_{\mathrm{nm}}(\mathrm{t})=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{m}}^{*} \mathrm{e}^{-\mathrm{i}\left(\mathrm{E}_{\mathrm{n}}-\mathrm{E}_{\mathrm{m}}\right) \mathrm{t} / \hbar}=\mathrm{a}_{\mathrm{n}} \mathrm{a}_{\mathrm{m}}^{*} \mathrm{e}^{-\mathrm{i} \omega_{\mathrm{nm}} \mathrm{t}}
$$

a "coherence" which oscillates at ω_{nm} (eigenstate
2. $\langle\mathbf{A}\rangle_{\mathrm{t}}$ energy differences $/ \hbar$)

$$
\begin{aligned}
& \text { Recall } i \hbar \frac{\partial \Psi}{\partial t}=\mathbf{H} \Psi \\
& \begin{aligned}
\frac{\partial}{\partial t}\langle\mathbf{A}\rangle & =\left[\frac{\partial}{\partial t}\langle\Psi|\right] \mathbf{A}|\Psi\rangle+\langle\Psi| \frac{\partial \mathbf{A}}{\partial t}|\Psi\rangle+\langle\Psi| \mathbf{A}\left[\frac{\partial}{\partial t}|\Psi\rangle\right] \\
& =\frac{-1}{i \hbar}[\langle\Psi| \mathbf{H}] \mathbf{A}|\Psi\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle+\langle\Psi| \mathbf{A}\left[\frac{1}{i \hbar} \mathbf{H}|\Psi\rangle\right] \\
& =\frac{i}{\hbar}\langle[\mathbf{H}, \mathbf{A}]\rangle+\left\langle\frac{\partial \mathbf{A}}{\partial t}\right\rangle \mathrm{c}_{\text {Heisenberg Equation }}^{\text {of Motion }}
\end{aligned}
\end{aligned}
$$

This is a scalar equation, not a matrix equation. It tells us about the motion of the "center" of a wavepacket. Note that nothing has been assumed about the time-dependence of \mathbf{H}.

Nonlecture

$$
\begin{aligned}
\frac{\partial \boldsymbol{\rho}}{\partial \mathrm{t}}=\frac{\partial}{\partial \mathrm{t}}[|\Psi\rangle\langle\Psi|] & =\left[\frac{\partial}{\partial \mathrm{t}}|\Psi\rangle\right]\langle\Psi|+|\Psi\rangle\left[\frac{\partial}{\partial \mathrm{t}}\langle\Psi|\right] \\
& =\left[\frac{1}{\mathrm{i} \hbar} \mathbf{H}|\Psi\rangle\right]\langle\Psi|+|\Psi\rangle\left[\frac{-1}{\mathrm{i} \hbar}\langle\Psi| \mathbf{H}\right] \\
& =\frac{1}{\mathrm{i} \hbar}[\mathbf{H} \boldsymbol{\rho}-\mathbf{\rho} \mathbf{H}] \\
\mathrm{i} \hbar \frac{\partial \boldsymbol{\rho}}{\partial \mathrm{t}} & =[\mathbf{H}, \mathbf{\rho}]
\end{aligned}
$$

no requirement that \mathbf{H} be independent of t.
But if \mathbf{H} is independent of t, then take matrix elements of both sides of equation.

$$
\begin{aligned}
\mathrm{i} \hbar \dot{\rho}_{\mathrm{jk}} & =\langle\mathrm{j}| \mathbf{H} \boldsymbol{\rho}-\boldsymbol{\rho} \mathbf{H}|\mathrm{k}\rangle \\
& =\mathrm{E}_{\mathrm{j}} \rho_{\mathrm{jk}}-\rho_{\mathrm{jk}} \mathrm{E}_{\mathrm{k}}=\left(\mathrm{E}_{\mathrm{j}}-\mathrm{E}_{\mathrm{k}}\right) \rho_{\mathrm{jk}} \\
\dot{\rho}_{\mathrm{jk}} & =-\frac{\mathrm{i}}{\hbar}\left(\mathrm{E}_{\mathrm{j}}-\mathrm{E}_{\mathrm{k}}\right) \rho_{\mathrm{jk}}
\end{aligned}
$$

Time evolution of all coherences in the absence of external manipulation!

