Angular Momentum Matrix Elements

LAST TIME: * all [,]=0 Commutation Rules needed to block diagonalize

$$
\mathbf{H}=\frac{\mathbf{p}_{r}{ }^{2}}{2 \mu}+\left[\frac{\mathbf{L}^{2}}{2 \mu \mathbf{r}^{2}}+V(\mathbf{r})\right] \text { in }\left|\mathrm{nLM}_{\mathrm{L}}\right\rangle \text { basis set }
$$

* $\varepsilon_{\mathrm{ijk}}$ Levi-Civita antisymmetric tensor - useful properties
* Commutation Rule DEFINITIONS of Angular Momentum and "Vector" Operators $\left[\mathbf{L}_{i}, \mathbf{L}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{L}_{k}$

$$
\left[\mathbf{L}_{i}, \mathbf{V}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{V}_{k}
$$

Classification of operators: universality of matrix elements.

TODAY: Obtain all angular momentum matrix elements from the commutation rule definition of an angular momentum, without ever looking at a differential operator or a wavefuncton. Possibilities for phase inconsistencies. [Similar derivation for angular parts of matrix elements of all spherical tensor operators, $\mathbf{T}_{\mathrm{q}}^{(\mathrm{k})}$.]

1. Define Components of Angular Momentum using a Commutation Rule.
2. Define eigenbasis for J^{2} and $\mathrm{J}_{\mathrm{z}} \quad|\lambda \mu\rangle$
3. show $\lambda \geq \mu^{2}$

4 raising and lowering operators (like \mathbf{a}^{\dagger}, a and $\underset{\sim}{\mathbf{x}} \pm i \underset{\sim}{\mathbf{p}}$)
$\mathbf{J}_{ \pm}|\lambda \mu\rangle$ gives eigenfunction of \mathbf{J}_{z} belonging to $\mu \pm \hbar$ eigenvalue and eigenfunction of \mathbf{J}^{2} belonging to λ eigenvalue
5. Must be at least one μ_{MAX} and one $\mu_{\text {min }}$ such that
$\mathbf{J}_{-}\left(\mathbf{J}_{+}\left|\lambda \mu_{\mathrm{MAX}}\right\rangle\right)=0$
$\mathbf{J}_{+}\left(\mathbf{J}_{-}\left|\lambda \mu_{\mathrm{MIN}}\right\rangle\right)=0$
This leads to $\mu_{\max }=\hbar\left(\frac{n}{2}\right), \lambda=\hbar^{2} \frac{n}{2}\left(\frac{n}{2}+1\right)$.
6. Obtain all matrix elements of $\mathbf{J}_{\mathrm{x}}, \mathbf{J}_{\mathrm{y}}, \mathbf{J}_{ \pm}$, but there remains a phase ambiguity
7. Standard phase choice: "Condon and Shortley"

1. Commutation Rule $\left[\mathbf{J}_{\mathrm{i}}, \mathbf{J}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{J}_{\mathrm{k}}$

This is a general definition of angular momentum (call it $\mathbf{J}, \mathbf{L}, \mathbf{S}$, anything!). Each angular momentum generates a state space.
2. eigenfunctions of \mathbf{J}^{2} and \mathbf{J}_{z} exist (Hermitian operators. Guaranteed

$$
\begin{aligned}
& \mathbf{J}^{2}|\lambda \mu\rangle=\lambda|\lambda \mu\rangle \\
& \mathbf{J}_{z}|\lambda \mu\rangle=\mu|\lambda \mu\rangle
\end{aligned}
$$ by symmetrization.)

but what are the values of λ, μ ?
\mathbf{J}^{2} and \mathbf{J}_{z} are Hermitian, therefore λ, μ are real
3. find upper and lower bounds for μ in terms of $\lambda: \lambda \geq \mu^{2}$

$$
\langle\lambda \mu|\left(\mathbf{J}^{2}-\mathbf{J}_{z}^{2}\right)|\lambda \mu\rangle=\lambda-\mu^{2} \quad \text { Want to show that this is } \geq 0 .
$$

but $\mathbf{J}^{2}=\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}+\mathbf{J}_{z}^{2}$
$\mathbf{J}^{2}-\mathbf{J}_{z}^{2}=\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}$

$$
\lambda-\mu^{2}=\langle\lambda \mu| \mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2}|\lambda \mu\rangle
$$

completeness

$$
\begin{aligned}
\lambda-\mu^{2}=\sum_{\lambda^{\prime}, \mu^{\prime}} & {\left[\langle\lambda \mu| \mathbf{J}_{x}\left|\lambda^{\prime} \mu^{\prime}\right\rangle\left\langle\lambda^{\prime} \mu^{\prime}\right| \mathbf{J}_{x}|\lambda \mu\rangle\right.} \\
& \left.+\langle\lambda \mu| \mathbf{J}_{y}\left|\lambda^{\prime} \mu^{\prime}\right\rangle\left\langle\lambda^{\prime} \mu^{\prime}\right| \mathbf{J}_{y}|\lambda \mu\rangle\right]
\end{aligned}
$$

