$\mathrm{H}^{\mathrm{SO}}+\mathrm{H}^{\text {Zeeman }}$ Coupled vs. Uncoupled Basis Sets

Last time:
matrices for $\mathbf{J}^{2}, \mathbf{J}_{+}, \mathbf{J}_{-}, \mathbf{J}_{z}, \mathbf{J}_{\mathrm{x}}, \mathbf{J}_{\mathrm{y}}$ in $\left|\mathrm{j} \mathrm{m}_{\mathrm{j}}\right\rangle$ basis for $\mathrm{J}=0,1 / 2,1$
Pauli spin $1 / 2$ matrices
arbitrary $2 \times 2 \quad \mathbf{M}=a_{0} \mathbf{I}+\vec{a}_{1} \cdot \overrightarrow{\boldsymbol{\sigma}}$
When \mathbf{M} is $\boldsymbol{\rho} \rightarrow$ visualization of fictitious vector in fictitious B-field
When \mathbf{M} is a term in $\mathbf{H} \rightarrow$ idea that arbitrary operator can be decomposed as sum of \mathbf{J}_{i}.
types of operators
\(\left.\begin{array}{r}a \mathbf{J}

\overrightarrow{\mathbf{q}}

\mathbf{J}_{1} \cdot \mathbf{J}_{2}\end{array}\right]\)| e.g. magnetic moment (a is a known constant or a function of r) |
| :--- |
| how to evaluate matrix elements (e.g. Stark Effect) |
| e.g. Spin - Orbit |

TODAY:

1. $\mathbf{H}^{\mathrm{SO}}+\mathbf{H}^{\text {Zeeman }}$ as illustrative
2. Dimension of basis sets $\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle$ and $\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$ is same
3. matrix elements of $\mathbf{H}^{\text {SO }}$ in both basis sets
4. matrix elements of $\mathbf{H}^{\text {Zeeman }}$ in both basis sets
5. ladders and orthogonality for transformation between basis sets. Necessary to be able to evaluate matrix elements of $\mathbf{H}^{\text {Zeeman }}$ in coupled basis. Why? Because coupled basis set does not explicitly give effects of \mathbf{L}_{z} or \mathbf{S}_{z}.

Suppose we have 2 kinds of angular momenta, which can be coupled to each other to form a total angular momentum.
$\left.\begin{array}{ll}\overrightarrow{\mathbf{L}} & \text { orbital } \\ \overrightarrow{\mathbf{S}} & \text { spin } \\ \overrightarrow{\mathbf{J}}=\vec{\therefore}+\overrightarrow{\mathbf{S}} & \text { total }\end{array}\right\}$ operate on different coordinates or in different vector spaces

The components of \mathbf{L}, \mathbf{S}, and \mathbf{J} each follow the standard angular momentum commutation rule, but

$$
\begin{array}{ll}
{[\overrightarrow{\mathbf{L}}, \overrightarrow{\mathbf{S}}]=0 \quad, \quad\left[\mathbf{J}_{\mathrm{i}}, \mathbf{L}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{i} \mathrm{ijk}} \mathbf{L}_{\mathrm{k}}} \\
& {\left[\mathbf{J}_{\mathrm{i}}, \mathbf{S}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ij} \mathrm{k}} \mathbf{S}_{\mathrm{k}} .}
\end{array}
$$

These commutation rules specify that \mathbf{L} and \mathbf{S} act like vectors wrt \mathbf{J} but as scalars wrt to each other.

$$
\begin{aligned}
& \overrightarrow{\mathbf{J}} \rightarrow\left|j m_{j}\right\rangle \\
& \overrightarrow{\mathbf{L}} \rightarrow\left|\ell m_{\ell}\right\rangle \\
& \overrightarrow{\mathbf{S}} \rightarrow\left|s m_{s}\right\rangle
\end{aligned}
$$

Coupled $\left|\mathrm{j} \ell \mathrm{sm}_{\mathrm{j}}\right\rangle$ vs. uncoupled $\left|\ell \mathrm{m}_{\ell}\right\rangle\left|\mathrm{sm}_{\mathrm{s}}\right\rangle$ representations.

