
24 - 15.73 Lecture #24

revised November 15, 2001

JJ Matrices
Last time:

DEFINITION !

nonzero matrix elements and “Condon Shortley” phase choice

TODAY: 1. What do the matrices look like for 
2. many operators are expressed as an angular momentum times a

constant — Zeeman example — density matrix
3. other operators involve things like  or products of

two angular momenta

J = 0 1 2 1,  / ,  ?

r
q

Stark effect

Wigner-Eckart Theorem
* classify operators by commutation rule
* matrix elements in convenient basis sets
* transform between inconvenient and

convenient basis sets.
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A student in 1999 suggested that he could find f(x,y) such that

This is possible, but f(x,y) would have to have a form that excludes it as an
acceptable ψ(x,y).  Typically, the f(x,y) will have to be discontinuous or have

discontinuous first derivatives.  For all well behaved V(x,y), ψ(x,y) will have
continuous first derivatives.  The f(x,y) used to prove a commutation rule must
be acceptable as a quantum mechanical wavefunction, ψ(x,y).  This is a good
thing because (see Angular Momentum Handout)

linear translations commute (but rotations do not)

This is the basis for (or a consequence of )
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Nonlecture

prepare (excite) E
evolve
detect D

e.g. basis set 0 1 2, ,

excite:

evolve: If we are in the eigenbasis of H

detect: D the “detection matrix”

ρρρρ(0) in eigenbasis
of H
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two excited eigenstates:
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We are going to want to be able to write matrix representations of
these operators.

j = 0 only basis state is
 1 × 1 matrix

jm = 00

same for all components

j = 1/2 2 × 2 matrices

Others have the form of

e.g. spin - orbit 
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Let us begin by writing matrices for J2, Jz, Jx, Jy, J+, J– .

Many QM operators have the form 

e.g. Zeeman effect  is magnetic field

Others have the form 

e.g. Stark effect  is electric field
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An amazing amount of insight gained from this complete set of 2 × 2 matrices

CTDL, pages 417-454
1. Pauli Matrices
2. Diagonalization of 2 × 2

3. Geometric interpretation of 2 × 2
ρρρρ  in terms of fictitious spin 1/2

4. spin 1/2 ρρρρ
5. magnetic resonance

3 matrices with eigenvalues ±1
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Information in 2 ↔2 ρρρρ is
repackaged into a 3
component vector.
Visualization of dynamics!

This provides a basis for taking apart the dynamics of an arbitrary 2 × 2 ρρρρ into
dynamics of x, y, z fictitious spin-1/2 components.  Beat the S = 1/2  Zeeman
problem to death and use it as basis for understanding dynamics of any 2 × 2 space.
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For 2 × 2 problem (e.g. J = 1/2), needed 4 independent 2 × 2 matrices (because there

are 4 elements in a 2 × 2 matrix) to represent arbitrary 2 × 2 matrix.

for  problem, need 9 independent 3  3 matrices 

 (because there are 9 elements in a 3  3 matrix)
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Can you write out each of the J(3/2) matrices (16 4 ↔4 matrices)?

J = 1      A set of 3 × 3 matrices
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9 3 × 3 basis matrices is not nearly so nice as the 4 basis matrices for  2 × 2 problem.
But this turns out to be what is needed to “understand” and picture spin = 1 systems.

similarly for j = 3/2, 2, etc.

There are 2 lovely consequences of being able to take an arbitrary matrix and
rewrite it as sum of J matrices.

1. If M is the matrix of an operator – a term in the Hamiltonian – then it is clear
that this operator may be re-expressed as a sum of operators, each of which
behaves exactly like a (combination of) component(s) of J – evaluated in the
jm〉 basis set.

and Wigner– Eckart Theorem for evaluation of matrix elements.

2. especially for 2 level systems, if M = ρρρρ     and   is defined from M as on page 24-6,

then we have a vector picture to understand preparation, evolution, detection
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Zeeman effect for an  l = 1, (p orbital) state

e-q

current on a
circular wire

field
strength

field exclusively along z

case (1)

Now let’s do some J = 1 examples

  

for =  system:L BZeeman
z1

1 0 0

0 0 0

0 0 1

H = −
−















γ h

Let Ψ

Ψ Ψ

0 11

1

0

0

1 0 0

1 0 0

0 0 0

0 0 0

( ) = =

= =













( ) =















LML

ρρ

  

E E Trace

B Tr

B

LM

z

z

L
= = ( )

= −














−































= −

11

1 0 0

0 0 0

0 0 0

1 0 0

0 0 0

0 0 1

ρρH

h

h

γ

γ

r r r

r r r

r r r r

L q p

q p

L L

= × ( )
∝ − × ( )
∝ − ≡ −

up out of page

down into pageµµ
µµ µµ

L

L L γ

classical energy BE B k BL z z z= ⋅ = ⋅ −( ) = −
r r

µµ ˆ γ γL L



24 - 105.73 Lecture #24

revised November 15, 2001

What about?

case (2)

nothing at location of coherence in ρρρρ

no motion of E
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Looked at 2 cases:

always mixed state gives time independent 〈E〉
NMR: oscillating Bx, By, cw Bz

  

1.  pure state

2.  mixed state 2-1/2
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Stark Effect:  Electric field

Other angular momenta

1.  llll  electron orbital ang. mom.
2.  s  electron spin
3.  I  nuclear spin

These separate angular momenta interact with each other

  
coupled and uncoupled basis sets: l l

l
m sm j sms j↔
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so we will need matrix elements of  in jm  basis set.  How?
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case (3)

one at coherence in ρρρρ
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Something subtle is intentionally wrong here.  Can you find it?


