$\underline{\text { Last time: }}$

J Matrices

starting with $\left[\mathbf{J}_{\mathrm{i}}, \mathbf{J}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{J}_{\mathrm{k}}$

DEFINITION!

$$
\begin{aligned}
& \mathbf{J}^{2}|\mathrm{jm}\rangle=\hbar^{2} \mathrm{j}(\mathrm{j}+1)|\mathrm{jm}\rangle \\
& \mathbf{J}_{z}|\mathrm{jm}\rangle=\hbar \mathrm{m}|\mathrm{jm}\rangle \\
& \mathbf{J}_{ \pm}=\mathbf{J}_{\mathrm{x}} \pm \mathrm{i} \mathbf{J}_{\mathrm{y}} \\
& \mathbf{J}_{ \pm}|\mathrm{jm}\rangle=\hbar[\mathrm{j}(\mathrm{j}+1)-\mathrm{m}(\mathrm{~m} \pm 1)]^{1 / 2}|\mathrm{jm} \pm 1\rangle
\end{aligned}
$$

nonzero matrix elements and "Condon Shortley" phase choice

$$
\begin{aligned}
\left\langle\mathrm{j}^{\prime} \mathrm{m}^{\prime}\right| \mathbf{J}^{2}|\mathrm{jm}\rangle & =\hbar^{2} \mathrm{j}(\mathrm{j}+1) \delta_{\mathrm{j}^{\prime} j^{\prime}} \delta_{\mathrm{m}^{\prime} \mathrm{m}} \\
\left\langle\mathrm{j}^{\prime} \mathrm{m}^{\prime}\right| \mathbf{J} \mathbf{J}_{z}|\mathrm{jm}\rangle & =\hbar \mathrm{m} \delta_{\mathrm{j}^{\prime} \mathrm{j}} \delta_{\mathrm{m}^{\prime} \mathrm{m}} \\
\left\langle\mathrm{j}^{\prime} \mathrm{m}^{\prime}\right| \mathbf{J}_{ \pm}|\mathrm{j} m\rangle & =\hbar\left[\mathrm{j}(\mathrm{j}+1)-\mathrm{mm}^{\prime}\right]^{1 / 2} \delta_{\mathrm{j}^{\prime} \mathrm{j}^{\prime}} \delta_{\mathrm{m}^{\prime} \mathrm{m} \pm 1}
\end{aligned}
$$

$\left(\mathbf{J}^{2}, \mathbf{J}_{z}, \mathbf{J}_{x}, \mathbf{J}_{y}, \mathbf{J}_{+}, \mathbf{J}_{-}\right)$all stay within j
all matrix elements of $\mathbf{J}^{2}, \mathbf{J}_{z}, \mathbf{J}_{x}, \mathbf{J}_{ \pm}$are real and positive (only those of \mathbf{J}_{y} are imaginary)

TODAY: 1. What do the matrices look like for $J=0,1 / 2,1$?
2. many operators are expressed as an angular momentum times a constant - Zeeman example - density matrix
3. other operators involve things like \vec{q} or products of two angular momenta

Stark effect

Wigner-Eckart Theorem

* classify operators by commutation rule
* matrix elements in convenient basis sets
* transform between inconvenient and convenient basis sets.

5.73 Lecture \#24

$\left[\mathbf{p}_{x}, \mathbf{p}_{y}\right]=0$
A student in 1999 suggested that he could find $f(x, y)$ such that

$$
\frac{\partial^{2} f}{\partial x \partial y} \neq \frac{\partial^{2} f}{\partial y \partial x}
$$

Thus $\left[\mathbf{p}_{x}, \mathbf{p}_{y}\right] \neq 0$!

This is possible, but $f(x, y)$ would have to have a form that excludes it as an acceptable $\psi(x, y)$. Typically, the $f(x, y)$ will have to be discontinuous or have discontinuous first derivatives. For all well behaved $V(x, y), \psi(x, y)$ will have continuous first derivatives. The $f(x, y)$ used to prove a commutation rule must be acceptable as a quantum mechanical wavefunction, $\psi(x, y)$. This is a good thing because (see Angular Momentum Handout)

$$
e^{-i a \mathbf{p}_{x} / \hbar}\left|x_{1}\right\rangle=\left|x_{1}+a\right\rangle
$$