* matrix elements of certain operators are more convenient in one basis set than the other
* a unitary transformation between basis sets must exist
* limiting cases for energy level patterns

Notation: $\left\{\begin{array}{l}\text { lower case for } 1 \mathrm{e}^{-} \text {atom angular momenta } \\ \text { upper case for many }-\mathrm{e}^{-} \text {angular momenta }\end{array}\right.$
two different CSCOs
a) $\mathbf{H}^{\text {elect }}, \mathbf{J}^{2}, \mathbf{J}_{\mathrm{z}}, \cdots{ }^{2}, \mathbf{S}^{2}$
$\left|\mathrm{nJLSM}_{\mathrm{J}}\right\rangle$
b) $\mathbf{H}^{\text {elect }}, \ldots{ }^{2}, \cdots_{z}, \mathbf{S}^{2}, \mathbf{S}_{z}$
$\left|\mathrm{nLM}_{\mathrm{L}}\right\rangle\left|\mathrm{SM}_{\mathrm{S}}\right\rangle$

coupled basis	
(can@be factored)	recall tensor product
uncoupled basis	states and "entanglement"
(explicitly factored)	

2. Coupled and Uncoupled Basis Sets Have Same Dimension

COUPLED $\quad \vec{J}=\vec{L}+\vec{S} \quad|L-S| \leq J \leq L+S$

$$
\text { each } J \text { has } 2 J+1 \quad M_{J}{ }^{\prime} s
$$

L

$$
\begin{aligned}
& J=L+S \quad 2(L+S)+1 \quad \text { every J contributes } 2 \mathrm{~L}+1 \text { to sum } \\
& L+S-1 \quad 2(L+S-1)+1 \\
& L+S-2 \quad 2(L+S-2)+1 \\
& \underline{2(|L-S|)+1} \\
& (2 \mathrm{~S}+1)(2 \mathrm{~L}+1)+\frac{2[\mathrm{~S}+(\mathrm{S}-1)+\cdots(-\mathrm{S})]}{=0}=\frac{(2 \mathrm{~S}+1)(2 \mathrm{~L}+1)}{\Uparrow} \\
& \text { total dimension } \\
& \text { of basis set for } \\
& \text { specified L,S }
\end{aligned}
$$

UNCOUPLED $\underbrace{L M_{L}}_{2 L+1} \underbrace{S M_{S}}_{2 S+1}$ total dimension $(2 L+1)(2 S+1)$ again
term for term correspondence between 2 basis sets \therefore a transformation must exist:

Coupled basis state in terms of uncoupled basis states:

$$
\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle=\sum_{\mathrm{M}_{\mathrm{L}}} \mathrm{a}_{\mathrm{M}_{\mathrm{L}}}\left|\mathrm{LM}_{\mathrm{L}}\right\rangle \underbrace{}_{\text {constraint }}\rangle \mathrm{SM}_{\mathrm{S}}=\mathrm{M}_{\mathrm{J}}-\mathrm{M}_{\mathrm{L}}\rangle)
$$

Trade J, M_{J} for M_{L}, M_{S}, but $M_{J}=M_{L}+M_{S}$.

5.73 Lecture \#25

Uncoupled basis state in terms of coupled basis states:

$$
\text { or }\left|\mathrm{LM}_{\mathrm{J}}\right\rangle\left|\mathrm{SM}_{\mathrm{S}}\right\rangle=\sum_{\mathrm{J}=\mathrm{L}-\mathrm{S} \mid}^{\mathrm{L}+\mathrm{S}} \mathrm{~b}_{\mathrm{J}}\left|\mathrm{JLS}_{\text {constraint }}^{\mathrm{M}_{\mathrm{J}}=\mathrm{M}_{\mathrm{L}}+\mathrm{M}_{\mathrm{S}}}\right\rangle
$$

