Density Matrices II

Read CTDL, pages 643-652.

Last time: $|\psi, \rangle, \rho = |\chi|$ coherent superposition vs. statistical mixture populations along diagonal, coherences off diagonal $\langle A \rangle = \text{Trace}(\rho A) = \text{Trace}(A\rho)$

Today: Quantum Beats prepared state **ρ** detection as projection operator **D**

What part of **D** samples a specific off-diagonal element of ρ ? Optimize magnitude of beats

[partial traces]

system consisting of 2 parts — e.g. coupled oscillators motion in state-space vs. motion in coordinate space.

revised October 21, 2002

Example: Quantum Beats

Preparation, evolution, detection

magically prepare some coherent superposition state $\Psi(t)$

$$\Psi(t) = N \sum_{\substack{n \\ \text{N} \\ \text{Several eigenstates of H.} \\ \text{Evolve freely without} \\ \text{any time-dependent} \\ \text{intervention}}} P(t) = |\Psi(t)\rangle \langle \Psi(t)|$$

$$N = \left[\sum_{\substack{n \\ n}} |a_n|^2\right]^{-1/2}$$
normalization

Case (1): Detection: only one of the eigenstates, ψ_1 , in the superposition is capable of giving fluorescence that our detector can "see".

Thus
$$\mathbf{D} = |\psi_1\rangle\langle\psi_1| = \begin{pmatrix} 1 & 0 & \cdots \\ 0 & 0 & 0 \\ \vdots & 0 & 0 \end{pmatrix}$$
 a projection operator
(designed to project out only $|\psi_1\rangle$)
part of state vector or ρ_{11} part of $\mathbf{\rho}$.
$$\mathbf{\rho} = N^2 \begin{pmatrix} |a_1|^2 & a_1 a_2^* e^{-(E_1 - E_2)t/\hbar} & \cdots \\ |a_2|^2 & & \ddots \\ |a_3|^2 & \ddots \\ \rho_{12} = N^2 a_1 e^{-E_1 t/\hbar} a_2^* e^{+iE_2 t/\hbar} & \mathbf{D} \text{ picks out only 1st} \\ \gamma_{12} = N^2 a_1 e^{-E_1 t/\hbar} a_2^* e^{+iE_2 t/\hbar} & \mathbf{D} \text{ picks out only 1st} \\ \langle \mathbf{D} \rangle_t = \text{Trace}(\mathbf{D}\mathbf{\rho}) = N^2 \text{ Trace} \begin{pmatrix} |a_1|^2 & a_1 a_2^* e^{-i\omega_{12}t} & \text{stuff} & \cdots \\ 0 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix} \\ = N^2 |a_1|^2 & \text{no time dependence!} \end{cases}$$

case (2): a particular linear combination of eigenstates is bright: the initial state $2^{-1/2}(\psi_1 + \psi_2)$ has $\langle \mathbf{D} \rangle = 1$.

[if the bright state had been $2^{-1/2}(\psi_1 - \psi_2)$, then $\operatorname{Tr}(\mathbf{D}\boldsymbol{\rho})$ would be the same except for $-2\operatorname{Re}[$]] If $|a_1|^2 = |a_2|^2$ (and a_1 , a_2 real), $\operatorname{Trace}(\mathbf{D}\boldsymbol{\rho}) = \operatorname{N}^2 |a_1|^2 [1 \pm \cos \omega_{12} t]$ (N² = 1/2) QUANTUM BEAT! 100% modulation!

20 - 5

So we see that the same $\Psi(x,t)$ or $\rho(t)$ can look simple or complicated depending on the nature of the measurement operator! The measurement operator is designed to be sensitive only to specific coherences (i.e. locations in ρ) which oscillate at ω_{ij} . THIS IS THE REASON WHY WE SEPARATE PREPARATION AND OBSERVATION SO CLEANLY.

Time evolution of $\rho_{\rm nm}$ and $\langle {\bf A} \rangle$

Start with the time-dependent Schrödinger equation:

$$H\Psi = i\hbar \frac{\partial \Psi}{\partial t} \quad \begin{cases} H|\Psi\rangle = i\hbar \frac{\partial}{\partial t}|\Psi\rangle \\ \\ \langle\Psi|H = -i\hbar \frac{\partial}{\partial t}\langle\Psi| \end{cases}$$

for time-independent **H** we know $\Psi(t) = \sum_{n} a_n \psi_n e^{-iE_n t/\hbar}$

1. **ρ**(t)

$$\boldsymbol{\rho}(t) = |\Psi(t)\rangle \langle \Psi(t)|$$
$$\rho_{nn}(t) = \langle n|\Psi(t)\rangle \langle \Psi(t)|n\rangle = |a_n|^2$$

a time independent "**population**" in state *n*.

