3D-Central Force Problems II

Last time: $\quad[\mathbf{x}, \mathbf{p}]=\mathrm{i} \hbar \rightarrow$ vector commutation rules: generalize from 1-D to 3-D conjugate position and momentum components in Cartesian coordinates
Correspondence Principle Recipe
Cartesian and vector analysis
Symmetrize (make it Hermitian)
classical in $\hbar \rightarrow 0$ limit
Derived key results:

$$
\begin{aligned}
& {\left[\mathrm{f}(\mathbf{x}), \mathbf{p}_{\mathbf{x}}\right]=\mathrm{i} \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{x}}} \\
& {[f(\mathbf{r}), \mathbf{q} \cdot \mathbf{p}]=\mathrm{i} \hbar \frac{\partial \mathbf{f}}{\partial \mathbf{r}} \mathbf{r} \quad \text { based on } \frac{\mathrm{d} \mathbf{f}}{\mathrm{~d} \mathbf{r}} \frac{\partial \mathbf{r}}{\partial \mathbf{x}} \text { and } \mathbf{r}=\left[\mathbf{x}^{2}+\mathbf{y}^{2}+\mathbf{z}^{2}\right]^{1 / 2}} \\
& { }^{*} \mathbf{p}_{\mathbf{r}}=\mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar) \longleftarrow \text { (came from symmetrization in Cartesian coordinates) } \\
& { }^{*} \mathbf{p}^{2}=\mathbf{p}_{\mathbf{r}}^{2}+\mathbf{r}^{-2} \mathbf{L}^{2} \quad \text { operator algebra gave simple separation of variables } \\
& { }^{*} \mathbf{L}=\mathbf{q} \times \mathbf{p} \quad \text { not necessary (or possible) to symmetrize } \\
& { }^{*} \mathbf{H}=\frac{\mathbf{p}_{\mathbf{r}}^{2}}{2 \mu}+\left[\frac{\mathbf{L}^{2}}{2 \mu \mathbf{r}^{2}}+\mathrm{V}(\mathbf{r})\right] \\
& \mathrm{V}_{\ell}(\mathrm{r}) \text { radial effective potential } \\
& \text { We do not yet know anything about } \mathbf{L}^{2} \text { nd } \mathbf{L}_{\mathrm{i}} \text {. }
\end{aligned}
$$

TODAY [purpose is mostly to practice [,] and angular momentum algebra]
Obtain angular Momentum Commutation Rules \rightarrow Block diagonalize H $\varepsilon_{\mathrm{ijk}}$ Levi-Civita Antisymmetric Tensor
useful in derivations, vector commutators, and remembering stuff.
Next Lecture: Begin derivation of all angular momentum matrix elements starting from Commutation Rule definitions of angular momentum.

GOALS

1. $\left[\mathbf{L}_{\mathbf{i}}, \mathrm{f}(\mathbf{r})\right]=0 \quad$ any scalar function of scalar \mathbf{r}.
2. $\left[\mathbf{L}_{i}, \mathbf{p}_{\mathbf{r}}\right]=0 \quad$ difficult - need $\varepsilon_{i \mathrm{ik}}$
3. $\left[\mathbf{L}_{\mathbf{i}}, \mathbf{p}_{\mathbf{r}}^{2}\right]=0$
4. $\quad\left[\mathbf{L}_{i}, \mathbf{L}^{2}\right]=0 \quad\left(\operatorname{but}\left[\mathbf{L}_{\mathbf{i}}, \mathbf{L}_{\mathbf{j}}^{2}\right] \neq 0!\right)$
5. C.S.C.O. $\quad \mathbf{H}, \mathbf{L}^{2}, \mathbf{L}_{\mathbf{i}} \rightarrow$ block diagonalize \mathbf{H}

These 1-4 are chosen to show that all terms in \mathbf{H} commute with \mathbf{L}^{2} and \mathbf{L}_{i}