3. Matrix elements of $\mathbf{H}^{S O}=\frac{\zeta_{n \ell}}{\hbar} \boldsymbol{\ell} \cdot \mathbf{s}$
A. Coupled Representation

$$
\begin{gathered}
\overrightarrow{\mathbf{J}}=\overrightarrow{\mathbf{L}}+\overrightarrow{\mathbf{S}} \quad \mathbf{J}^{2}=\mathbf{L}^{2}+\mathbf{S}^{2}+2 \mathbf{L} \cdot \mathbf{S} \\
\mathbf{L} \cdot \mathbf{S}=\frac{\mathbf{J}^{2}-\mathbf{L}^{2}-\mathbf{S}^{2}}{2} \quad \text { (useful trick!) } \\
\left\langle\mathbf{J}^{\prime} \mathrm{L}^{\prime} \mathbf{S}^{\prime} \mathbf{M}_{J}^{\prime}\right| \mathbf{L} \cdot \mathbf{S}\left|J L S M_{J}\right\rangle=\left(\hbar^{2} / 2\right)[J(J+1)-L(L+1)-S(S+1)] \delta_{J^{\prime} J} \boldsymbol{\delta}_{L^{\prime} L} \boldsymbol{\delta}_{S^{\prime} S} \boldsymbol{\delta}_{M_{J}^{\prime} M_{J}}
\end{gathered}
$$

a purely diagonal matrix.
B. Uncoupled Representation

$$
\mathbf{L} \cdot \mathbf{S}=\underset{\text { diagonal }}{\mathbf{L}_{z} \mathbf{S}_{z}+\frac{1}{2}} \underset{\text { off-diagonal }}{\left(\mathbf{L}_{+} \mathbf{S}_{-}+\mathbf{L}_{-} \mathbf{S}_{+}\right)}
$$

Nonlecture notes for evaluated matrices

$$
S=1 / 2, \quad L=0,1,2 \quad \quad{ }^{2} S,{ }^{2} P,{ }^{2} D \text { states }
$$

$$
\begin{aligned}
& { }^{2 S+1} L_{J} \quad \text { NONLECTURE for } \mathbf{H}^{\text {SO }}: \text { COUPLED BASIS } \\
& { }^{2} S_{1 / 2} \quad \mathbf{H}_{\text {COUPLED }}^{\text {SO }} \quad=\frac{\hbar}{2} \zeta_{n s}(0) \\
& { }^{2} P \quad \begin{array}{l}
\mathbf{H}_{\text {COUPLED }}^{\text {SO }} \\
2 \\
n p
\end{array}\left(\begin{array}{cc|cccc}
-2 & 0 & 0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) \quad J=1 / 2 \\
& \text { L J J J J +1) -L(L+1) -S(S+1) = } \\
& \left({ }^{2} \mathrm{~S}_{1 / 2}\right) 0 \quad 1 / 2 \quad 3 / 4 \quad 0 \quad 3 / 4 \quad 0 \\
& \left(\begin{array}{llllll}
\left.{ }^{2} \mathrm{P}_{1 / 2}\right) & 1 & 1 / 2 & 3 / 4 & 2 & 3 / 4 \\
\hline
\end{array}\right. \\
& \left(\begin{array}{llllll}
{ }^{2} \mathrm{P}_{3 / 2}
\end{array}\right) 1 \quad 3 / 2 \quad 15 / 4 \quad 2 \quad 3 / 4 \quad+1 \\
& \left(\begin{array}{llllll}
{ }^{2} \mathrm{D}_{3 / 2}
\end{array}\right) 2 \quad 3 / 2 \quad 15 / 4 \quad 6 \quad 3 / 4 \quad-3 \\
& \left({ }^{2} \mathrm{D}_{5 / 2}\right) 2 \quad 5 / 2 \quad 35 / 4 \quad 6 \quad 3 / 4 \quad+2 \\
& J=3 / 2 \\
& { }^{2} D \quad \mathbf{H}_{\text {COUPLED }}^{\text {SO }} \quad=\frac{\hbar}{2} \zeta_{n d} \quad\left(\begin{array}{cccc|cccccc}
-3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right)
\end{aligned}
$$

center of gravity rule: trace of matrix $=0$
(obeyed for all scalar terms in \mathbf{H})

\[

\]