If \mathbf{A} commutes with \mathbf{H} (regardless of whether \mathbf{H} is time-dependent), there is no dynamics as far as observable \mathbf{A} is concerned. However, if \mathbf{A} does not commute with \mathbf{H}, there can be dynamics of $\langle\mathbf{A}\rangle$ even if both \mathbf{A} and \mathbf{H} are time-independent.
Similarly (as on page 20-6) can derive $\mathrm{i} \hbar \frac{\partial \boldsymbol{\rho}}{\partial \mathrm{t}}=[\mathbf{H}(\mathrm{t}), \boldsymbol{\rho}]$ evolution of $\boldsymbol{\rho}$ under $\mathbf{H (t)}$.
This is a matrix equation.

If \mathbf{H} is time dependent

It specifies the time dependence of each element of $\boldsymbol{\rho}$.

Summarize

$\left.\begin{array}{l}\text { initial state: } \boldsymbol{\rho} \\ \text { time evolution of } \boldsymbol{\rho}: \mathbf{H}\end{array}\right\}$ observable quantity: \mathbf{A}
each expressed independently in the form of matrices which can be easily read (or designed!).

NMR pulse gymnastics
statistical mixture states - use same machinery BUT add the independent $\boldsymbol{\rho}_{\mathrm{k}}$ matrices with weights p_{k} that correspond to their fractional populations.
$\boldsymbol{\rho}$ is Hermitian so can be diagonalized by $\mathbf{T}^{\dagger} \boldsymbol{\rho} \mathbf{T}=\boldsymbol{\rho}$. However, if $\boldsymbol{\rho}$ is time-dependent, \mathbf{T} would have to be time-dependent. This transformation gives a representation without any coherences in $\hat{\boldsymbol{\rho}}$ even if we started with a coherent superposition state. No problem because this transformation will undiagonalize \mathbf{H}, thereby reintroducing time dependencies.

Systems consisting of 2 parts: method of partial traces
e.g. coupled harmonic oscillators
direct product representation $\binom{$ recall anharmonically coupled oscillators, $k_{122}, q_{1} q_{2}^{2}, \psi\left(q_{1}, q_{2}\right)}{\left.=\psi_{v_{1}\left(q_{1}\right)}\right) \psi_{v_{2}}\left(q_{2}\right)}$

$$
\begin{aligned}
& \psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\psi_{1, \mathrm{n}_{1}}\left(\mathrm{x}_{1}\right) \psi_{2, \mathrm{n}_{2}}\left(\mathrm{x}_{2}\right) \quad\left|\mathrm{n}_{1}, \mathrm{n}_{2}\right\rangle \\
& \boldsymbol{\rho}=\boldsymbol{\rho}^{(1)} \otimes \boldsymbol{\rho}^{(2)} \\
& \boldsymbol{\rho} \text { has } 4 \text { indices }
\end{aligned}
$$

$$
\rho_{n_{1} n_{2} ; n_{1}^{\prime} n_{2}^{\prime}}=\left\langle n_{1}\right|\left\langle n_{2} \mid \psi\right\rangle\left\langle\psi \mid n_{2}^{\prime}\right\rangle\left|n_{1}^{\prime}\right\rangle
$$

We might want to measure expectation value of operator that operates on both systems 1 and 2: A(1,2)

$$
\begin{aligned}
\langle\mathbf{A}\rangle & =\operatorname{Trace}(\boldsymbol{\rho} \mathbf{A}) \\
& =\sum_{\mathrm{n}_{1}, \mathrm{n}_{2}}(\boldsymbol{\rho} \mathbf{A})_{\mathrm{n}_{1} \mathrm{n}_{2} ; \mathrm{n}_{1} \mathrm{n}_{2}}
\end{aligned}
$$