$$\rho_{nm}(t) = a_n a_m^* e^{-i(E_n - E_m)t/\hbar} = a_n a_m^* e^{-i\omega_{nm}t} \quad a \text{ "coherence" which} \\ \text{oscillates at } \omega_{nm} \text{ (eigenstate energy differences }/\hbar)$$

2. $\langle \mathbf{A} \rangle_{t}$

Recall
$$i\hbar \frac{\partial \Psi}{\partial t} = \mathbf{H}\Psi$$

 $\frac{\partial}{\partial t} \langle \mathbf{A} \rangle = \left[\frac{\partial}{\partial t} \langle \Psi | \right] \mathbf{A} | \Psi \rangle + \left\langle \Psi | \frac{\partial \mathbf{A}}{\partial t} | \Psi \right\rangle + \left\langle \Psi | \mathbf{A} \left[\frac{\partial}{\partial t} | \Psi \right\rangle \right]$
 $= \frac{-1}{i\hbar} \left[\langle \Psi | \mathbf{H}] \mathbf{A} | \Psi \rangle + \left\langle \frac{\partial \mathbf{A}}{\partial t} \right\rangle + \left\langle \Psi | \mathbf{A} \left[\frac{1}{i\hbar} \mathbf{H} | \Psi \right\rangle \right]$
 $= \frac{i}{\hbar} \left\langle [\mathbf{H}, \mathbf{A}] \right\rangle + \left\langle \frac{\partial \mathbf{A}}{\partial t} \right\rangle$
Heisenberg Equation of Motion

This is a scalar equation, not a matrix equation. It tells us about the motion of the "center" of a wavepacket. Note that nothing has been assumed about the time-dependence of \mathbf{H} .

Nonlecture

$$\begin{split} \frac{\partial \mathbf{\rho}}{\partial t} &= \frac{\partial}{\partial t} \left[|\Psi\rangle \langle \Psi| \right] = \left[\frac{\partial}{\partial t} |\Psi\rangle \right] \langle \Psi| + |\Psi\rangle \left[\frac{\partial}{\partial t} \langle \Psi| \right] \\ &= \left[\frac{1}{i\hbar} \mathbf{H} |\Psi\rangle \right] \langle \Psi| + |\Psi\rangle \left[\frac{-1}{i\hbar} \langle \Psi| \mathbf{H} \right] \\ &= \frac{1}{i\hbar} \left[\mathbf{H} \mathbf{\rho} - \mathbf{\rho} \mathbf{H} \right] \\ &i\hbar \frac{\partial \mathbf{\rho}}{\partial t} = \left[\mathbf{H}, \mathbf{\rho} \right] \end{split}$$

no requirement that ${\bf H}$ be independent of t.

But if ${\bf H}$ is independent of t, then take matrix elements of both sides of equation.

$$i\hbar\dot{\rho}_{jk} = \langle j|\mathbf{H}\boldsymbol{\rho} - \boldsymbol{\rho}\mathbf{H}|k\rangle$$
$$= E_{j}\rho_{jk} - \rho_{jk}E_{k} = (E_{j} - E_{k})\rho_{jk}$$
$$\dot{\rho}_{jk} = -\frac{i}{\hbar}(E_{j} - E_{k})\rho_{jk}$$

$$\rho_{jk}(t) = e^{-\frac{1}{\hbar} \left(E_j - E_k\right)t} \rho_{jk}(0)$$

Time evolution of all coherences in the absence of external manipulation!

If **A** commutes with **H** (regardless of whether **H** is time-dependent), there is no dynamics as far as observable **A** is concerned. However, if **A** does not commute with **H**, there can be dynamics of $\langle \mathbf{A} \rangle$ even if both **A** and **H** are time-independent.

Similarly (as on page 20 - 6) can derive $i\hbar \frac{\partial \rho}{\partial t} = [\mathbf{H}(t), \rho]$ evolution of ρ under $\mathbf{H}(t)$.

This is a matrix equation. It specifies the time dependence of each element of ρ .

Summarize

NMR pulse gymnastics

statistical mixture states - use same machinery BUT add the independent $\pmb{\rho}_k$ matrices with weights p_k that correspond to their fractional populations.

 ρ is Hermitian so can be diagonalized by $\mathbf{T}^{\dagger}\rho\mathbf{T} = \mathbf{P}$. However, if ρ is time-dependent, \mathbf{T} would have to be time-dependent. This transformation gives a representation without any coherences in $\hat{\rho}$ even if we started with a coherent superposition state. No problem because this transformation will undiagonalize \mathbf{H} , thereby reintroducing time dependencies.