$e^{-i a \mathbf{p}_{x} / \hbar}$ generates a linear translation of $+a$ in x direction.
linear translations commute (but rotations do not)

This is the basis for (or a consequence of) $\left[\mathbf{p}_{i}, \mathbf{p}_{j}\right]=0$

$$
\left[\mathbf{J}_{i}, \mathbf{J}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{J}_{k}
$$

Nonlecture

prepare (excite)	\mathbf{E}
evolve	$e^{-i \mathbf{H} / \hbar}$
detect	\mathbf{D}

e.g. basis set $|0\rangle,|1\rangle,|2\rangle$
excite: $\begin{aligned} \quad \mathbf{E}|0\rangle & =\left(\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right) \\ \boldsymbol{\rho}(0) & =\mathbf{E}|0\rangle\langle 0| \mathbf{E}^{\dagger}\end{aligned}$
The "excitation matrix" \mathbf{E} creates equal amplitudes in two excited eigenstates:

evolve: If we are in the eigenbasis of \mathbf{H}

$$
\mathrm{e}^{-\mathrm{iHt} / \hbar}\left(\begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c}
\end{array}\right)=\left(\begin{array}{l}
\mathrm{ae}^{-\mathrm{iE}_{\mathrm{a}} \mathrm{t} / \hbar} \\
\mathrm{be}^{-\mathrm{iE}_{\mathrm{b}} \mathrm{t} / \hbar} \\
\mathrm{ce}^{-\mathrm{iE}_{\mathrm{c}} \mathrm{t} / \hbar}
\end{array}\right) \quad \text { (translation in time) }
$$

$$
\text { but otherwise, need }\left[\mathbf{T e}^{-\mathrm{i} \mathbf{T}^{\dagger} \mathbf{H T} t / \hbar} \mathbf{T}^{\dagger}\right]=\mathbf{U}(\mathrm{t}, 0)
$$

$$
\begin{aligned}
\boldsymbol{\rho}(\mathrm{t}) & =\mathbf{T} \mathrm{e}^{-\mathrm{i} \mathbf{T}^{\dagger} \mathbf{H T} \mathrm{t} / \hbar} \mathbf{T}^{\dagger} \mathbf{E}|0\rangle\langle 0| \mathbf{E}^{\dagger} \mathbf{T} \\
& \mathrm{e}^{+\mathrm{i} \mathbf{T}^{\dagger} \mathbf{H T} \mathrm{t} / \hbar} \mathbf{T}^{\dagger} \\
& =\mathbf{U}(\mathrm{t}, 0) \boldsymbol{\rho}(0) \mathbf{U}^{\dagger}(\mathrm{t}, 0) \quad \underbrace{}_{\substack{\boldsymbol{\rho}(0) \text { in eigenbasis } \\
\text { of } \mathbf{H}}}
\end{aligned}
$$

detect: D the "detection matrix"
$\langle\mathbf{D}\rangle_{t}=\operatorname{Trace}(\boldsymbol{\rho} \mathbf{D})$

Building Blocks

Many QM operators have the form $\mathrm{f}(\overrightarrow{\mathbf{J}})$
e.g. Zeeman effect
$\mathbf{H}^{\text {zeeman }}=-\gamma \overrightarrow{\mathrm{B}} \cdot \mathbf{J} \quad(\overrightarrow{\mathrm{B}}$ is magnetic field $)$

Others have the form $f(\overrightarrow{\mathbf{q}})$
e.g. Stark effect
$\mathbf{H}^{\text {Stark }}=\mathrm{e} \overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathbf{q}} \quad(\overrightarrow{\mathrm{E}}$ is electric field $)$

[

Others have the form of
e.g. spin - orbit

$$
\begin{aligned}
& f\left(\mathbf{J}_{1}, \mathbf{J}_{2}\right) \\
& \mathbf{H}^{S O}=a \mathbf{L} \cdot \mathbf{S}
\end{aligned}
$$

We are going to want to be able to write matrix representations of these operators.

