$H^{SO} + H^{Zeeman} in |JLSM_J\rangle$ and $|LM_LSM_S\rangle$

Last time:

$$\begin{split} \mathbf{H}^{\text{SO}} &= \zeta \boldsymbol{\ell} \cdot \mathbf{s} & \rightarrow \left| JLSM_J \right\rangle \\ \mathbf{H}^{\text{Zeeman}} &= -\gamma B_z \big(\mathbf{L}_Z + 2\mathbf{S}_Z \big) & \rightarrow \left| LM_L \right\rangle \! \big| SM_S \big\rangle \end{split}$$

OK to set up \mathbf{H} in either basis

problem about $\mathbf{H}^{\text{Zeeman}}$ in Coupled Basis \rightarrow need to work out explicit transformation between basis sets to evaluate matrix elements of $\mathbf{H}^{\text{Zeeman}}$ in coupled basis.

Today:

- 1. Ladders and Orthogonality method for $|JLSM_J\rangle \leftrightarrow |LM_LSM_S\rangle$ (coupled \leftrightarrow uncoupled) transformation, term by term.
- 2. evaluate $\mathbf{H}^{\text{Zeeman}}$ in coupled basis for ²P state.
- 3. Correlation Diagram, Noncrossing Rule * simple patterns without calculations * guidance for "intermediate case"

War between two limits

* one term creates $\Delta E_{ii}^{(0)} \neq 0$

* other term causes $H_{ii}^{(1)} \neq 0$

The two terms play opposite roles in the two basis sets.

- 4. Stepwise picture of level structure working out from 2 opposite limits
 - * strong spin-orbit, weak Zeeman
 - * strong Zeeman, weak spin-orbit
 - Distortions from limiting patterns (via 2nd-order nondegenerate perturbation theory) give the "other" (pattern distorting) parameter.
 - How does a zero-order picture identify the "picture defining" and the "picture destroying parameters.

$$\mathbf{H}^{\text{Zeeman}} = -\gamma B_z \left(\mathbf{L}_z + 2\mathbf{S}_z \right) = -\gamma B_z \left(\mathbf{J}_z + \mathbf{S}_z \right) \\ \begin{vmatrix} \mathbf{J}_z \\ \mathbf{J}_z \end{vmatrix}$$

to evaluate matrix elements of \mathbf{L}_{z} or \mathbf{S}_{z} in $\left| JLSM_{J} \right\rangle$ need to work out $\left| JLSM_{J} \right\rangle = \sum_{M_{L}} a_{m_{L}} \left| LM_{L} \right\rangle \left| SM_{S} = M_{J} - M_{L} \right\rangle$

ladders and orthogonality $\mathbf{J}_{\pm} = \cdots_{\pm} + \mathbf{S}_{\pm}$

begin with "extreme" J = L + S $M_J = J$; $M_L = L$, $M_S = S$ basis states where there is a 1:1 correspondence

$$[(L+S)(L+S+1) - (L+S)(L+S-1)]^{1/2} | L+S L S L+S-1 \rangle = [L(L+1) - L(L-1)]^{1/2} | LL-1 \rangle | SS \rangle + [S(S+1) - S(S-1)]^{1/2} | LL \rangle | SS-1 \rangle$$

$$\begin{split} |L+S \ L \ S \ L+S-1 \rangle &= \frac{[2L]^{1/2} |LL-1\rangle |SS\rangle + [2S]^{1/2} |LL\rangle |SS-1\rangle}{[2(L+S)]^{1/2}} \\ |L+S \ L \ S \ L+S-1 \rangle &= \left(\frac{L}{L+S}\right)^{1/2} |LL-1\rangle |SS\rangle + \left(\frac{S}{L+S}\right)^{1/2} |LL\rangle |SS-1\rangle \\ \text{for }^{2}P \ L = 1, \ S = 1/2 \\ \hline |3/2 \ 1 \ 1/2 \ 1/2 \rangle_{c} &= \left(\frac{2}{3}\right)^{1/2} |1 \ 0\rangle \Big|\frac{1}{2} \ \frac{1}{2} \Big\rangle_{u} + \left(\frac{1}{3}\right)^{1/2} |11\rangle \Big|\frac{1}{2} - \frac{1}{2} \Big\rangle_{u} \end{split}$$

orthogonality: there are only 2 $\rm M_J$ = 1/2 possibilities, J = 3/2 and J = 1/2 for specified L,S