Hermitian:

$$
\left\langle\lambda^{\prime} \mu^{\prime}\right| \mathbf{J}_{x}|\lambda \mu\rangle=\langle\lambda \mu| \mathbf{J}_{x}\left|\lambda^{\prime} \mu^{\prime}\right\rangle *
$$

$$
\left.\left.\lambda-\mu^{2}=\left.\sum_{\lambda^{\prime}, \mu^{\prime}}\left[\left|\langle\lambda \mu| \mathbf{J}_{x}\right| \lambda^{\prime} \mu^{\prime}\right\rangle\right|^{2}+\left|\langle\lambda \mu| \mathbf{J}_{y}\right| \lambda^{\prime} \mu^{\prime}\right\rangle\left.\right|^{2}\right] \geq 0
$$

Thus $\lambda-\mu^{2} \geq 0$ and $\lambda \geq \mu^{2} \geq 0$

$$
\text { and } \mu_{\mathrm{MAX}} \leq \lambda^{1 / 2}, \mu_{\mathrm{MIN}} \geq-\lambda^{1 / 2}
$$

4. Raising/Lowering Operators

$$
\begin{aligned}
& \left.\mathbf{J}_{ \pm} \equiv \mathbf{J}_{x} \pm i \mathbf{J}_{y} \quad\left(\text { not Hermitian: } \mathbf{J}_{+}^{\dagger}=\mathbf{J}_{-}\right) \quad \text { (just like } \mathbf{a}, \mathbf{a}^{\dagger}\right) \\
& {\left[\mathbf{J}_{z}, \mathbf{J}_{ \pm}\right]=\left[\mathbf{J}_{z}, \mathbf{J}_{x}\right] \pm i\left[\mathbf{J}_{z}, \mathbf{J}_{y}\right]} \\
& =i \hbar \mathbf{J}_{y} \pm i\left(-i \hbar \mathbf{J}_{x}\right)= \pm \hbar\left[\mathbf{J}_{x} \pm i \mathbf{J}_{y}\right] \\
& = \pm \hbar \mathbf{J}_{ \pm} \\
& \mathbf{J}_{z} \mathbf{J}_{ \pm}=\mathbf{J}_{ \pm} \mathbf{J}_{z} \pm \hbar \mathbf{J}_{ \pm} \quad \text { right multiply by }|\lambda \mu\rangle \\
& \mathbf{J}_{z}\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)=\mathbf{J}_{ \pm}\left(\mathbf{J}_{z}|\lambda \mu\rangle\right) \pm \hbar \mathbf{J}_{ \pm}|\lambda \mu\rangle \\
& =\mathbf{J}_{ \pm} \mu|\lambda \mu\rangle \pm \hbar \mathbf{J}_{ \pm}|\lambda \mu\rangle \\
& =(\mu \pm \hbar)\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)
\end{aligned}
$$

$\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)$ is an eigenfunction of \mathbf{J}_{z} belonging to eigenvalue $\mu \pm \hbar$. Thus $\mathbf{J}_{ \pm}$"raises" or "lowers" \mathbf{J}_{z} eigenvalue in steps of \hbar.

Similar exercise for $\left[\mathbf{J}^{2}, \mathbf{J}_{ \pm}\right]$to get effect of $\mathbf{J}_{ \pm}$on eigenvalue of \mathbf{J}^{2} $\left[\mathbf{J}^{2}, \mathbf{J}_{ \pm}\right]=\left[\mathbf{J}^{2}, \mathbf{J}_{\mathrm{x}}\right] \pm \mathrm{i}\left[\mathbf{J}^{2}, \mathbf{J}_{\mathrm{y}}\right]=0 \quad$ (We already know that $\left[\mathbf{J}^{2}, \mathbf{J}_{\mathrm{i}}\right]=0$) $\mathbf{J}^{2}\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)=\mathbf{J}_{ \pm}\left(\mathbf{J}^{2}|\lambda \mu\rangle\right)=\lambda\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)$
$\left(\mathbf{J}_{ \pm}|\lambda \mu\rangle\right)$ belongs to same eigenvalue of \mathbf{J}^{2} as $|\lambda \mu\rangle$
$J_{ \pm}$has no effect on λ.

