3D-Central Force Problems I

Read: C-TDL, pages 643-660 for next lecture.
All 2-Body, 3-D problems can be reduced to

* a 2-D angular part that is exactly and universally soluble
* a 1-D radial part that is system-specific and soluble by 1-D techniques in which you are now expert

Roadmap

1. define radial momentum $\mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar)$
2. define orbital angular momentum $\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{q}} \times \overrightarrow{\mathbf{p}}$
general definition of angular momentum and of "vector operators"
3. separate \mathbf{p}^{2} into radial and angular terms: $\mathbf{p}^{2}=\mathbf{p}_{\mathrm{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2}$
4. find Complete Set of Commuting Observables (CSCO) useful for blockdiagonalizing \mathbf{H}

$$
\begin{aligned}
{\left[\mathbf{H}, \mathbf{L}^{2}\right]=} & {\left[\mathbf{H}, \mathbf{L}_{\mathbf{i}}\right]=\left[\mathbf{L}^{2}, \mathbf{L}_{\mathrm{i}}\right]=0 \quad \mathbf{H}, \mathbf{L}^{2}, \mathbf{L}_{\mathrm{i}} \quad \mathrm{CSCO} } \\
& \left|\mathrm{~L}, \mathrm{M}_{\mathrm{L}}\right\rangle \text { universal basis set }
\end{aligned}
$$

5. $\begin{aligned} & \text { separate radial } \\ & \text { part of } \mathbf{H} \text { : }\end{aligned} \mathbf{H}_{\ell}(\mathrm{r})=\frac{\mathbf{p}_{\mathrm{r}}^{2}}{2 \mu}+\mathrm{V}(\mathbf{r})+\frac{\hbar^{2} \ell(\ell+1)}{2 \mu \mathbf{r}^{2}}$ $\begin{aligned} & \text { effective radial } \\ & \text { potential }\end{aligned}$
6. ALL Matrix Elements of Angular Momentum Components Derived from Commutation Rules.
7. Spherical Tensor Classification of all operators.

$$
\Downarrow
$$

8. Wigner-Eckart Theorem \rightarrow all angular matrix elements of all operators.

I hate differential operators. Replace them using exclusively simple Commutation Rule based Operator Algebra.

Lots of derivations based on classical VECTOR ANALYSIS - much will be set aside as NONLECTURE

Central Force Problems: 2 bodies where interaction force is along the vector 1

$$
\begin{aligned}
\overrightarrow{\mathrm{q}}_{2} & =\overrightarrow{\mathrm{q}}_{1}+\overrightarrow{\mathrm{q}}_{12} \\
\overrightarrow{\mathrm{q}}_{12} & =\overrightarrow{\mathrm{q}}_{2}-\overrightarrow{\mathrm{q}}_{1} \\
& =\hat{\mathrm{i}}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\hat{\mathrm{j}}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)+\hat{\mathrm{k}}\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right) \\
\mathrm{r} \equiv\left|\overrightarrow{\mathrm{q}}_{12}\right| & =\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{z}_{2}-\mathrm{z}_{1}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

also C.M. Coordinate system

$$
\begin{array}{ll}
\overrightarrow{\mathrm{r}}_{1}=\overrightarrow{\mathrm{q}}_{1}-\overrightarrow{\mathrm{q}}_{\mathrm{cm}} & {\left[\left|\mathrm{r}_{1}\right| / \mathrm{r}=\mathrm{m}_{2} / \mathrm{M}\right]} \\
\overrightarrow{\mathrm{r}}_{2}=\overrightarrow{\mathrm{q}}_{2}-\overrightarrow{\mathrm{q}}_{\mathrm{cm}} & {\left[\left|\mathrm{r}_{2}\right| / \mathrm{r}=\mathrm{m}_{1} / \mathrm{M}\right]}
\end{array}
$$