Systems consisting of 2 parts: method of partial traces

e.g. coupled harmonic oscillators

$$\frac{\text{direct product representation}}{\left(\begin{array}{c} \text{recall anharmonically coupled oscillators, } k_{122}, q_1 q_2^2, \psi(q_1, q_2) \\ = \psi_{v_1}(q_1)\psi_{v_2}(q_2) \end{array} \right)}$$

$$\psi(\mathbf{x}_1, \mathbf{x}_2) = \psi_{1,n_1}(\mathbf{x}_1)\psi_{2,n_2}(\mathbf{x}_2) \qquad |n_1, n_2\rangle$$

$$\boldsymbol{\rho} = \boldsymbol{\rho}^{(1)} \otimes \boldsymbol{\rho}^{(2)}$$

$$\boldsymbol{\rho} \text{ has 4 indices}$$

$$\rho_{n_1n_2; n_1'n_2'} = \langle n_1 | \langle n_2 | \psi \rangle \langle \psi | n_2' \rangle | n_1' \rangle$$

We might want to measure expectation value of operator that operates on both systems 1 and 2: A(1,2)

$$\langle \mathbf{A} \rangle = \text{Trace}(\boldsymbol{\rho}\mathbf{A})$$

= $\sum_{n_1, n_2} (\boldsymbol{\rho}\mathbf{A})_{n_1 n_2; n_1 n_2}$

Alternatively, we might want to measure expectation value of an operator that operates only on system 1: B(1).

To use $\text{Trace}(\mathbf{\rho}\mathbf{B})$ method, need concept of **partial traces** and need to <u>formally</u> extend **B** to act as dummy operator on system 2.

$$\tilde{B}(1) = B(1) \otimes \mathbf{1}(2)$$

Several types of initial preparation are possible:

- 1. pure state of $1 \otimes 2$ (a "tensor product" state)
- 2. statistical mixture in 1, pure state in 2.
- 3. statistical mixture in both.

Entanglement! Handout from 10/11/02. Science.

Several types of observation are possible:

- 1. separate observation of subsystem 1 or 2
- 2. simultaneous measurement of both systems

CTDL use this definition of $\tilde{\mathbf{B}}(1)$ (page 306) to prove that

 $\langle \tilde{\mathbf{B}}(1) \rangle = \mathrm{Tr}(\boldsymbol{\rho}(1)\mathbf{B}(1))$

calculated as if
system 1 were
isolated from
system 2

for coupled H–O system

```
operator of type (1,2) \mathbf{a}_1^{\dagger} \mathbf{a}_1 \mathbf{a}_2^{\dagger} \mathbf{a}_2 (a correlated property of two
parts of the system)
type (1) \mathbf{a}_1^{\dagger} \mathbf{a}_1
or (2) \mathbf{a}_2^{\dagger} \mathbf{a}_2
or (1 + 2) \left(\mathbf{a}_1^{\dagger} \mathbf{a}_1 + \mathbf{a}_2^{\dagger} \mathbf{a}_2\right)
```

t=0 wavepacket is located at turning point of $v_2=5$ in oscillator #2 and at $x_1=0$ for oscillator #1

$$\Psi(x_1, x_2, t=0) = \sum_{n_2=0}^{\infty} a_{n_2} |0, n_2\rangle^{(0)}$$

suppose we have $\omega_1 = 2\omega_2 \quad P = 2n_1 + n_2$ polyads. and only the $|0,P\rangle^{(0)}$ state is "bright" (i.e. excitation is initially in oscillator # 2)

The initial state is a coherent superposition of several polyads. Motion occurs in *both* coordinate space and state space. Each kind of motion is sampled by a different class of diagnostic.

so that we can use $E_{p,n}$ in $e^{-iE_{p,n}t/\hbar}$ to express $\Psi(x_1, x_2, t)$

get motion of pieces of state vector within each Polyad P.

Could want expectation values of quantities like

$$\begin{split} \mathbf{N}_{1} &= \mathbf{a}_{1}^{\leq} \mathbf{a}_{1} \\ \mathbf{N}_{2} &= \mathbf{a}_{2}^{\leq} \mathbf{a}_{2} \end{split} \text{ state space} \\ 2\mathbf{N}_{1}(t) + \mathbf{N}_{2}(t) &= \mathbf{P} \\ \text{coordinate space} \begin{cases} \mathbf{x}_{1} &= 2^{-1/2} \left(\mathbf{a}_{1} + \mathbf{a}_{1}^{\leq} \right) \\ \mathbf{x}_{1} \mathbf{x}_{2}^{2} &== 2^{-3/2} \left(\mathbf{a}_{1} + \mathbf{a}_{1}^{\leq} \right) \left(\mathbf{a}_{2} + \mathbf{a}_{2}^{\leq} \right)^{2} \end{split}$$