Let us begin by writing matrices for $\mathbf{J}^{2}, \mathbf{J}_{z}, \mathbf{J}_{x}, \mathbf{J}_{y}, \mathbf{J}_{+}, \mathbf{J}_{-}$.
$j=0 \quad$ only basis state is $\quad|j m\rangle=|00\rangle$ 1×1 matrix

$$
\mathbf{J}^{2}|00\rangle=\left(\begin{array}{ll}
& \\
&
\end{array}\right)
$$

same for all components
$\left.j=1 / 2 \quad \frac{1}{2} \frac{1}{2}\right\rangle$ and $\left|\frac{1}{2}-\frac{1}{2}\right\rangle \quad 2 \times 2$ matrices

$$
\left.\begin{array}{lll}
\mathbf{J}^{\mathbf{2}^{(1 / 2)}}=\frac{3}{4} \hbar^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \mathbf{J}^{2}\left|\frac{1}{2} \frac{1}{2}\right\rangle=\hbar^{2} \frac{1}{2}\left(\frac{1}{2}+1\right)\left|\frac{1}{2} \frac{1}{2}\right\rangle \\
\mathbf{J}_{z}^{(1 / 2)}=\frac{1}{2} \hbar\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right) & \text { e.g. } & \left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{1}{0}=\binom{\frac{m}{0}+1 / 2}{0} \\
\mathbf{J}_{+}^{(1 / 2)}\left|\frac{1}{2} \frac{1}{2}\right\rangle
\end{array}\right)=0 .
$$

$$
\begin{aligned}
& \mathbf{J}_{-}^{(1 / 2)}=\hbar\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& \mathbf{J}_{x}^{(1 / 2)}=\frac{1}{2}\left(\mathbf{J}_{+}+\mathbf{J}_{-}\right)=\frac{1}{2} \hbar\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \mathbf{J}_{y}^{(1 / 2)}=\frac{1}{2 i}\left(\mathbf{J}_{+}-\mathbf{J}_{-}\right)=-\frac{i}{2} \hbar\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{aligned}
$$

verify that $\boldsymbol{J}^{2}=\boldsymbol{J}_{x}^{2}+\boldsymbol{J}_{y}^{2}+\boldsymbol{J}_{z}^{2}$

$$
\left(\mathbf{J}^{(1 / 2)}\right)^{2}=\frac{3 \hbar^{2}}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

$$
\begin{aligned}
& \mathbf{J}_{x}^{2}=\frac{\hbar^{2}}{4}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\frac{\hbar^{2}}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& \mathbf{J}_{y}^{2}=\frac{\hbar^{2}}{4}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)=\frac{\hbar^{2}}{4}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

An amazing amount of insight gained from this complete set of 2×2 matrices

$$
\left.\begin{array}{ll}
\mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & \begin{array}{l}
\text { CTDL, pages 417-454 } \\
\text { 1. Pauli Matrices } \\
\text { 2. Diagonalization of } 2 \times 2
\end{array} \\
\boldsymbol{\sigma}_{\mathrm{x}}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \rightarrow \mathbf{J}_{\mathrm{x}}^{(1 / 2)} & \begin{array}{l}
\text { 3. Geometric interpretation of } 2 \times 2 \\
\boldsymbol{\rho} \text { in terms of fictitious spin } 1 / 2 \\
\text { 4. spin } 1 / 2 \boldsymbol{\rho}
\end{array} \\
\boldsymbol{\sigma}_{\mathrm{y}}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \rightarrow \mathbf{J}_{\mathrm{y}}^{(1 / 2)} & \text { magnetic resonance }
\end{array}\right] \begin{array}{ll}
\boldsymbol{\sigma}_{\mathrm{z}}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \rightarrow \mathbf{J}_{\mathrm{z}}^{(1 / 2)} & \text { What is }\left[\boldsymbol{\sigma}_{\mathrm{x}}, \boldsymbol{\sigma}_{\mathrm{y}}\right]=?
\end{array}
$$

3 matrices with eigenvalues ± 1
arbitrary $\mathbf{M}=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)=\frac{m_{11}+m_{22}}{2} \mathbf{I}+\frac{m_{11}-m_{22}}{2} \boldsymbol{\sigma}_{z}+\frac{m_{12}+m_{21}}{2} \boldsymbol{\sigma}_{x}+i \frac{m_{12}-m_{21}}{2} \boldsymbol{\sigma}_{y}$