* upper and lower bounds on μ are $\pm \lambda^{1 / 2}$
* $\mathbf{J}_{ \pm}$raises/lowers μ by steps of \hbar
* Since $\mathbf{J}_{x}=\frac{1}{2}\left(\mathbf{J}_{+}+\mathbf{J}_{-}\right)$and $\mathbf{J}_{y}=\frac{1}{2 i}\left(\mathbf{J}_{+}-\mathbf{J}_{-}\right)$,

The only nonzero matrix elements of \mathbf{J}_{i} in the $|\lambda \mu\rangle$ basis set are those where $\Delta \mu=0, \pm \hbar$ and $\Delta \lambda=0$. As for derivation of Harmonic Oscillator matrix elements, we are not assured that all μ differ in steps of \hbar. Divide basis states into sets related by integer steps of \hbar in μ.
5. For each set, there are μ_{MIN} and $\mu_{\mathrm{MAX}}: \lambda \geq \mu^{2}$

Thus, for each set $\quad \mathbf{J}_{+}\left|\lambda \mu_{\text {MAX }}\right\rangle=0$

$$
\mathbf{J}_{-}\left|\lambda \mu_{\text {MIN }}\right\rangle=0
$$

but

$$
\begin{aligned}
\mathbf{J}_{-} \mathbf{J}_{+}=\left(\mathbf{J}_{\mathrm{x}}-\mathbf{i} \mathbf{J}_{\mathrm{y}}\right)\left(\mathbf{J}_{\mathrm{x}}+i \mathbf{J}_{\mathrm{y}}\right) & =\mathbf{J}_{\mathrm{x}}^{2}+\mathbf{J}_{\mathrm{y}}^{2}+i \mathbf{J}_{\mathrm{x}} \mathbf{J}_{\mathrm{y}}-i \mathbf{J}_{\mathrm{y}} \mathbf{J}_{\mathrm{x}} \\
& =\mathbf{J}_{\mathrm{x}}^{2}+\mathbf{J}_{\mathrm{y}}^{2}+\mathrm{i}\left[\mathbf{J}_{\mathrm{x}}, \mathbf{J}_{\mathrm{y}}\right] \\
& =\mathbf{J}_{\mathrm{x}}^{2}+\mathbf{J}_{\mathrm{y}}^{2}+\mathrm{i}\left(\mathrm{i} \hbar \mathbf{J}_{\mathrm{z}}\right) \\
& =\mathbf{J}_{\mathrm{x}}^{2}+\mathbf{J}_{\mathrm{y}}^{2}-\hbar \mathbf{J}_{\mathrm{z}}
\end{aligned}
$$

but

$$
\begin{aligned}
& \mathbf{J}_{\mathrm{x}+}^{2}+\mathbf{J}_{\mathrm{y}}^{2}=\mathbf{J}^{2}-\mathbf{J}_{\mathrm{z}}^{2} \text {, thus } \\
& \begin{aligned}
& \mathbf{J}_{-} \mathbf{J}_{+}=\mathbf{J}^{2}-\mathbf{J}_{\mathrm{z}}^{2}-\hbar \mathbf{J}_{\mathrm{z}} \\
& 0=\mathbf{J}_{-} \mathbf{J}_{+}\left|\lambda \mu_{\mathrm{MAX}}\right\rangle=\left(\mathbf{J}^{2}-\mathbf{J}_{\mathrm{z}}^{2}-\hbar \mathbf{J}_{\mathrm{z}}\right)\left|\lambda \mu_{\mathrm{MAX}}\right\rangle \\
&=\left(\lambda-\mu_{\mathrm{MAX}}^{2}-\hbar \mu_{\mathrm{MAX}}\right)\left|\lambda \mu_{\mathrm{MAX}}\right\rangle
\end{aligned} \\
& \begin{aligned}
\lambda & =\mu_{\mathrm{MAX}}^{2}+\hbar \mu_{\mathrm{MAX}}
\end{aligned}
\end{aligned}
$$