$\mathbf{H}=\mathbf{H}_{\text {translation }}+\mathbf{H}_{\text {center of mass }}$
motion of fictitious
free translation particle of mass of C of M of $\begin{aligned} & \text { system of mass } \\ & \mathrm{M}=\mathrm{m}_{1}+\mathrm{m}_{2}\end{aligned} \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$
in coordinate system
with origin at C of M (CTDL page 713)
$\mathrm{LAB} \quad \mathbf{H}_{\text {translation }}=\frac{\mathbf{P}_{\text {trans }}^{2}}{2\left(\mathrm{~m}_{1}+\mathrm{m}_{2}\right)}+\underset{\text { constant }}{\mathrm{V}}$
free translation of system with respect to lab (not interesting)
BODY $\quad \mathbf{H}_{\mathrm{C} . \mathrm{M} .}=\frac{1}{2 \mu} \mathbf{P}_{\mathrm{cm}}^{2}+\underbrace{\mathrm{V}(\mathrm{r})}_{\begin{array}{c}\text { free rotation } \\ \text { (no } \theta, \phi \\ \text { dependence) }\end{array}}$
motion of particle of mass μ with respect to origin at c. of m.

GOAL IS TO SIMPLIFY $\mathbf{P}_{\mathrm{cm}}^{2}$
because that is only place where θ, ϕ degrees of freedom appear.

1. Define Radial Component of $\overrightarrow{\mathrm{P}}_{\mathrm{cm}}$

Correspondence Principle
[* classical mechanics

* Cartesian Coordinates
* symmetrize to avoid failure to satisfy Commutation Rules
** verify that all three derived operators, $\mathbf{p}, \mathbf{p}_{\mathrm{r}}$ and \mathbf{L}
- are Hermitian
- satisfy $[\mathbf{q}, \mathbf{p}]=\mathrm{i} \hbar$

Purpose of this lecture is to walk you through the standard vector analysis and Quantum Mechanics Correspondence Principle procedures

$$
\begin{aligned}
& \overrightarrow{\mathrm{q}} \equiv \hat{\mathrm{i} x}+\hat{\mathrm{j}} \mathrm{y}+\hat{\mathrm{k}} \mathrm{z} \\
& \overrightarrow{\mathrm{p}} \equiv \hat{\mathrm{i}} \mathrm{p}_{\mathrm{x}}+\hat{\mathrm{j}} \mathrm{p}_{\mathrm{y}}+\hat{\mathrm{k}} p_{\mathrm{z}} \\
& \mathrm{r} \equiv\left[\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right]^{1 / 2}=[\mathrm{q} \cdot \mathrm{q}]^{1 / 2}=|\mathrm{q}|
\end{aligned}
$$

$$
\text { find radial (i.e. along } \overrightarrow{\mathrm{q}} \text {) part of } \overrightarrow{\mathrm{p}}
$$

radial component of p is obtained by projecting \vec{p} onto \vec{q}

$$
\mathrm{p}_{\mathrm{r}}=|\mathrm{p}| \cos \theta=|\mathrm{p}| \frac{\mathrm{q} \cdot \mathrm{p}}{|\mathrm{q}||\mathrm{p}|}=\frac{\mathrm{q} \cdot \mathrm{p}}{\mathrm{r}}
$$

so from standard vector analysis we get $\mathrm{p}_{\mathrm{r}}=\mathrm{r}^{-1} \overrightarrow{\mathrm{q}} \cdot \overrightarrow{\mathrm{p}}$

This is a trial form for p_{r}, but it is necessary, according to Correspondence Principle, to symmetrize it.

$$
\mathbf{p}_{\mathrm{r}}=\frac{1}{4}\left[\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{q})+(\mathbf{q} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{q}) \mathbf{r}^{-1}\right]
$$

arrange terms in all possible orders!
NONLECTURE (except for Eq. (4))
SIMPLIFY ABOVE Definition to $\quad \mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar) \quad(\mathbf{r}$ is not a vector)
$[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}]$ is a vector commutator - be careful

