H^{SO} + H^{Zeeman} Coupled vs. Uncoupled Basis Sets

Last time:

matrices for \mathbf{J}^2 , \mathbf{J}_+ , \mathbf{J}_- , \mathbf{J}_z , \mathbf{J}_x , \mathbf{J}_y in $| jm_j \rangle$ basis for $\mathbf{J} = 0$, 1/2, 1 Pauli spin 1/2 matrices arbitrary 2×2 $\mathbf{M} = a_0 \mathbf{I} + \vec{a}_1 \cdot \vec{\mathbf{\sigma}}$

When M is $\rho \to$ visualization of fictitious vector in fictitious B-field

When M is a term in $H \to$ idea that arbitrary operator can be decomposed as sum of $J_{\rm j}.$

types of operators

- $a\mathbf{J}$ e.g. magnetic moment (*a* is a known constant or a function of r)
- \vec{q} how to evaluate matrix elements (e.g. Stark Effect)
- $J_1 \cdot J_2$ e.g. Spin Orbit

TODAY:

- 1. $\mathbf{H}^{SO} + \mathbf{H}^{Zeeman}$ as illustrative
- 2. Dimension of basis sets $|JLSM_J\rangle$ and $|LM_LSM_S\rangle$ is same
- 3. matrix elements of \mathbf{H}^{SO} in both basis sets
- 4. matrix elements of $\mathbf{H}^{\text{Zeeman}}$ in both basis sets
- 5. ladders and orthogonality for transformation between basis sets. Necessary to be able to evaluate matrix elements of $\mathbf{H}^{\text{Zeeman}}$ in coupled basis. Why? Because coupled basis set does not explicitly give effects of \mathbf{L}_z or \mathbf{S}_z .

Suppose we have 2 kinds of angular momenta, which can be coupled to each other to form a *total* angular momentum.

$$\vec{L}$$
 orbital
 \vec{S} spin
 $\vec{J} = \vec{\cdots} + \vec{S}$ total operate on different coordinates or in different vector spaces

The components of ${\bf L},\!{\bf S},$ and ${\bf J}$ each follow the standard angular momentum commutation rule, but

$$\begin{bmatrix} \vec{\mathbf{L}}, \vec{\mathbf{S}} \end{bmatrix} = 0 , \qquad \begin{bmatrix} \mathbf{J}_i, \mathbf{L}_j \end{bmatrix} = i\hbar \sum_k \varepsilon_{ijk} \mathbf{L}_k \\ \begin{bmatrix} \mathbf{J}_i, \mathbf{S}_j \end{bmatrix} = i\hbar \sum_k \varepsilon_{ijk} \mathbf{S}_k.$$

These commutation rules specify that \mathbf{L}^{k} and \mathbf{S} act like vectors wrt \mathbf{J} but as scalars wrt to each other.

$$egin{array}{lll} ec{\mathbf{J}}
ightarrow ig| jm_j & \ ec{\mathbf{L}}
ightarrow ig| \ell m_\ell & \ ec{\mathbf{S}}
ightarrow ig| sm_s & \ \end{array}$$

Coupled $\left|j\ell sm_{j}\right\rangle$ vs. uncoupled $\left|\ell m_{_{\ell}}\right\rangle\!\left|sm_{_{s}}\right\rangle$ representations.

- * matrix elements of certain operators are more convenient in one basis set than the other
- * a unitary transformation between basis sets must exist
- * limiting cases for energy level patterns

- * look at energy levels in high field $|\gamma B_z| >> \zeta_{n\ell}$ limit
- * look at energy levels in low field $\left|\gamma B_z\right| << \zeta_{n\ell}$ limit

Notation: $\begin{cases} lower case for le^- atom angular momenta \\ upper case for many - e^- angular momenta \end{cases}$

two different CSCOs

- a) $\mathbf{H}^{\text{elect}}$, \mathbf{J}^{2} , \mathbf{J}_{z} , \cdots^{2} , \mathbf{S}^{2} coupled basis $|nJLSM_{J}\rangle$ (can@be factored) recall tensor product b) $\mathbf{H}^{\text{elect}}$, \cdots^{2} , \cdots_{z} , \mathbf{S}^{2} , \mathbf{S}_{z} uncoupled basis $|nLM_{L}\rangle|SM_{S}\rangle$ (explicitly factored) states and "entanglement"
- 2. Coupled and Uncoupled Basis Sets Have Same Dimension