1. $\quad\left[\mathbf{L}_{\mathrm{z}}, \mathrm{f}(\mathbf{r})\right]=\left[\mathbf{x} \mathbf{p}_{\mathrm{y}}-\mathbf{y} \mathbf{p}_{\mathrm{x}}, \mathrm{f}(\mathbf{r})\right]=\mathbf{x}\left[\mathbf{p}_{\mathrm{y}}, \mathrm{f}\right]+[\mathbf{x}, \mathrm{f}] \mathbf{p}_{\mathrm{y}}-\mathbf{y}\left[\mathbf{p}_{\mathrm{x}}, \mathrm{f}\right]-[\mathbf{y}, \mathrm{f}] \mathbf{p}_{\mathrm{x}}$

$$
[\mathbf{x}, \mathrm{f}]=0, \quad[\mathbf{y}, \mathrm{f}]=0 \text { because }[\overrightarrow{\mathbf{q}}, \mathrm{f}(\mathbf{r})]=0 \hat{\mathrm{i}}+0 \hat{\mathrm{j}}+0 \hat{\mathrm{k}}
$$

$$
\operatorname{recall}\left[\mathrm{f}(\mathbf{r}), \mathbf{p}_{\mathrm{x}}\right]=\mathrm{i} \hbar \frac{\partial \mathrm{f}}{\partial \mathrm{r}} \frac{\partial \mathrm{r}}{\partial \mathrm{x}}=\mathrm{i} \hbar \frac{\partial \mathrm{f}}{\partial \mathrm{r}} \frac{\mathrm{x}}{\mathrm{r}}
$$

$$
\left[\mathbf{L}_{z}, f(\mathbf{r})\right]=-\mathrm{i} \hbar \frac{\partial \mathrm{f}}{\partial \mathrm{r}}\left[\mathrm{x} \frac{\mathrm{y}}{\mathrm{r}}-\mathrm{y} \frac{\mathrm{x}}{\mathrm{r}}\right]=0
$$

2.

$$
\begin{aligned}
{\left[\mathbf{L}_{z}, \mathbf{p}_{\mathbf{r}}\right]=} & {\left[\mathbf{L}_{z}, \mathbf{r}^{-1}(\mathbf{q} \cdot \mathbf{p}-\mathrm{i} \hbar)\right]=\left[\mathbf{L}_{z}, \mathbf{r}^{-1} \mathbf{q} \cdot \mathbf{p}\right] } \\
& =\left[\mathbf{L}_{z}, \mathbf{r}^{-1}\right] \mathbf{\Psi} \cdot \mathbf{p}+\mathbf{r}^{-1}\left[\mathbf{L}_{z}, \mathbf{q} \cdot \mathbf{p}\right] \\
{\left[\mathbf{L}_{z}, \mathbf{q} \cdot \mathbf{p}\right]=} & \mathbf{q} \cdot\left[\mathbf{L}_{z}, \overrightarrow{\mathbf{p}}\right]+\left[\mathbf{L}_{z}, \overrightarrow{\mathbf{q}}\right] \cdot \mathbf{p} \quad \text { two vector commutators on RHS } \\
& \text { Note that } \overrightarrow{\mathbf{q}} \text { is not } \mathrm{f}(\mathbf{r})!
\end{aligned}
$$

need to define special notational trick to evaluate these DIFFICULT COMMUTATORS

Levi-Civita Symbol	$\varepsilon_{\mathrm{ijk}}$
cyclic order	$\varepsilon_{\mathrm{xyz}}=\varepsilon_{\mathrm{yzx}}=\varepsilon_{\mathrm{zxy}}=+1$
adjacent interchange	$\varepsilon_{\mathrm{yxz}}=\varepsilon_{\mathrm{zyx}}=\varepsilon_{\mathrm{xzy}}=-1$
2 repeated indices	$\varepsilon_{\mathrm{xxy}}=$ etc. $=0$

I claim $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{p}_{\mathrm{k}}$. $\begin{aligned} & \text { This will become the definition of a "vector operator" } \\ & \text { with respect to } \mathbf{L}\end{aligned}$. with respect to \mathbf{L}.

Nonlecture: Verify claim for 1 of $3 \times 3=9$ possible cases

$$
\begin{aligned}
& \text { let } \mathrm{i}=\mathrm{x}, \mathrm{j}=\mathrm{y} \\
& \begin{aligned}
{\left[\mathbf{L}_{\mathrm{x}}, \mathbf{p}_{\mathrm{y}}\right]=\left[\mathbf{y} \mathbf{p}_{\mathrm{z}}-\mathbf{z} \mathbf{p}_{\mathrm{y}}, \mathbf{p}_{\mathrm{y}}\right] } & =\left[\mathbf{y} \mathbf{p}_{\mathrm{z}}, \mathbf{p}_{\mathrm{y}}\right]+0 \\
& =\left[\mathbf{y}, \mathbf{p}_{\mathrm{y}}\right] \mathbf{p}_{\mathrm{z}}+\mathbf{y}\left[\mathbf{p}_{\mathrm{z}}, \mathbf{p}_{\mathrm{y}}\right] \\
& =\mathrm{i} \hbar \mathbf{p}_{\mathrm{z}}
\end{aligned}
\end{aligned}
$$