$$
\begin{align*}
& {[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}]=\left[\mathbf{x}, \mathbf{p}_{\mathrm{x}}\right]+\left[\mathbf{y}, \mathbf{p}_{\mathrm{y}}\right]+\left[\mathbf{z}, \mathbf{p}_{\mathrm{z}}\right]=3 \mathrm{i} \hbar } \\
& \therefore \mathbf{p} \cdot \mathbf{q}=\mathbf{q} \cdot \mathbf{p}-[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}] \\
\mathbf{p}_{\mathrm{r}}= & \frac{1}{4}\left[\mathbf{r}^{-1}(2 \mathbf{q} \cdot \mathbf{p}-[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}])+\left(2 \mathbf{q} \cdot \mathbf{p}-[[\overrightarrow{\mathbf{q}}, \overrightarrow{\mathbf{p}}]) \mathbf{r}^{-1}\right]\right. \tag{1}\\
= & \frac{1}{4}[\underbrace{\mathbf{r}^{-1} 4 \mathbf{q} \cdot \mathbf{p}-\mathbf{r}^{-1} 2 \mathbf{p} \cdot \mathbf{q}}_{\text {add and subtract } 2 \mathbf{r}^{-1} \mathbf{q} \cdot \mathbf{p}}+2 \cdot \mathbf{p r}^{-1}-6 \mathrm{i} \hbar \mathbf{r}^{-1}] \tag{2}\\
= & \mathbf{r}^{-1} \mathbf{q} \cdot \mathbf{p}-\frac{3}{2} \hbar \hbar \mathbf{r}^{-1}+\frac{1}{2}\left[\mathbf{q} \cdot \mathbf{p}, \mathbf{r}^{-1}\right] \tag{3}
\end{align*}
$$

LEMMA: need more general Commutation Rule for which $\left[\mathbf{q} \cdot \mathbf{p}, \mathbf{r}^{-1}\right]$ is a special case

$$
\text { 1st simplify: }[\mathrm{f}(\mathbf{r}), \mathbf{q} \cdot \mathbf{p}]=\mathbf{q} \cdot[\mathrm{f}(\mathbf{r}), \overrightarrow{\mathbf{p}}]+[\mathrm{f}(\mathbf{r}), \overrightarrow{\mathbf{q}}] \cdot \overrightarrow{\mathbf{p}}
$$

but, from 1-D, we could have shown

$$
\begin{aligned}
{[\mathrm{f}(\mathbf{x}), \mathbf{p}] \phi } & =\mathrm{f}(\mathbf{x}) \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathbf{x}} \phi-\frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathbf{x}}(\mathrm{f}(\mathbf{x}) \phi) \\
& =\frac{\hbar}{\dot{\partial}}\left[\mathrm{f}(\mathbf{x}) \phi^{\prime}-\mathrm{f}^{\prime} \phi-\mathrm{f}^{\prime}\right]=\mathrm{i} \hbar \mathrm{f}^{\prime}(\mathbf{x}) \phi \\
{[\mathrm{f}(\mathbf{x}), \mathbf{p}] } & =\mathrm{i} \hbar \frac{\partial \mathrm{f}}{\partial \mathbf{x}} \quad \text { for 1-D }
\end{aligned}
$$

Thus, in 3-D, the chain rule gives

$$
[\mathrm{f}(\mathbf{r}), \overrightarrow{\mathbf{p}}]=\mathrm{i} \hbar\left[\underset{\sim}{\frac{\partial \mathrm{f}}{\partial \mathbf{r}}} \frac{\partial \mathbf{r}}{\partial \mathbf{x}}+\mathrm{Y}^{\circ} \frac{\partial \mathrm{f}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{y}}+\mathbb{K} \frac{\partial \mathrm{f}}{\partial \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{z}}\right]
$$

evaluate these first

$$
\begin{gathered}
\frac{\partial r}{\partial x}=\frac{\partial}{\partial x}\left[x^{2}+y^{2}+z^{2}\right]^{1 / 2}=x\left[x^{2}+y^{2}+z^{2}\right]^{-1 / 2}=x / r \\
\text { etc. for } \frac{\partial r}{\partial y} \& \frac{\partial r}{\partial z}
\end{gathered}
$$

Thus $[f(\mathbf{r}), \overrightarrow{\mathbf{p}}]=\mathrm{i} \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}}\left[\mathrm{Y} \frac{\mathbf{x}}{\mathbf{r}}+\gamma \frac{\mathbf{y}}{\mathbf{r}}+\mathrm{K} \frac{\mathbf{z}}{\mathbf{r}}\right]=\mathrm{i} \hbar \frac{\partial \mathrm{f}}{\partial \mathbf{r}} \frac{\overrightarrow{\mathbf{q}}}{\mathbf{r}}$

$$
[\mathrm{f}(\mathbf{r}), \overrightarrow{\mathbf{q}} \cdot \overrightarrow{\mathbf{p}}]=\mathbf{q} \cdot[\mathrm{f}(\mathbf{r}), \mathbf{p}]=\mathrm{i} \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}}\left(\frac{\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}}{\mathbf{r}}\right)=\mathrm{i} \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}} \mathbf{r}
$$

