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3D-Central Force Problems II

Last time: [x,p] = ih → vector commutation rules: generalize from 1-D to 3-D
conjugate position and momentum components in Cartesian
coordinates

Correspondence Principle Recipe
Cartesian and vector analysis
Symmetrize (make it Hermitian)
classical in h → 0 limit

Derived key results:
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 algebra gave simple separation of variables

not necessary (or possible) to symmetrize

V  radial effective potentiall

TODAY

Obtain angular Momentum Commutation Rules → Block diagonalize H

εijk Levi-Civita Antisymmetric Tensor
useful in derivations, vector commutators, and remembering stuff.

Next Lecture:  Begin derivation of all angular momentum matrix elements
starting from Commutation Rule definitions of angular momentum.

[purpose is mostly to practice [,] and angular momentum algebra]

(came from symmetrization in Cartesian coordinates)

We do not yet know anything about L2 nd Li.
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These 1-4 are chosen to show that all terms in H commute with L2 and Li

  

1. Lz, f(r)[ ] = xpy − ypx,f(r)[ ] = x py,f[ ] + x, f[ ]py − y px,f[ ] − y, f[ ]px

x, f[ ] = 0, y, f[ ] = 0 because 
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Note that  is not f( )!

need to define special notational trick to evaluate these DIFFICULT
COMMUTATORS
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εijk

εxyz = εyzx = εzxy = +1

εyxz = εzyx = εxzy = −1

εxxy =  etc.= 0

Levi-Civita Symbol

cyclic order

adjacent interchange

2 repeated indices

I claim  L p pi , .j ijk k
k

i[ ] = ∑h ε

Nonlecture:  Verify claim for 1 of 3 × 3 = 9 possible cases
let i = x, j = y

  

Lx,py[ ] = ypz − zpy,py[ ] = ypz,py[ ] + 0

= y,py[ ]pz + y pz,py[ ]
= ihpz

Now check this using εijk
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All other 8 cases go similarly

Other important Commutation Rules

OK

  

Li ,pj[ ] = ih εijkpk
k
∑

Li ,qj[ ] = ih εijkqk
k
∑










Li ,Lj[ ] = ih εijkLk
k
∑

general definition of
a “vector” operator

general definition of an
“angular momentum.” Works
even for spin where q × p
definition is inapplicable

FOR THE READER:  VERIFY ONE
COMPONENT OF EACH OF THE
THREE ABOVE COMMUTATORS

This will become the definition of a “vector operator”
with respect to L.

0

0

All angular momentum matrix elements will be derived from these commutation
rules.
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Li ,L j[ ] = ih εijkLk
k
∑  is identical to 

L × L = ihL

 

L × L =
î ĵ k̂
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= ih îLx + ĵLy + k̂Lz[ ] = ihL

This vector cross product definition of L is more general than q × p because there
is no way to define spin in q × p form but S × S = ihS is quite meaningful.

Can one generalize that, if L × L = ihL (instead of 0), and the [Li, Lj] and [Li, pj]
commutation rules have similar forms, that L × p = ihp?  NO!  Check for yourself!

only one of these terms
is nonzero
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expect 0! because vector cross product 
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2. Continued.

vector commutators
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  and the other term Li ,
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q ⋅ Li ,p[ ] + Li ,q[ ] ⋅ p = ih εijkq jpk − εijkq jpk[ ] = 0!
j,k
∑

Elegance and power of εijk notation!
We have shown that:
* [Li,pr] = 0 for all i
* easy now to show [Li,pr

2] = 0

Finally Li ,L
2[ ] = Li ,L j
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same trick:   permute j k indices in second term
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But be careful:  Li ,L j
2[ ] = L j Li ,L j[ ] + Li ,L j[ ]L j = ih L j Σ
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because this is a sum only over k,  so can’t combine and cancel terms.

(k(k↔↔j labels permuted)j labels permuted)

(2)

putting Eqs. (1) and (2) together
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 for i = x,  j = y

Lx,Ly
2[ ] = ih LyLz + LzLy[ ] ≠ 0!

so we have shown

L2 ,Li[ ] = 0

L2 , f(r)[ ] = 0

Li , f(r)[ ] = 0

L2 ,pr[ ] = 0

Li ,pr[ ] = 0

∴ L2, Li, H all commute — Complete Set of Mutually Commuting Operators

So what does this tell us about L H ′L = ?
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BLOCK DIAGONALIZATION OF H!

Basis functions ψ = χ r( ) L2 ,Lz = nLML

radial
special

angular
universal

Next time I will show, starting from
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