5.73 Lecture #26

$$\left|\frac{1}{2}1\frac{1}{2}\frac{1}{2}\right\rangle = -\left(\frac{1}{3}\right)^{1/2}|10\rangle\left|\frac{1}{2}\frac{1}{2}\right\rangle + \left(\frac{2}{3}\right)^{1/2}|11\rangle|1/2 - 1/2\rangle$$

(I always choose – sign in front of smaller coefficient - arbitrary phase choice) Nonlecture: Summary for ^{2}P (coupled \rightarrow uncoupled)

$$\begin{aligned} \overline{\left|\frac{3}{2}1\frac{1}{2}\frac{3}{2}\right\rangle} &= \left|11\frac{1}{2}\frac{1}{2}\right\rangle \\ \left|\frac{3}{2}1\frac{1}{2}\frac{1}{2}\right\rangle &= \left(\frac{2}{3}\right)^{1/2} \left|10\frac{1}{2}\frac{1}{2}\right\rangle + \left(\frac{1}{3}\right)^{1/2} \left|11\frac{1}{2}-\frac{1}{2}\right\rangle = \left(\frac{(2/3)^{1/2}}{(1/3)^{1/2}}\right)_{u} \\ \left|\frac{1}{2}1\frac{1}{2}\frac{1}{2}\right\rangle &= -\left(\frac{1}{3}\right)^{1/2} \left|10\frac{1}{2}\frac{1}{2}\right\rangle + \left(\frac{2}{3}\right)^{1/2} \left|11\frac{1}{2}-\frac{1}{2}\right\rangle = \left(\frac{-(1/3)^{1/2}}{(2/3)^{1/2}}\right)_{u} \end{aligned}$$

continue down to $M_{\rm J}$ = –1/2, $M_{\rm J}$ = –3/2 (or start at $M_{\rm J}$ = –3/2 and ladder up.

Now work in Coupled Representation for $\mathbf{H}^{SO} + \mathbf{H}^{Zeeman}$

$$\mathbf{H}^{\mathrm{SO}} + \mathbf{H}^{\mathrm{Zeeman}} = \frac{\zeta_{n\ell}}{\hbar} \boldsymbol{\ell} \cdot \mathbf{s} - \gamma B_z \mathbf{J}_z - \gamma B_z \mathbf{S}_z$$

diagonal, easy off diagonal in J
(can't be off diagonal in L,S,M_J - WHY?)

$$\mathbf{J}_z = \hbar M_J$$

For ²P, there are 2 2 \times 2 M_J = 1/2 and M_J = -1/2 blocks.

Evaluate $J \ L \ S \ M_J$ $\begin{cases} 3/2 \ 1 \ 1/2 \ 1/2 | \mathbf{S}_z | 3/2 \ 1 \ 1/2 \ 1/2 \rangle \end{cases}$

by inserting the above transformation into the uncoupled basis set.

$$\begin{bmatrix} 2 & M_L & S & M_S \\ \frac{2}{3} \langle 1 & 0 & 1/2 & 1/2 | \mathbf{S}_z | 1 & 0 & 1/2 & 1/2 \rangle + \frac{1}{3} \langle 1 & 1 & 1/2 & -1/2 | \mathbf{S}_z | 1 & 1 & 1/2 & -1/2 \rangle \end{bmatrix} = \hbar \left[\left(\frac{2}{3} \right) \left(\frac{1}{2} \right) + \left(\frac{1}{3} \right) \left(-\frac{1}{2} \right) \right] = \hbar \left[\frac{1}{6} \right]$$

THERE ARE NO OFF-DIAGONAL MATRIX ELEMENTS OF H^{Zeeman} IN THE UNCOUPLED BASIS SET.