COUPLED $\vec{J} = \vec{L} + \vec{S}$ $|L - S| \le J \le L + S$ each J has 2J + 1 M_J 's L = L + S 2(L + S) + 1 every J contributes 2L + 1 to su

J = L + S	2(L+S)+1	every J contributes $2L + 1$ to sum							
L + S - 1	2(L+S-1)+1								
L + S - 2	2(L+S-2)+1								
	•••• ••• •••	If $L > S$, there are							
	2(L-S)+1	2S+1 terms in sum							
$(2S+1)(2L+1) + 2[S+(S-1)+\dots(-S)] = (2S+1)(2L+1)$									

= 0

total dimension of basis set for specified L,S

€

UNCOUPLED $\underbrace{LM_L SM_S}_{2L+1} \underbrace{SM_S}_{2S+1}$ total dimension (2L+1)(2S+1) again

term for term correspondence between 2 basis sets ∴ a transformation must exist:

Coupled basis state in terms of uncoupled basis states:

$$|JLSM_{J}\rangle = \sum_{M_{L}} a_{M_{L}} |LM_{L}\rangle |SM_{S} = M_{J} - M_{L}\rangle$$

constraint
Trade J, M_J for M_L, M_S, but M_J = M_L + M_S.

revised 4 November, 2002

Uncoupled basis state in terms of coupled basis states:

$$OR |LM_{J}\rangle|SM_{S}\rangle = \sum_{J=|L-S|}^{L+S} b_{J} |JLS\underbrace{M_{J} = M_{L} + M_{S}}_{constraint}\rangle$$

- 3. Matrix elements of $\mathbf{H}^{SO} = \frac{\zeta_{n\ell}}{\hbar} \boldsymbol{\ell} \cdot \mathbf{s}$
 - A. <u>Coupled Representation</u>

$$\vec{\mathbf{J}} = \vec{\mathbf{L}} + \vec{\mathbf{S}} \qquad \mathbf{J}^2 = \mathbf{L}^2 + \mathbf{S}^2 + 2\mathbf{L} \cdot \mathbf{S}$$

$$\mathbf{L} \cdot \mathbf{S} = \frac{\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2}{2} \qquad (\text{useful trick!})$$

$$\left\langle \mathbf{J}'\mathbf{L}'\mathbf{S}'\mathbf{M}'_J | \mathbf{L} \cdot \mathbf{S} | \mathbf{J}\mathbf{L}\mathbf{S}\mathbf{M}_J \right\rangle = (\hbar^2/2) [\mathbf{J}(\mathbf{J}+1) - \mathbf{L}(\mathbf{L}+1) - \mathbf{S}(\mathbf{S}+1)] \delta_{J'J} \delta_{L'L} \delta_{S'S} \delta_{M'_J M_J}$$

a purely diagonal matrix.

B. Uncoupled Representation

$$\mathbf{L} \cdot \mathbf{S} = \mathbf{L}_{z} \mathbf{S}_{z} + \frac{1}{2} \left(\mathbf{L}_{+} \mathbf{S}_{-} + \mathbf{L}_{-} \mathbf{S}_{+} \right)$$
diagonal off-diagonal

$$\begin{array}{l} \left\langle L'M'_{L}S'M'_{S}|L\cdot S|LM_{L}SM_{S}\right\rangle = \hbar^{2}\delta_{L'L}\delta_{S'S} \times \\ \hline can't change L \\ \hline can't change S \\ \hline \left\{ \left[M_{L}M_{S}\delta_{M'_{L}M_{L}}\delta_{M'_{S}M_{S}}\right] + \frac{1}{2}\left[L(L+1) - M'_{L}M_{L}\right]^{1/2} \times \\ \left[S(S+1) - M'_{S}M_{S}\right]^{1/2}\delta_{M'_{L}M_{L}\pm 1} \times \delta_{M'_{S}M_{S}\mp 1} \right\} \quad \Delta M_{L} = -\Delta M_{S} = 0, \pm 1 \end{array}$$

