
23 - 15.73 Lecture #23

revised 4 November, 2002

Angular Momentum Matrix Elements

LAST TIME: * all [, ]=0 Commutation Rules needed to block diagonalize

* εijk Levi-Civita antisymmetric tensor — useful properties

* Commutation Rule DEFINITIONS of Angular Momentum and
“Vector” Operators

TODAY:  Obtain all angular momentum matrix elements from the commutation
rule definition of an angular momentum, without ever looking at a
differential operator or a wavefuncton.  Possibilities for phase
inconsistencies.  [Similar derivation for angular parts of matrix
elements of all spherical tensor operators,     .]
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1. Define Components of Angular Momentum using a Commutation Rule.

2. Define eigenbasis for J2 and Jz |λµ〉

3. show λ ≥ µ2

4 raising and lowering operators (like a†, a and x p
~ ~

± i )

J±|λµ〉 gives eigenfunction of Jz belonging to µ ± h eigenvalue and

eigenfunction of J2 belonging to λ eigenvalue

5. Must be at least one µMAX and one µMIN such that
J–(J+|λµMAX〉) = 0
J+(J–|λµMIN〉) = 0

This leads to µmax = 
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6. Obtain all matrix elements of Jx, Jy, J±, but there remains a phase
ambiguity

7. Standard phase choice:  “Condon and Shortley”
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Classification of operators:  universality of matrix elements.
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1. Commutation Rule
This is a general definition of angular momentum (call it J, L, S, anything!).
Each angular momentum generates a state space.

2. eigenfunctions of J2 and Jz exist

but what are the values of λ,µ?

J2 and Jz are Hermitian, therefore λ,µ are real

3. find upper and lower bounds for µ in terms of λ : λ ≥ µ2
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Want to show that this is ≥ 0.
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4. Raising/Lowering Operators

J J J J J± + −≡ ± =( )x yi not Hermitian:  †
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µ( ) µ ±λ  is an eigenfunction of  belonging to eigenvalue . 

Thus  “raises” or “lowers”  eigenvalue in steps of .

z

z

h

h

just like a,a†( )

right multiply by λµ

Similar exercise for  to get effect of  on eigenvalue of 

e already know that 

 belongs to same eigenvalue of  as 

 has no effect on .
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* upper and lower bounds on µ are ±λ1/2

* J± raises/lowers µ by steps of h

* Since

The only nonzero matrix elements of Ji in the |λµ〉 basis set are those where
∆µ = 0, ±h and ∆ λ = 0.  As for derivation of Harmonic Oscillator matrix
elements, we are not assured that all µ differ in steps of h.  Divide basis states
into sets related by integer steps of h in µ.
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Thus     OR   MAX MIN MAX MINµ = −µ µ = µ − h
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Now, to specify allowed values of λ:
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Thus there will at worst be only two non-communicating sets of λµ〉 because if µ
were both integer and 1/2-integer, each would form a set of µ-values, the members of
which would be separated in steps of h.

now factor
this equation
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rename our basis states

6. Jx, Jy, J± matrix elements

     recall page 23-3, but in new notation

normalization factor

arbitrary phase factor
from taking square root
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valid for all operators that satisfy 

OK to define an  basis set for any angular momentum operator defined as above.
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(to be determined below)

use this to evaluate matrix
elements of JmJ±

Usual phase choice is  for all  

the “Condon and Shortley” phase choice

sometimes  – so be careful
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This phase choice leaves all matrix elements of  and  real and positive,

but those of  imaginary

if use  this gives  real and  imaginary
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remember matrix
elements of x and
p in harmonic
oscillator basis set?
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