Similarly for $\mu_{\text {MIN }}$

$$
\mathbf{J}_{+} \mathbf{J}_{-}\left|\lambda \mu_{\text {MIN }}\right\rangle=0
$$

$$
\begin{aligned}
& \mathbf{J}_{+} \mathbf{J}_{-}=\mathbf{J}^{2}-\mathbf{J}_{z}^{2}+\hbar \mathbf{J}_{z} \\
& \lambda=\mu_{\mathrm{MIN}}^{2}-\hbar \mu_{\mathrm{MIN}}
\end{aligned}
$$

subtract 2 equations for λ

$$
\begin{aligned}
& 0=\mu_{\mathrm{MAX}}^{2}-\mu_{\mathrm{MIN}}^{2}+\hbar\left(\mu_{\mathrm{MAX}}+\mu_{\mathrm{MIN}}\right) \\
& 0=\left(\mu_{\mathrm{MAX}}+\mu_{\mathrm{MIN}}\right)\left(\mu_{\mathrm{MAX}}-\mu_{\mathrm{MIN}}+\hbar\right)
\end{aligned}
$$

$$
\text { Thus } \mu_{\operatorname{MAX}}=-\mu_{\operatorname{MIN}} \quad \text { OR } \quad \mu_{\operatorname{MAX}}=\mu_{\operatorname{MIN}}-\hbar
$$

(impossible)

Thus for each set of $|\lambda \mu\rangle, \mu$ goes from $\mu_{\text {max }}$ to $\mu_{\text {Min }}$ in steps of \hbar

$$
\begin{aligned}
& \mu_{\mathrm{MAX}}=\mu_{\mathrm{MIN}}+n \hbar=-\mu_{\mathrm{MAX}}+n \hbar \\
& \mu_{\mathrm{MAX}}=\frac{n}{2} \hbar
\end{aligned}
$$

Thus μ is either integer or half integer or both!
Thus there will at worst be only two non-communicating sets of $|\lambda \mu\rangle$ because if μ were both integer and $1 / 2$-integer, each would form a set of μ-values, the members of which would be separated in steps of \hbar.

Now, to specify allowed values of λ :

$$
\lambda=\mu_{\mathrm{MAX}}^{2}+\hbar \mu_{\mathrm{MAX}}=\left(\frac{\mathrm{n}}{2} \hbar\right)^{2}+\hbar\left(\frac{\mathrm{n}}{2} \hbar\right)=\hbar^{2} \frac{\mathrm{n}}{2}\left(\frac{\mathrm{n}}{2}+1\right)
$$

$$
\begin{array}{ll}
\quad \operatorname{let} \frac{\mathrm{n}}{2} \equiv j \\
\mu_{\mathrm{MAX}}=\hbar j & \\
\mu_{\mathrm{MIN}}=-\hbar j & !
\end{array} \begin{aligned}
& \text { j either integer or } \\
& \text { half integer or both }
\end{aligned}
$$

rename our basis states

$$
\begin{aligned}
& \mathbf{J}^{2}|j m\rangle=\hbar^{2} j(j+1)|j m\rangle \\
& \mathbf{J}_{z}|j m\rangle=\hbar m|j m\rangle
\end{aligned}
$$

valid for all operators that satisfy $\left[\mathbf{A}_{i}, \mathbf{A}_{j}\right]=i \hbar \sum_{k} \varepsilon_{\mathrm{ijk}} \mathbf{A}_{\mathrm{k}}$
OK to define an $\left|\mathrm{am}_{\mathrm{a}}\right\rangle$ basis set for any angular momentum operator defined as above.
6. $\mathbf{J}_{\mathrm{x}}, \mathbf{J}_{\mathrm{y}}, \mathbf{J}_{ \pm}$matrix elements
recall page 23-3, but in new notation