This provides a basis for taking apart the dynamics of an arbitrary $2 \times 2 \boldsymbol{\rho}$ into dynamics of x, y, z fictitious spin- $1 / 2$ components. Beat the $S=1 / 2$ Zeeman problem to death and use it as basis for understanding dynamics of any 2×2 space.
$\mathrm{J}=1 \quad$ A set of 3×3 matrices

$$
\begin{aligned}
& \mathbf{J}^{\mathbf{}^{(1)}}=2 \hbar^{2}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \mathbf{J}_{z}^{(1)}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& \mathbf{J}_{+}^{(1)}=2^{1 / 2} \hbar\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& \mathbf{J}_{-}^{(1)}=2^{1 / 2} \hbar\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& \mathbf{J}_{x}^{(1)}=2^{-1 / 2} \hbar\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \\
& \mathbf{J}_{y}^{(1)}=2^{-1 / 2} \hbar\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right) \\
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \mathbf{J}_{+}^{(1)}|11\rangle=0
\end{aligned}
$$

For 2×2 problem (e.g. J = 1/2), needed 4 independent 2×2 matrices (because there are 4 elements in a 2×2 matrix) to represent arbitrary 2×2 matrix.
for 3×3 problem, need 9 independent 3×3 matrices
$\left(x, y, z, x^{2}, y^{2}, z^{2}, x y, x z, y z\right)$ (because there are 9 elements in a 3×3 matrix)
actually scalar (I), vector, tensor
$s+p+d$
[for 2×2 it was $s+p=4$].

Can you write out each of the $\mathrm{J}^{(3 / 2)}$ matrices (16 $4 \leftrightarrow 4$ matrices)?
93×3 basis matrices is not nearly so nice as the 4 basis matrices for 2×2 problem.
But this turns out to be what is needed to "understand" and picture spin $=1$ systems.
similarly for $j=3 / 2,2$, etc.
There are 2 lovely consequences of being able to take an arbitrary matrix and rewrite it as sum of \mathbf{J} matrices.

1. If \mathbf{M} is the matrix of an operator - a term in the Hamiltonian - then it is clear that this operator may be re-expressed as a sum of operators, each of which behaves exactly like a (combination of) component(s) of \mathbf{J} - evaluated in the |jm〉 basis set.

$$
\begin{gathered}
\mathbf{M}^{(j)}=a_{0} \mathbf{I}+\sum_{i} a_{l i} \mathbf{J}_{i} \mathbf{J}_{j}+\sum_{i, j, k} c_{3 i j k} \mathbf{J}_{i} \mathbf{J}_{j} \mathbf{J}_{k} \\
+\ldots
\end{gathered}
$$

basis for classification of operators into $T_{m}^{(k)}$
and Wigner- Eckart Theorem for evaluation of matrix elements.
2. especially for 2 level systems, if $\mathbf{M}=\rho$ and \vec{a} is defined from \mathbf{M} as on page 24-6, then we have a vector picture to understand preparation, evolution, detection

evolution of vector, fictitious B-fields

Now let's do some J = 1 examples

Zeeman effect for an $\ell=1$, (p orbital) state

for $L=1$ system: $\quad \mathbf{H}^{\text {Zeeman }}=-\gamma_{z} \hbar\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right)$
case (1) Let $\Psi(0)=\left|L M_{L}\right\rangle=|11\rangle$

$$
\begin{aligned}
\boldsymbol{\rho}=|\Psi\rangle\langle\Psi| & =\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
E_{L M_{L}}=E_{11} & =\operatorname{Trace}(\boldsymbol{\rho} \mathbf{H}) \\
& =-\hbar \gamma B_{z} \operatorname{Tr}\left[\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)\right] \\
& =-\hbar \gamma B_{z}
\end{aligned}
$$

5.73 Lecture \#24
$\boldsymbol{\rho}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right)$
$\mathrm{E}_{10}=\operatorname{Trace}(\boldsymbol{\rho H})=\mathbf{0}$
$\mathrm{E}_{1-1}=+\gamma \mathrm{B}_{2} \hbar \quad$ no motion of E

What about?