$\left.\begin{array}{cc|c|ccccc|}M_{L} & M_{S} & & & & & \\ 1 & 1 / 2 & 1 / 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 / 2 & 0 & -1 / 2 & 2^{-1 / 2} & 0 & 0 & 0 \\ 0 & 1 / 2 & 0 & 2^{-1 / 2} & 0 & 0 & 0 & 0 \\ 0 & -1 / 2 & 0 & 0 & 0 & 0 & 2^{-1 / 2} & 0 \\ -1 & 1 / 2 & 0 & 0 & 0 & 2^{-1 / 2} & -1 / 2 & 0 \\ \hline-1 & -1 / 2 & 0 & 0 & 0 & 0 & 0 & 1 / 2\end{array}\right)$

Each box is for one value of $M_{J}=M_{L}+M_{S}$.

$$
{ }^{2} D \quad \mathbf{H}_{\mathrm{UNCOUPLED}}^{\mathrm{SO}}=\hbar \zeta_{n d} \times
$$

$$
M_{L} \quad M_{S}
$$

$\left.\begin{array}{cc|c|cc|cccccccc}2 & 1 / 2 \\ 2 & -1 / 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 / 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1 / 2 & 1 & 1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 / 2 & 0 & 0 & -1 / 2 & (3 / 2)^{1 / 2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 / 2 & 0 & 0 & (3 / 2)^{1 / 2} & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 / 2 & 0 & 0 & 0 & 0 & 0 & (3 / 2)^{1 / 2} & 0 & 0 & 0 \\ -1 & -1 / 2 & 0 & 0 & 0 & 0 & 0 & \underline{(3 / 2)^{1 / 2}} \begin{array}{c}-1 / 2 \\ -2\end{array} & 1 / 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 / 2 & 1 & 0 \\ -2 & -1 / 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$
4. Matrix Elements of $\mathbf{H}^{\text {Zeeman }}=-\gamma B_{z}\left(\mathbf{L}_{z}+2 \mathbf{S}_{z}\right)$
A. very easy in uncoupled representation

$$
\begin{aligned}
& \mathbf{H}_{\text {uncoupled }}^{\text {Zeeman }}=-\gamma \mathrm{B}_{z}\left\langle\mathrm{~L}^{\prime} \mathrm{M}_{\mathrm{L}}^{\prime} \mathrm{S}^{\prime} \mathrm{M}_{\mathrm{S}}^{\prime}\right| \mathbf{L}_{z}+2 \mathbf{S}_{z}\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle \\
& =-\gamma B_{z} \hbar\left(\mathrm{M}_{\mathrm{L}}+2 \mathrm{M}_{\mathrm{s}}\right) \delta_{\mathrm{L}^{\prime} \mathrm{L}} \delta_{S_{S}^{\prime} \mathrm{S}} \delta_{\mathrm{M}_{\mathrm{L}} \mathrm{M}_{\mathrm{L}}} \delta_{\mathrm{M}_{\mathrm{S}^{\prime} \mathrm{M}_{s}}}
\end{aligned}
$$

strictly diagonal
B. coupled representation

$$
\mathbf{L}_{z}+2 \mathbf{S}_{z}=\underbrace{\mathbf{J}_{z}}_{\text {easy }}+\underbrace{\mathbf{S}_{z}}_{\text {hard }- \text { no clue! }}
$$

can't evaluate matrix elements in coupled representation without a new trick
5. If we wish to work in coupled representation, because it diagonalizes $\mathbf{H}^{\text {So }}$, need to find transformation

$$
\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle=\sum_{\mathrm{M}_{\mathrm{L}}} \mathrm{a}_{\mathrm{M}_{\mathrm{L}}}\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}=\mathrm{M}_{\mathrm{J}}-\mathrm{M}_{\mathrm{L}}\right\rangle
$$

lengthy procedure: $\quad \mathbf{J}_{ \pm}=\mathbf{L}_{ \pm}+\mathbf{S}_{ \pm} \quad$ and orthogonality
Always start with an extreme $\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}$ basis state, where we are assured of a trivial correspondence between basis sets:

$$
\begin{gathered}
M_{L}=L, \quad M_{S}=S, \quad M_{J}=M_{L}+M_{S}=L+S, \quad J=L+S \\
\left|J=L+S \quad L S M_{J}=L+S\right\rangle=\left|L M_{L}=L \quad S M_{S}=S\right\rangle \\
\text { coupled }
\end{gathered}
$$

$$
\begin{array}{rl}
\mathbf{J}_{-} \mid \overbrace{\mathrm{L}+\mathrm{S}}^{\mathrm{J}} & \mathrm{LS}
\end{array} \overbrace{\mathrm{~L}+\mathrm{S}\rangle}^{\mathrm{M}_{\mathrm{J}}}=\left(\mathbf{L}_{-}+\mathbf{S}_{-}\right)\left|\mathrm{LM}_{\mathrm{L}}=\mathrm{L} \quad \mathrm{SM}_{\mathrm{S}}=\mathrm{S}\right\rangle)
$$

Thus we have derived a specific linear combination of 2 uncoupled basis states.