Nonlecture notes for evaluated matrices

$$S = 1/2,$$
 $L = 0,1,2$ ${}^{2}S, {}^{2}P, {}^{2}D$ states

$^{2S+1}L_J$	NONLI	ECTURE fo	r H ^{SC}	' : C	OUI	PLE	D E	BAS	SIS			
${}^{2}S_{1/2}$	$\mathbf{H}_{\mathrm{COUPLED}}^{\mathrm{SO}}$	$=\frac{\hbar}{2}\zeta_{ns}(0)$)									
² P	H ^{SO} COUPLED	$=\frac{\hbar}{2}\zeta_{np}$	$\begin{pmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$	$ \begin{array}{c} 0 \\ -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 1 0 0 0	0 0 1 0 0	0 0 0 0 1 0)	$\begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 0\\ 1 \end{pmatrix}$	J J	「 = : 「 = :	1/2 3/2
L	J											
$\left({}^{2}\mathbf{S}_{1/2}\right)0$	1/2	3/4	0		3/	4		0				
$({}^{2}P_{1/2})$ 1	1/2	3/4	2		3/	4	-	-2)			
$({}^{2}P_{3/2})$ 1	3/2	15/4	2		3/	4	-	+1				
$(^{2}D_{3/2})2$	3/2	15/4	6		3/	4	-	_3	3			
$\left(^{2}\mathrm{D}_{5/2}\right)2$	5/2	35/4		J = 3		4	-	+2	2			
² D H	I ^{SO} =	$=\frac{\hbar}{2}\zeta_{nd}$	$ \begin{pmatrix} -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$ \begin{array}{c} 0 \\ 0 \\ -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ -3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 2 0 0 0 0 0 0 0	0 0 0 2 0 0 0 0 0 0	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ J = \end{array} $	0 0 0 2 0 0	0 0 0 0 2 0	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 2 \end{array} $

center of gravity rule: trace of matrix = 0 (obeyed for all *scalar* terms in **H**) 25 - 5

 ^{2}D

^{2S+1}L <u>NONLECTURE</u> for H^{SO} : **UNCOUPLED** BASIS ²S $\mathbf{H}_{\text{UNCOUPLED}}^{\text{SO}} = \hbar \zeta_{\text{ns}} (1/2 \cdot 0) = (0)$ ²P $\mathbf{H}_{\text{UNCOUPLED}}^{\text{SO}} = \hbar \zeta_{\text{np}} \times$

$M_{\scriptscriptstyle L}$	$M_{\scriptscriptstyle S}$		l				
1	$1/2_{-}$	(1/2)	0	0	0	0	0)
1	-1/2	0	-1/2	$2^{-1/2}$	0	0	0
0	1/2	0	$2^{-1/2}$	0	0	0	0
0	-1/2	0	0	0	0	$2^{-1/2}$	0
-1	1/2	0	0	0	$2^{-1/2}$	-1/2	0
-1	-1/2	0	0	0	0	0	1/2)

Each box is for one value of $M_{\rm J}$ = $M_{\rm L}$ + $M_{\rm S}.$

 $\mathbf{H}_{\text{UNCOUPLED}}^{\text{SO}} = \hbar \zeta_{nd} \times$

$M_{\scriptscriptstyle L}$	$M_{\scriptscriptstyle S}$										
2	1/2	(1	0		0	0	0	0	0	0	0)
2	-1/2	0	-1	1	0	0	0	0	0	0	0
1	1/2	0	1	1/2	0	$\frac{0}{(1)^{1/2}}$	0	0	0	0	0
1	-1/2	0	0	0	-1/2	$(3/2)^{1/2}$	0	0	0	0	0
0	1/2	0	0	0	$(3/2)^{1/2}$	0	0	0	0	0	0
0	-1/2	0	0	0	0	0	0	$(3/2)^{1/2}$	0	0	0
-1	1/2	0	0	0	0	0	$(3/2)^{1/2}$	-1/2	0	0	0
-1	-1/2	0	0	0	0	0	0	0	1/2	1	0
-2	1/2	0	0	0	0	0	0	0	1	-1	0
-2	-1/2	0	0	0	0	0	0	0	0	0	1)