$$
\begin{aligned}
& |j m \pm 1\rangle=N_{ \pm} \mathbf{J}_{ \pm}|j m\rangle \quad\left(\mathbf{J}_{ \pm} \text {raises / lowers } m \text { by } 1\right) \\
& \text { normalization factor (to be determined below) } \\
& 1=\langle j m \pm 1 \mid j m \pm 1\rangle=\left(N_{ \pm} \mathbf{J}_{ \pm}|j m\rangle\right)^{\dagger}\left(N_{ \pm} \mathbf{J}_{ \pm}|j m\rangle\right) \\
& N_{ \pm}^{\dagger}=N_{ \pm}^{*} \\
& \mathbf{J}_{ \pm}^{\dagger}=\mathbf{J}_{\mp} \quad! \\
& 1=\left|N_{ \pm}\right|^{2}\langle j m| \mathbf{J}_{\mp} \mathbf{J}_{ \pm}|j m\rangle \\
& \mathbf{J}_{\mp} \mathbf{J}_{ \pm}=\left(\mathbf{J}_{x} \mp i \mathbf{J}_{y}\right)\left(\mathbf{J}_{x} \pm i \mathbf{J}_{y}\right)=\mathbf{J}_{x}^{2}+\mathbf{J}_{y}^{2} \pm i\left[\mathbf{J}_{x}, \mathbf{J}_{y}\right] \\
& =\mathbf{J}^{2}-\mathbf{J}_{z}^{2} \pm i\left(i \hbar \mathbf{J}_{z}\right)=\mathbf{J}^{2}-\mathbf{J}_{z}^{2} \mp \hbar \mathbf{J}_{z} \\
& =\mathbf{J}^{2}-\mathbf{J}_{z}\left(\mathbf{J}_{z} \pm \hbar\right) \\
& 1=\left|N_{ \pm}\right|^{2}\left[\hbar^{2} j(j+1)-\hbar^{2}(m(m \pm 1))\right] \\
& \left|N_{ \pm}\right|=\frac{1}{\hbar}[j(j+1)-m(m \pm 1)]^{-1 / 2} \frac{e^{-i \delta_{ \pm}}}{\text {arbitr }} \\
& \text { from taking square root } \\
& \mathbf{J}_{ \pm}|j m\rangle=\hbar[j(j+1)-m(m \pm 1)]^{1 / 2}|j m \pm 1\rangle e^{-i \delta_{ \pm}}
\end{aligned}
$$

Usual phase choice is $\delta_{ \pm}=0$ for all j, m : the "Condon and Shortley" phase choice (sometimes $\delta_{ \pm}= \pm \pi / 2-$ so be careful)
std. phase choice: $\delta_{ \pm}=0$

$\begin{aligned}\left\langle j^{\prime} m^{\prime}\right| \mathbf{J}_{x}|j m\rangle=\frac{\hbar}{2} \delta_{j^{\prime} j} & \left\{\delta_{m^{\prime} m+1}[j(j+1)-m(m+1)]^{1 / 2}\right. \\ + & \left.\delta_{m^{\prime} m-1}[j(j+1)-m(m-1)]^{1 / 2}\right\}\end{aligned}$

$$
\mathbf{J}_{y}=\frac{1}{2 i}\left(\mathbf{J}_{+}-\mathbf{J}_{-}\right)
$$

two sign surprises

$$
\begin{array}{r}
\left\langle j^{\prime} m^{\prime}\right| \mathbf{J}_{y}|j m\rangle=-i \frac{\hbar}{2} \delta_{j^{\prime} j}\left\{\delta_{m^{\prime} m+1}[j(j+1)-m(m+1)]^{1 / 2}\right. \\
\end{array}
$$

This phase choice leaves all matrix elements of $\mathbf{J}^{2}, \mathbf{J}_{x}$ and $\mathbf{J}_{ \pm}$real and positive, but those of \mathbf{J}_{y} imaginary
[if use $\delta_{ \pm}=+\pi / 2$, this gives \mathbf{J}_{y} real and $\mathbf{J}_{x}, \mathbf{J}_{ \pm}$imaginary]

$$
\begin{aligned}
& \|\left\langle j^{\prime} m^{\prime}\right| \mathbf{J}^{2}|\mathrm{jm}\rangle=\delta_{\mathrm{j}^{\prime} \mathrm{j}} \delta_{\mathrm{m}^{\prime} \mathrm{m}} \hbar^{2} \mathrm{j}(\mathrm{j}+1) \\
& \langle j \mathrm{~m}| \overrightarrow{\mathrm{J}}|\mathrm{jm}\rangle=\mathrm{k} \hbar \mathrm{~m} \\
& \text { Summary } \|\langle j m \pm 1| \overrightarrow{\mathrm{J}}|\mathrm{jm}\rangle=\left(\mathrm{i} \mp \mathrm{i}^{\mathrm{j}}\right) \frac{\hbar}{2}[\mathrm{j}(\mathrm{j}+1)-\mathrm{m}(\mathrm{~m} \pm 1)]^{1 / 2} \\
& 1 ; \mathbf{J}_{x}+j \sqrt{\mathbf{J}_{y}}=\frac{1}{2} \underset{1}{(}\left(\mathbf{J}_{+}+\mathbf{J}_{-}\right)+\mathfrak{j} \frac{1}{2 \mathrm{i}}\left(\mathbf{J}_{+}-\mathbf{J}_{-}\right)
\end{aligned}
$$