$$
\begin{equation*}
[f(\mathbf{r}), \mathbf{q} \cdot \mathbf{p}]=\mathrm{i} \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}} \mathbf{r} \tag{4}
\end{equation*}
$$

this is a scalar, not a vector, equation

But we wanted to evaluate the commutation rule for $f(\mathbf{r})=\mathbf{r}^{-1}$

$$
\begin{equation*}
\left[\mathbf{r}^{-1}, \mathbf{q} \cdot \mathbf{p}\right]=\mathbf{i} \hbar \frac{\partial}{\partial \mathbf{r}}\left(\frac{1}{\mathbf{r}}\right) \mathbf{r}=-\mathbf{i} \hbar \mathbf{r}^{-1} \tag{5}
\end{equation*}
$$

plug this result into (3)

$$
\mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1} \mathbf{q} \cdot \mathbf{p}-\frac{3}{2} \mathrm{i} \hbar \mathbf{r}^{-1}+\frac{1}{2}\left(\mathrm{i} \hbar \mathbf{r}^{-1}\right)
$$

RESUME
 HERE
 $$
\begin{equation*} \mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar) \tag{6} \end{equation*}
$$

This is the compact but non-symmetric result we got starting with a carefully symmetrized starting point - as required by Correspondence Principle.

* This result is identical to result obtained from standard vector analysis IN THE LIMIT OF $\hbar \rightarrow 0$.

Still must do 2 things: \quad show $\left[\mathbf{r}, \mathbf{p}_{\mathbf{r}}\right]=\mathrm{i} \hbar$
show $\mathbf{p}_{\mathbf{r}}$ is Hermitian

$$
\begin{aligned}
{\left[\mathbf{r}, \mathbf{p}_{\mathbf{r}}\right] } & =\left[\mathbf{r}, \mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar)\right] \\
& =\mathbf{r}^{-1}[\mathbf{r}, \mathbf{q} \cdot \mathbf{p}]-\mathbf{r}^{-1}[\mathbf{r} / \hbar]+\left[\mathbf{r} \mathbf{r}^{-1}\right](\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar) \\
& =\mathbf{r}^{-1}[\mathbf{r}, \mathbf{q} \cdot \mathbf{p}] \quad \text { Use Eq. (4) } \\
{[\mathbf{r}, \mathbf{q} \cdot \mathbf{p}] } & =\mathrm{i} \hbar \mathbf{r} \\
& \therefore\left[\mathbf{r}, \mathbf{p}_{\mathbf{r}}\right]=\mathrm{i} \hbar
\end{aligned}
$$

*
* we do not need to confirm that $\mathbf{p}_{\mathbf{r}}$ is Hermitian because it was constructed from a symmetrized form which is guaranteed to be Hermitian.

Correspondence Principle!
2. Verify that Classical Definition of Angular Momentum is Appropriate for QM.

$$
\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{q}} \times \overrightarrow{\mathrm{p}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \tag{7}\\
\mathrm{x} & \mathrm{y} & \mathrm{z} \\
\mathrm{p}_{\mathrm{x}} & \mathrm{p}_{\mathrm{y}} & \mathrm{p}_{\mathrm{z}}
\end{array}\right|
$$

We will see that this definition of an angular momentum is acceptable as far as the correspondence principle is concerned, but it is not sufficiently general.

NONLECTURE
What about symmetrizing $\overrightarrow{\mathrm{L}}$?

$$
\begin{aligned}
\mathrm{L}_{\mathrm{x}}=\mathrm{yp}_{\mathrm{z}}-\mathrm{zp} \mathrm{p}_{\mathrm{y}}= & \mathrm{p}_{\mathrm{z}} \mathrm{y}-\mathrm{p}_{\mathrm{y}} \mathrm{z}
\end{aligned} \quad \begin{aligned}
& \text { PRODUCTS OF } \\
& \\
& =-(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})_{\mathrm{x}}
\end{aligned} \begin{aligned}
& \text { NON-CONJUGATE } \\
& \text { QUANTITIES }
\end{aligned}
$$

$$
\begin{array}{ll}
\mathbf{q} \times \mathbf{p}+\mathbf{p} \times \mathbf{q}=0 & \text { symmetrization is impossible! } \\
\mathbf{q} \times \mathbf{p}-\mathbf{p} \times \mathbf{q}=2 \overrightarrow{\mathbf{L}} & \text { antisymmetrization is unnecessary! }
\end{array}
$$