- 4. Matrix Elements of $\mathbf{H}^{\text{Zeeman}} = -\gamma B_z (\mathbf{L}_z + 2\mathbf{S}_z)$
 - A. very easy in uncoupled representation

$$\begin{split} \mathbf{H}_{\text{uncoupled}}^{\text{Zeeman}} &= -\gamma B_z \left\langle L' M_L' S' M_S' \middle| \mathbf{L}_z + 2 \mathbf{S}_z \middle| L M_L S M_S \right\rangle \\ &= -\gamma B_z \hbar \big(M_L + 2 M_S \big) \delta_{L'L} \delta_{S'S} \delta_{M_L' M_L} \delta_{M_S' M_S} \end{split}$$

strictly diagonal

B. coupled representation

$$\mathbf{L}_{z} + 2\mathbf{S}_{z} = \underbrace{\mathbf{J}_{z}}_{\text{easy}} + \underbrace{\mathbf{S}_{z}}_{\text{hard}} - \text{no clue!}$$

can't evaluate matrix elements in coupled representation without a new trick

5. If we wish to work in *coupled* representation, because it diagonalizes \mathbf{H}^{SO} , need to find transformation

$$|JLSM_{J}\rangle = \sum_{M_{L}} a_{M_{L}} |LM_{L}SM_{S} = M_{J} - M_{L}\rangle$$

lengthy procedure: $J_{\pm} = L_{\pm} + S_{\pm}$ and orthogonality

Always start with an extreme $\rm M_L,\, M_S$ basis state, where we are assured of a trivial correspondence between basis sets:

$$\begin{split} M_L = L, \quad M_S = S, \quad M_J = M_L + M_S = L + S, \quad J = L + S \\ \left| J = L + S \ LSM_J = L + S \right\rangle = \left| LM_L = L \ SM_S = S \right\rangle \\ \text{coupled} \qquad \text{uncoupled} \end{split}$$

$$\mathbf{J}_{-} | \overbrace{\mathbf{L} + S}^{\mathbf{J}} LS \ \overbrace{\mathbf{L} + S}^{\mathbf{M}_{J}} \rangle = (\mathbf{L}_{-} + \mathbf{S}_{-}) | L\mathbf{M}_{L} = L \ S\mathbf{M}_{S} = S \rangle$$

$$= (L+S)(L+S+1) | L+S \ LS \ L+S-1 \rangle = [L(L+1) - L(L-1)]^{1/2} | LL-1SS \rangle + [S(S+1) - S(S-1)]^{1/2} | LLSS-1 \rangle$$

Thus we have derived a specific linear combination of 2 uncoupled basis states.

There is only one other orthogonal linear combination belonging to the same value of $M_L + M_S = M_J$: it must belong to the |L + S - 1| LS $L + S - 1\rangle$ basis state.

NONLECTURE Work this out for ²P

$$|JLSM_{J}\rangle = |3/2 \ 1 \ 1/2 \ 3/2\rangle = |LM_{L}SM_{S}\rangle = |1 \ 1 \ 1/2 \ 1/2\rangle |_{JLSM_{J}} = \frac{2^{1/2}|1 \ 0 \ 1/2 \ 1/2\rangle + |1 \ 1 \ 1/2 \ -1/2\rangle}{3^{1/2}}$$

now use orthogonality:

$$|\mathbf{J} - \mathbf{1}\mathbf{LSM}_{\mathbf{J}} - \mathbf{1}\rangle = |\mathbf{1}/2 \ \mathbf{1} \ \mathbf{1}/2 \ \mathbf{1}/2\rangle = \frac{-|\mathbf{1} \ \mathbf{0} \ \mathbf{1}/2 \ \mathbf{1}/2\rangle + 2^{1/2}|\mathbf{1} \ \mathbf{1} \ \mathbf{1}/2 \ -\mathbf{1}/2\rangle}{3^{1/2}}$$

Continue laddering down to get all 4 J = 3/2 and all 2 J = 1/2 basis states.

$$\begin{vmatrix} 3/2 & 1 & 1/2 & -1/2 \\ 3/2 & 1 & 1/2 & -1/2 \\ \end{vmatrix} = \left(\frac{2}{3}\right)^{1/2} \begin{vmatrix} 1 & 0 & 1/2 & -1/2 \\ -1/2 \end{vmatrix} + \left(\frac{1}{3}\right)^{1/2} \begin{vmatrix} 1 & -1 & 1/2 & 1/2 \\ 1/2 & 1 & 1/2 & -3/2 \\ \end{vmatrix} = \begin{vmatrix} 1 & -1 & 1/2 & -1/2 \\ -1/2 \end{vmatrix} + \left(\frac{2}{3}\right)^{1/2} \begin{vmatrix} 1 & -1 & 1/2 & 1/2 \\ -1/2 & -1/2 \\ \end{vmatrix}$$

You work out the transformation for ²D!

Next step will be to evaluate $\mathbf{H}^{SO} + \mathbf{H}^{Zeeman}$ in both coupled and uncoupled basis sets and look for limiting behavior.