Alternatively, we might want to measure expectation value of an operator that operates only on system 1 : $\mathbf{B}(1)$.
To use Trace $(\mathbf{\rho} \mathbf{B})$ method, need concept of partial traces and need to formally extend \mathbf{B} to act as dummy operator on system 2.

$$
\tilde{\mathrm{B}}(1)=\mathrm{B}(1) \otimes \boldsymbol{I}(2)
$$

Several types of initial preparation are possible:

1. pure state of $1 \otimes 2$ (a "tensor product" state)
2. statistical mixture in 1 , pure state in 2 .
3. statistical mixture in both.

Entanglement! Handout from 10/11/02. Science.
Several types of observation are possible:

1. separate observation of subsystem 1 or 2
2. simultaneous measurement of both systems

CTDL use this definition of $\tilde{\mathbf{B}}(1)$ (page 306) to prove that

$$
\langle\tilde{\mathbf{B}}(1)\rangle=\operatorname{Tr}(\boldsymbol{\rho}(1) \mathbf{B}(1)) \quad \begin{gathered}
\text { calculated as if } \\
\text { system 1 were } \\
\text { isolated from } \\
\text { system 2 }
\end{gathered}
$$

for coupled $\mathrm{H}-\mathrm{O}$ system

$$
\begin{array}{cll}
\text { operator of type (1,2) } & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} & \text { (a correlated property of two } \\
\text { type (1) } & \mathbf{a}_{1}^{\dagger} \mathbf{a}_{1} & \text { parts of the system) } \\
\text { or (2) } & \mathbf{a}_{2}^{\dagger} \mathbf{a}_{2} & \\
\text { or (1 + 2) } & \left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right) &
\end{array}
$$

$t=0$ wavepacket is located at turning point of $\mathrm{v}_{2}=5$ in oscillator \#2 and at $\mathrm{x}_{1}=0$ for oscillator \#1

$$
\Psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{t}=0\right)=\sum_{\mathrm{n}_{2}=0}^{\infty} \mathrm{a}_{\mathrm{n}_{2}}\left|0, \mathrm{n}_{2}\right\rangle^{(0)}
$$

suppose we have $\omega_{1}=2 \omega_{2} \mathrm{P}=2 \mathrm{n}_{1}+\mathrm{n}_{2}$ polyads.
and only the $|0, \mathrm{P}\rangle^{(0)}$ state is "bright" (i.e. excitation is initially in oscillator \# 2)

The initial state is a coherent superposition of several polyads. Motion occurs in both coordinate space and state space. Each kind of motion is sampled by a different class of diagnostic.
so that we can use $E_{p, n}$ in $e^{-i E_{p, n} t / \hbar}$ to express $\Psi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{t}\right)$
get motion of w.p. on

get motion of pieces of state vector within each Polyad P.
Could want expectation values of quantities like
$\left.\begin{array}{l}\mathbf{N}_{1}=\mathbf{a}_{1}^{\leq} \mathbf{a}_{1} \\ \mathbf{N}_{2}=\mathbf{a}_{2}^{\leq} \mathbf{a}_{2}\end{array}\right\}$ state space
$2 \mathbf{N}_{1}(\mathrm{t})+\mathbf{N}_{2}(\mathrm{t})=\mathbf{P}$
coordinate space $\left\{\begin{array}{l}\mathbf{x}_{1}=2^{-1 / 2}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\leq}\right) \\ \mathbf{x}_{1} \mathbf{x}_{2}^{2}=2^{-3 / 2}\left(\mathbf{a}_{1}+\mathbf{a}_{1}^{\leq}\right)\left(\mathbf{a}_{2}+\mathbf{a}_{2}^{\leq}\right)^{2}\end{array}\right.$