But is $\overrightarrow{\mathbf{L}}$ Hermitian as defined?
BE CAREFUL: $\quad(\mathbf{q} \times \mathbf{p})^{\dagger} \neq \mathbf{p}^{\dagger} \times \mathbf{q}^{\dagger}!$
go back to definition of vector cross product

$$
\begin{aligned}
& \mathbf{L}_{\mathrm{x}}=\mathbf{y} \mathbf{p}_{\mathrm{z}}-\mathbf{z} \mathbf{p}_{\mathrm{y}} \\
& \mathbf{L}_{\mathrm{x}}^{\dagger}=\mathbf{p}_{\mathrm{z}}^{\dagger} \mathbf{y}^{\dagger}-\mathbf{p}_{\mathrm{y}}^{\dagger} \mathbf{z}^{\dagger}=\mathbf{p}_{\mathrm{z}} \mathbf{y}-\mathbf{p}_{\mathrm{y}} \mathbf{z}=\mathbf{y} \mathbf{p}_{\mathrm{z}}-\mathbf{z} \mathbf{p}_{\mathrm{y}}=\mathbf{L}_{\mathrm{x}}
\end{aligned}
$$

(\mathbf{p}, \mathbf{q} are Hermitian)
$\therefore \overrightarrow{\mathbf{L}}$ is Hermitian as defined.
RESUME
3A. Separate \mathbf{p}^{2} into radial and angular terms.
GOAL:
$\mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2}$
vector analysis
$\overrightarrow{\mathbf{p}}=\overrightarrow{\mathbf{p}}_{\|}+\overrightarrow{\mathbf{p}}_{\perp}$
(II and \perp with respect to $\overrightarrow{\mathbf{q}}$)

\mathbf{r}^{-2} is needed in both terms to remain dimensionally correct.
talk through this vector identity

$$
\begin{aligned}
& \text { 1st term }\left(\mathbf{p}_{\|}\right): \quad \mathrm{q} \cdot \mathrm{p}=|\mathrm{q} \| p| \cos \theta \\
& \vec{q} /|q|=\text { unit vector along } \overrightarrow{\mathrm{q}}
\end{aligned}
$$

2nd term $\left(\mathbf{p}_{\perp}\right): \quad \mathrm{q} \times \mathrm{p}$ points \perp up out of paper
thumb finger palm
$\stackrel{\text { thumb }}{\mathrm{q}} \times \underbrace{\mathrm{q} \times \mathrm{p}}_{\text {finger }}$ is in plane of paper in opposite direction of p_{\perp},

Is it necessary to symmetrize Eq. (9)?

NONLECTURE

Examine Eq. (9) for QM consistency
x component
$p_{x}=r^{-2}\left[x\left(x p_{x}+y p_{y}+z p_{z}\right)-\left(y L_{z}-z L_{y}\right)\right]$
but
$y L_{z}-z L_{y}=y\left(x p_{y}-y p_{x}\right)+z\left(x p_{z}-z p_{x}\right)$
$p_{x}=r^{-2}\left[\left(x^{2}+y^{2}+z^{2}\right) p_{x}+(x y / y x) p_{y}+(x z / z x) p_{z}\right]=p_{x}$
similarly for p_{y}, p_{z}
Symmetrize? No, because 2 parts of \vec{p} are already shown to be Hermitian.

3B. Evaluate p•p

$$
\begin{equation*}
\mathbf{p}^{2}=\overrightarrow{\mathbf{p}} \mathbf{r}^{-2}[\mathbf{q}(\mathbf{q} \cdot \mathbf{p})-\mathbf{q} \times(\mathbf{q} \times \mathbf{p})] \tag{10}
\end{equation*}
$$