Now check this using $\varepsilon_{\mathrm{ijk}}$

$$
\begin{aligned}
{\left[\mathbf{L}_{\mathrm{x}}, \mathbf{p}_{\mathrm{y}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{xyk}} \mathbf{p}_{\mathrm{k}} } & =\mathrm{i} \hbar\left[\varepsilon / /_{\mathrm{yx}} \mathbf{p}_{\mathrm{x}}+\varepsilon / \mathbf{p}_{\mathrm{y}}+\varepsilon_{\mathrm{xyz}} \mathbf{p}_{z}\right] \\
& =\mathrm{i} \hbar \mathbf{p}_{\mathrm{z}} . \quad \text { OK }
\end{aligned}
$$

All other 8 cases go similarly
Other important Commutation Rules

$$
\left.\begin{array}{l}
{\left[\mathbf{L}_{\mathbf{i}}, \mathbf{p}_{\mathbf{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{p}_{\mathrm{k}}} \\
{\left[\mathbf{L}_{\mathbf{i}}, \mathbf{q}_{\mathbf{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{q}_{\mathrm{k}}}
\end{array}\right\} \begin{aligned}
& \text { general definition of } \\
& \text { a "vector" operator }
\end{aligned} \quad \begin{aligned}
& {\left[\mathbf{L}_{\mathbf{i}}, \mathbf{L}_{\mathbf{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}} \quad \begin{array}{l}
\text { general definition of an } \\
\\
\begin{array}{l}
\text { "angular momentum." Works } \\
\text { even for spin where } \mathbf{q} \times \mathbf{p} \\
\text { definition is inapplicable }
\end{array}
\end{array}}
\end{aligned}
$$

All angular momentum matrix elements will be derived from these commutation rules.
FOR THE READER: VERIFY ONE
COMPONENT OF EACH OF THE
THREE ABOVE COMMUTATORS

$$
\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}} \text { is identical to }
$$

$\mathbf{L} \times \mathbf{L}=\mathrm{i} \hbar \mathbf{L}$
(expect 0 ! because vector cross product $\vec{A} \times \vec{B}=|A \| B| \sin \theta \hat{\mathbf{e}}_{A B}$)

$$
\begin{aligned}
\mathbf{L} \times \mathbf{L}=\left(\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
\mathbf{L}_{\mathrm{x}} & \mathbf{L}_{\mathrm{y}} & \mathbf{L}_{\mathrm{z}} \\
\mathbf{L}_{\mathrm{x}} & \mathbf{L}_{\mathrm{y}} & \mathbf{L}_{\mathrm{z}}
\end{array}\right) & =\hat{\mathrm{i}}\left(\mathbf{L}_{\mathrm{y}} \mathbf{L}_{\mathrm{z}}-\mathbf{L}_{\mathrm{z}} \mathbf{L}_{\mathrm{y}}\right)+\hat{\mathrm{j}}\left(\mathbf{L}_{\mathrm{z}} \mathbf{L}_{\mathrm{x}}-\mathbf{L}_{\mathrm{x}} \mathbf{L}_{\mathrm{z}}\right)+\hat{\mathrm{k}}\left(\mathbf{L}_{\mathrm{x}} \mathbf{L}_{\mathrm{y}}-\mathbf{L}_{\mathrm{y}} \mathbf{L}_{\mathrm{x}}\right) \\
& =\mathrm{i} \hbar\left[\hat{\mathrm{i}} \mathbf{L}_{\mathrm{x}}+\hat{\mathrm{j}} \mathbf{L}_{\mathrm{y}}+\hat{\mathrm{k}} \mathbf{L}_{\mathrm{z}}\right]=\mathrm{i} \hbar \mathbf{L}
\end{aligned}
$$

This vector cross product definition of \mathbf{L} is more general than $\mathbf{q} \times \mathbf{p}$ because there is no way to define spin in $\mathbf{q} \times \mathbf{p}$ form but $\mathbf{S} \times \mathbf{S}=\mathrm{i} \hbar \mathbf{S}$ is quite meaningful.