$$
\begin{aligned}
& E_{10}=\text { Trace }(\boldsymbol{\rho H})=\mathbf{0} \\
& E_{1-1}=+\gamma B_{z} \hbar \quad \text { no motion of } E
\end{aligned}
$$

case (2) Let $\Psi(0)=2^{-1 / 2}(|11\rangle+|10\rangle)$

$$
\begin{aligned}
& \Psi(\mathrm{t})=2^{-1 / 2}\left[|11\rangle \mathrm{e}^{-\mathrm{i} \mathrm{E}_{11} \mathrm{t} / \hbar}+|10\rangle \mathrm{e}^{-\mathrm{i} 0 t / \hbar}\right] \\
& \boldsymbol{\rho}(\mathrm{t})=\frac{1}{2}\left(|11\rangle\langle 11|+|10\rangle\langle 10|+|11\rangle\langle 10| \mathrm{e}^{-\mathrm{i} \mathrm{E}_{11} \mathrm{t} / \hbar}+|10\rangle\langle 11| \mathrm{e}^{+\mathrm{i} \mathrm{E}_{11} \mathrm{t} / \hbar}\right)
\end{aligned}
$$

$$
\boldsymbol{\rho}(\mathrm{t})=\frac{1}{2}\left(\begin{array}{ccc}
1 & \mathrm{e}^{-\mathrm{i} \omega_{11} \mathrm{t}} & 0 \\
\mathrm{e}^{\mathrm{i} \omega_{11} \mathrm{t}} & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
1 & 0 & 0
\end{array}\right)
$$

$$
\mathbf{H}(\mathrm{B} \|+\mathrm{z})=-\gamma \mathrm{B}_{z} \hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

$$
\mathrm{E}(\mathrm{t})=\langle\mathbf{H}\rangle=\operatorname{Trace}(\mathbf{H} \boldsymbol{\rho})=-\frac{1}{2} \gamma \mathrm{~B}_{z} \hbar(1) \quad \text { no motion of } \mathrm{E}
$$

Looked at 2 cases:

1. pure state $|11\rangle, B \| z \quad E=-\gamma B B_{z} \hbar$
2. mixed state $\quad 2^{-1 / 2}(|11\rangle+\langle 10|), \mathrm{B} \| \mathrm{z}$

$$
E=-\frac{1}{2} \gamma B_{z} \hbar
$$

always mixed state gives time independent $\langle\mathrm{E}\rangle$
NMR: oscillating B_{x}, B_{y}, cw B_{z}

5.73 Lecture \#24

Stark Effect: Electric field
classical $\quad E \propto \vec{\varepsilon} \cdot\left(\vec{q}_{e^{-}}-\vec{q}_{p^{+}}\right) \approx \varepsilon_{z} z$
so we will need matrix elements of $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ in $|\mathrm{jm}\rangle$ basis set. How?
Based on $\quad\left[z, \boldsymbol{L}_{j}\right]=-i \hbar \sum_{k} \varepsilon_{z j k} \boldsymbol{q}_{k} \quad$ vector operator definition - later

Other angular momenta

1. ℓ electron orbital ang. mom.
2. s electron spin
3. I nuclear spin

These separate angular momenta interact with each other spin - orbit: $\quad \zeta(\mathrm{r}) \boldsymbol{\lambda} \cdot \mathrm{s}$
Zeeman: $\quad-\gamma B_{z}\left(\mathbf{L}_{\mathrm{z}}+\mathrm{g}_{\mathrm{s}} \mathbf{S}_{\mathrm{z}}+\mathrm{g}_{\mathrm{I}} \mathrm{I}_{\mathrm{z}}\right)$
hyperfine: $\quad \mathrm{aI} \bullet \mathrm{S}$
coupled and uncoupled basis sets: $\quad\left|\ell m_{\ell}\right\rangle\left|s m_{s}\right\rangle \leftrightarrow\left|j \ell s m_{j}\right\rangle$

case (3)

$$
\text { same } \Psi(0)=2^{-1 / 2}(|11\rangle+|10\rangle)
$$

but \mathbf{H} is for $\vec{B} \| x$

$$
\mathbf{H}=-\gamma B_{x} \hbar 2^{-1 / 2}\left(\begin{array}{ccc}
& \text { ope at coherence in } \rho \\
1 & 1 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Something subtle is intentionally wrong here. Can you find it?

$$
\begin{aligned}
E(t)=\operatorname{Tr}(\mathbf{H} \rho) & =-\frac{1}{2} \gamma B_{x} \hbar\left[e^{+i \omega_{11} t}+e^{-i \omega_{11 t} t}+0\right] \\
& =-\gamma B_{x} \hbar \cos \omega_{11} t
\end{aligned}
$$

$E(t)^{-\gamma B_{x} \hbar}$