$\left[\right.$ goal is $\left.\mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2}\right]$
commute $\overrightarrow{\mathbf{p}}$ through \mathbf{r}^{-2} to be able to take advantage of classical vector triple product
NONLECTURE

$$
\begin{aligned}
{\left[\overrightarrow{\mathbf{p}}, \mathbf{r}^{-2}\right] } & =-\mathrm{i} \hbar\left[\hat{\mathrm{i}} \frac{\partial}{\partial \mathbf{x}} \mathbf{r}^{-2}+\hat{\mathrm{j}} \frac{\partial}{\partial \mathbf{y}} \mathbf{r}^{-2}+\hat{\mathrm{k}} \frac{\partial}{\partial \mathbf{z}} \mathbf{r}^{-2}\right] \\
& =2 \mathrm{i} \hbar \mathbf{r}^{-4} \overrightarrow{\mathbf{q}} \quad \\
& {\left[\operatorname{Recall}\left[\mathrm{f}(\mathbf{x}), \mathbf{p}_{\mathbf{x}}\right]=\mathrm{i} \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{x}}\right] }
\end{aligned}
$$

$$
\text { because } \frac{\partial}{\partial \mathbf{x}} \mathbf{r}^{-2}=-2 \mathbf{r}^{-3} \frac{\partial \mathbf{r}}{\partial \mathbf{x}}=-2 \mathbf{r}^{-3}\left(\frac{1}{2}\right) \frac{2 \mathbf{x}}{\mathbf{r}}=-2 \mathbf{x} / \mathbf{r}^{4}
$$

$$
\begin{equation*}
\text { thus } \overrightarrow{\mathbf{p}} \mathbf{r}^{-2}=\mathbf{r}^{-2}\left(\overrightarrow{\mathbf{p}}+2 \mathrm{i} \hbar \mathbf{r}^{-2} \overrightarrow{\mathbf{q}}\right) \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{p}^{2}=\mathbf{r}^{-2}\left(\overrightarrow{\mathbf{p}}+2 \mathrm{i} \hbar \mathbf{r}^{-2} \overrightarrow{\mathbf{q}}\right)[\mathbf{q}(\mathbf{q} \cdot \mathbf{p})-\mathbf{q} \times(\mathbf{q} \times \mathbf{p})] \tag{12}
\end{equation*}
$$

get 4 terms

$$
\mathbf{p}^{2}=\mathbf{r}^{-2}(\mathbf{p} \cdot \mathbf{q})(\mathbf{q} \cdot \mathbf{p})-\mathbf{r}^{-2} \mathbf{p} \cdot[\mathbf{q} \times(\mathbf{q} \times \mathbf{p})]+\mathbf{r}^{-2}(2 \mathrm{i} \hbar) \mathbf{r}^{-2}(\mathbf{q} \cdot \mathbf{q})(\mathbf{q} \cdot \mathbf{p})-\mathbf{r}^{-2}(2 \mathrm{i} \hbar) \mathbf{r}^{-2} \mathbf{q} \cdot[\mathbf{q} \times(\mathbf{q} \times \mathbf{p})]
$$

$$
\left.\begin{array}{rl}
\mathbf{I}= & \mathbf{r}^{-2}(\mathbf{q} \cdot \mathbf{p}-3 \mathrm{i} \hbar)(\mathbf{q} \cdot \mathbf{p}) \\
\mathbf{I I I}= & \mathbf{r}^{-2}(2 \mathrm{i} \hbar)(\mathbf{q} \cdot \mathbf{p})
\end{array}\right\} \mathbf{r}^{-2}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar)(\mathbf{q} \cdot \mathbf{p})=\mathbf{r}^{-1} \mathbf{p}_{\mathbf{r}}(\mathbf{q} \cdot \mathbf{p}) \mathrm{r} \mathbf{p}_{\mathrm{r}}+\mathrm{i} \hbar \mathrm{l},
$$

RESUME

This $\mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2}$ equation
is a very useful and simple form for \mathbf{p}^{2} - separated into additive radial and angular terms! If \mathbf{H} can be separated into additive terms, then the eigenvectors can be factored.

SUMMARY

$\mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar) \quad$ radial momentum
$\mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2} \quad$ separation of radial and angular terms
$\mathbf{H}=\frac{\mathbf{p}_{\mathbf{r}}^{2}}{2 \mu}+\left[\frac{\mathbf{L}^{2}}{2 \mu \mathbf{r}^{2}}+\mathrm{V}(\mathbf{r})\right]$
eventually $\quad \mathrm{V}_{\ell}(\mathbf{r})=\frac{\hbar^{2} \ell(\ell+1)}{2 \mu \mathbf{r}^{2}}+\mathrm{V}(\mathbf{r})$
Next: properties of $\mathbf{L}_{\mathbf{i}}, \mathbf{L}^{2} \longrightarrow \mathrm{CSCO}$