Can one generalize that, if $\mathbf{L} \times \mathbf{L}=\mathrm{i} \hbar \mathbf{L}$ (instead of 0), and the $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right]$ and $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{j}}\right]$ commutation rules have similar forms, that $\mathbf{L} \times \mathbf{p}=\mathrm{i} \hbar \mathbf{p}$? NO! Check for yourself!
2. Continued.

$$
\begin{aligned}
& {\left[\mathbf{L}_{z}, \mathbf{p}_{\mathbf{r}}\right]=\mathbf{r}^{-1} \mathbf{q} \cdot\left[\mathbf{L}_{\mathrm{z}}, \overrightarrow{\mathbf{p}}\right]+\mathbf{r}^{-1}\left[\mathbf{L}_{\mathrm{z}}, \overrightarrow{\mathbf{q}}\right] \cdot \mathbf{p}} \\
& {\left[\mathbf{L}_{\mathrm{i}}, \overrightarrow{\mathbf{p}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}}\left(\hat{\mathrm{i}} \varepsilon_{\mathrm{ixk}}+\hat{\mathrm{j}} \varepsilon_{\mathrm{iyk}}+\hat{\mathrm{k}} \varepsilon_{\mathrm{izk}}\right) \mathbf{p}_{\mathrm{k}}}
\end{aligned}
$$

sum of 3 terms

$$
\begin{aligned}
\mathbf{q} \cdot\left[\mathbf{L}_{\mathrm{i}}, \overrightarrow{\mathbf{p}}\right] & =\mathrm{i} \hbar \sum_{\mathrm{k}}\left(\mathbf{x} \varepsilon_{\mathrm{ixk}}+\mathbf{y} \varepsilon_{\mathrm{iyk}}+\mathbf{z} \varepsilon_{\mathrm{izk}}\right) \mathbf{p}_{\mathrm{k}} \\
& =\mathrm{i} \hbar \sum_{\mathrm{j}, \mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{q}_{\mathrm{j}} \mathbf{p}_{\mathrm{k}}
\end{aligned}
$$

only one of these terms is nonzero
and the other term $\left[\mathbf{L}_{i}, \overrightarrow{\mathbf{q}}\right] \cdot \overrightarrow{\mathbf{p}}$

$$
\begin{align*}
{\left[\mathbf{L}_{\mathrm{i}}, \overrightarrow{\mathbf{q}}\right] } & =\mathrm{i} \hbar \sum_{\mathrm{k}}\left[\hat{\mathrm{i}} \varepsilon_{\mathrm{ixk}}+\hat{\mathrm{j}} \varepsilon_{\mathrm{iyk}}+\hat{\mathrm{k}} \varepsilon_{\mathrm{izk}}\right] \mathbf{q}_{\mathrm{k}} \\
{\left[\mathbf{L}_{\mathrm{i}}, \overrightarrow{\mathbf{q}}\right] \cdot \mathbf{p} } & =\mathrm{i} \hbar \sum_{\mathrm{k}}\left[\varepsilon_{\mathrm{ixk}} \mathbf{q}_{\mathrm{k}} \mathbf{p}_{\mathrm{x}}+\varepsilon_{\mathrm{iyk}} \mathbf{q}_{\mathrm{k}} \mathbf{p}_{\mathrm{y}}+\varepsilon_{\mathrm{izk}} \mathbf{q}_{\mathrm{k}} \mathbf{p}_{\mathrm{z}}\right] \\
=\mathrm{i} \hbar \sum_{\mathrm{j}, \mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{q}_{\mathrm{k}} \mathbf{p}_{\mathrm{j}} & =\mathrm{i} \hbar \sum_{\mathrm{k}, \mathrm{j}} \varepsilon_{\mathrm{i} \mathrm{j} \mathrm{j}} \mathbf{q}_{\mathrm{j}} \mathbf{p}_{\mathrm{k}} \quad(\mathrm{k} \leftrightarrow \mathrm{j} \\
& =-\mathrm{i} \hbar \sum_{\mathrm{k}, \mathrm{j}} \varepsilon_{\mathrm{ijk}} \mathbf{q}_{\mathrm{j}} \mathbf{p}_{\mathrm{k}} \tag{2}
\end{align*}
$$

putting Eqs. (1) and (2) together
$\mathbf{q} \cdot\left[\mathbf{L}_{i}, \mathbf{p}\right]+\left[\mathbf{L}_{\mathrm{i}}, \mathbf{q}\right] \cdot \mathbf{p}=\mathrm{i} \hbar \sum_{\mathrm{j}, \mathrm{k}}\left[\varepsilon_{\mathrm{ijk}} \mathbf{q}_{\mathbf{j}} \mathbf{p}_{\mathrm{k}}-\varepsilon_{\mathrm{ijk}} \mathbf{q}_{\mathrm{j}} \mathbf{p}_{\mathrm{k}}\right]=0!$
Elegance and power of $\varepsilon_{\mathrm{ijk}}$ notation!
We have shown that:

* $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{r}}\right]=0$ for all i
* easy now to show $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{r}}{ }^{2}\right]=0$

Finally $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}^{2}\right]=\sum_{\mathrm{j}}\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}^{2}\right]=\sum_{\mathrm{j}}\left(\mathbf{L}_{\mathrm{j}}\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right]+\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right] \mathbf{L}_{\mathrm{j}}\right]$

$$
=\sum_{\mathrm{j}}\left[\mathbf{L}_{\mathrm{j}}\left(\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}}\right)+\left(\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}}\right) \mathbf{L}_{\mathrm{j}}\right]
$$

same trick: permute $\mathrm{j} \leftrightarrow \mathrm{k}$ indices in second term

$$
\varepsilon_{\mathrm{ijk}}=-\varepsilon_{\mathrm{ikj}}-\left(\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{j}}\right) \mathbf{L}_{\mathrm{k}}
$$

$$
=0
$$

But be careful: $\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}^{2}\right]=\mathbf{L}_{\mathrm{j}}\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right]+\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right] \mathbf{L}_{\mathrm{j}}=\mathrm{i} \hbar\left(\mathbf{L}_{\mathrm{j}} \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}}+\sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}} \mathbf{L}_{\mathrm{j}}\right)$ because this is a sum only over k, so can't combine and cancel terms.

$$
\begin{aligned}
& \text { for } \mathrm{i}=\mathrm{x}, \mathrm{j}=\mathrm{y} \\
& {\left[\mathbf{L}_{\mathrm{x}}, \mathbf{L}_{\mathrm{y}}^{2}\right]=\mathrm{i} \hbar\left[\mathbf{L}_{\mathrm{y}} \mathbf{L}_{\mathrm{z}}+\mathbf{L}_{\mathrm{z}} \mathbf{L}_{\mathrm{y}}\right] \neq 0!}
\end{aligned}
$$

so we have shown

$$
\begin{aligned}
& {\left[\mathbf{L}^{2}, \mathbf{L}_{\mathrm{i}}\right]=0} \\
& {\left[\mathbf{L}^{2}, \mathrm{f}(\mathbf{r})\right]=0} \\
& {\left[\mathbf{L}_{\mathrm{i}}, \mathrm{f}(\mathbf{r})\right]=0} \\
& {\left[\mathbf{L}^{2}, \mathbf{p}_{\mathrm{r}}\right]=0} \\
& {\left[\mathbf{L}_{\mathrm{i}}, \mathbf{p}_{\mathrm{r}}\right]=0}
\end{aligned}
$$

$\therefore \mathbf{L}^{2}, \mathbf{L}_{\mathbf{i}}, \mathbf{H}$ all commute - Complete Set of Mutually Commuting Operators eigenfunction of \mathbf{L}^{2} with eigenvalue $\hbar^{2} \mathrm{~L}(\mathrm{~L}+1)$

So what does this tell us about $\langle\mathrm{L}| \mathbf{H}\left|\mathrm{L}^{\prime}\right\rangle=$?

BLOCK DIAGONALIZATION OF H!

Basis functions

$$
\psi=\underbrace{\chi(\mathrm{r})}_{\substack{\text { radial } \\ \text { special }}}|\underbrace{\left.\mathrm{L}^{2}, \mathrm{~L}_{\mathrm{z}}\right\rangle}_{\substack{\text { angular } \\ \text { universal }}}=| \underbrace{}_{\text {which radial eigenfunction? }}
$$

Next time I will show, starting from

$$
\begin{array}{lll}
& {\left[\mathbf{L}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{L}_{\mathrm{k}} \quad, \text { that }} & \\
* & \mathbf{L}^{2}\left|\mathrm{nLM}_{\mathrm{L}}\right\rangle=\hbar^{2} \mathrm{~L}(\mathrm{~L}+1)\left|\mathrm{nLM}_{\mathrm{L}}\right\rangle & \mathrm{L}=0,1, \ldots \\
* & \mathbf{L}_{\mathrm{z}}\left|\mathrm{nLM}_{\mathrm{L}}\right\rangle=\hbar \mathrm{M}_{\mathrm{L}}\left|\mathrm{nLM}_{\mathrm{L}}\right\rangle & \mathrm{M}_{\mathrm{L}}=-\mathrm{L},-\mathrm{L}+1, \ldots+\mathrm{L}
\end{array}
$$

also derive all \mathbf{L}_{x} and \mathbf{L}_{y} matrix elements in $\left|\mathrm{nLM}_{\mathrm{L}}\right\rangle$ basis set.