There is only one other orthogonal linear combination belonging to the $\left.\begin{array}{l}\text { same value of } \mathrm{M}_{\mathrm{L}}+\mathrm{M}_{\mathrm{S}}=\mathrm{M}_{\mathrm{J}} \text { : it must belong to the } \frac{\lfloor L+S-1}{\text { lower J }} \\ \text { basis state. }\end{array} \quad L S \quad L+S-1\right\rangle$

NONLECTURE
Work this out for ${ }^{2} \mathrm{P}$

$$
\begin{aligned}
& \left.\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle=\left|\begin{array}{lllll}
3 / 2 & 1 & 1 / 2 & 3 / 2
\end{array}\right\rangle=\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{s}}\right\rangle \begin{array}{llll}
\mathrm{L} & 1 & 1 / 2 & 1 / 2
\end{array}\right\rangle \\
& \left|\mathrm{JLSM}_{\mathrm{J}}-1\right\rangle=\frac{2^{1 / 2} \mid}{1} \begin{array}{llll}
0 & 1 / 2 & 1 / 2\rangle+\left|\begin{array}{llll}
1 & 1 & 1 / 2 & -1 / 2
\end{array}\right\rangle \\
3^{1 / 2}
\end{array}
\end{aligned}
$$

now use orthogonality:

$$
\left|\begin{array}{llll}
\left.\mathrm{J}-1 \mathrm{LSM}_{\mathrm{J}}-1\right\rangle=\left|\begin{array}{lllll}
1 / 2 & 1 & 1 / 2 & 1 / 2
\end{array}\right\rangle=\frac{-\left\lvert\, \begin{array}{llllll}
1 & 0 & 1 / 2 & 1 / 2\rangle+2^{1 / 2} \mid & 1 & 1
\end{array} 1 / 2\right.}{} & -1 / 2
\end{array}\right\rangle .
$$

Continue laddering down to get all $4 \mathrm{~J}=3 / 2$ and all $2 \mathrm{~J}=1 / 2$ basis states.

$$
\begin{aligned}
& \left|\begin{array}{llll}
3 / 2 & 1 & 1 / 2 & -1 / 2
\end{array}\right\rangle=\left(\frac{2}{3}\right)^{1 / 2}\left|\begin{array}{llll}
1 & 0 & 1 / 2 & -1 / 2
\end{array}\right\rangle+\left(\frac{1}{3}\right)^{1 / 2}\left|\begin{array}{llll}
1 & -1 & 1 / 2 & 1 / 2
\end{array}\right\rangle \\
& \left|\begin{array}{llll}
3 / 2 & 1 & 1 / 2 & -3 / 2
\end{array}\right\rangle=\left|\begin{array}{llll}
1 & -1 & 1 / 2 & -1 / 2
\end{array}\right| \\
& \left|\begin{array}{llll}
1 / 2 & 1 & 1 / 2 & 1 / 2
\end{array}\right\rangle=-\left(\frac{1}{3}\right)^{1 / 2}\left|\begin{array}{llll}
1 & 0 & 1 / 2 & -1 / 2
\end{array}\right\rangle+\left(\frac{2}{3}\right)^{1 / 2}\left|\begin{array}{llll}
1 & -1 & 1 / 2 & 1 / 2
\end{array}\right\rangle
\end{aligned}
$$

You work out the transformation for ${ }^{2} \mathrm{D}$!

Next step will be to evaluate $\mathbf{H}^{\text {SO }}+\mathbf{H}^{\text {Zeeman }}$ in both coupled and uncoupled basis sets and look for limiting behavior.