5.73 Lecture #26 26 - 4				
$\langle 3/2 \rangle$	1 1/2 1/2 $ \mathbf{S}_z $ 1/2	1 1/2	$\left 1/2 \right\rangle$	$= -\frac{2}{3}^{1/2} \left(\frac{1}{2}\right) + \frac{2}{3}^{1/2} \left(-\frac{1}{2}\right) = -\frac{2}{3}^{1/2}$
	etc. for $\mathbf{S}_{z}(^{2}\mathbf{P})$			Basis State
$\mathbf{S}_{z} = \hbar$	$ \begin{pmatrix} 1/2 \\ 1/6 & -2^{1/2}/3 \\ sym & -1/6 \end{pmatrix} $	-1/6 sym	+2 ^{1/2} /3 1/6	$ 3/2 \ 1 \ 1/2 \ 3/2\rangle \\ 3/2 \ 1 \ 1/2 \ 1/2\rangle \\ 1/2 \ 1 \ 1/2 \ 1/2\rangle \\ 3/2 \ 1 \ 1/2 \ -1/2\rangle \\ 3/2 \ 1 \ 1/2 \ -1/2\rangle \\ 1/2 \ 1 \ 1/2 \ -3/2\rangle$

(trace
$$\mathbf{S}_{z} = 0$$
)
2 2 × 2's and 2 1 × 1's

If we had worked in **uncoupled** representation, $\mathbf{H}^{\text{Zeeman}}$ would have been fully diagonal but \mathbf{H}^{SO} would be 2 2×2's and 2 1×1's. $\mathbf{H}^{\text{Zeeman}}$ produces $\Delta E_{ij}^{(0)} \neq 0$ across which \mathbf{H}^{SO} has $\mathbf{H}_{ij}^{(1)} \neq 0$.

 $\begin{bmatrix} \text{If we work in coupled representation, } \mathbf{H}^{\text{SO}} \text{ is diagonal but } \mathbf{H}^{\text{Zeeman}} \text{ is off - diagonal.} \\ \mathbf{H}^{\text{SO}} \text{ produces } \Delta E_{ij}^{(0)} \neq 0 \text{ across which } \mathbf{H}^{\text{Zeeman}} \text{ has } H_{ij}^{(1)} \neq 0. \end{bmatrix}$

WAR:H^{SO} tries to force system to coupled representationH^{Zeeman} tries to force system to uncoupled representation

2 Limiting Cases: weak and strong spin-orbit.

extreme level patterns

In coupled (strong spin-orbit) picture $\mathbf{H}^{\text{Zeeman}}$ is $\mathbf{H}^{(1)}$ In uncoupled picture (strong field) \mathbf{H}^{SO} is $\mathbf{H}^{(1)}$ ² P matrices for $\mathbf{H}^{\text{SO}} + \mathbf{H}^{\text{Zeeman}}$

$$M_{J} = 3/2 \qquad \qquad \underbrace{\text{coupled}}_{J_{J}} = 3/2 \qquad \qquad \underbrace{\zeta/2 - 2\gamma B_{z}}_{J_{z}} \qquad \underbrace{\zeta/2 - 2\gamma B_{z}}_{J_{z}} \qquad \qquad \underbrace{\zeta/2 - 2\gamma B_{z}}_{J_{z}} \qquad \underbrace{\zeta/2 - 2\gamma B_{z}$$

CONTINUED AT BOTTOM OF PAGE 26-6

5.73 Lecture #26

26 - 6

There are only repulsions (shown by vertical arrows) between same- M_J pairs.

coupled

uncoupled

 $E_{M_{j}=1/2}^{\pm} = \left(-\frac{\zeta}{4} - \frac{\gamma B_{z}}{2}\right) \pm \left[\frac{9}{16}\zeta^{2} + \frac{(\gamma B_{z})^{2}}{4} - \frac{\gamma B_{z}\zeta}{4}\right]^{1/2} \qquad \qquad \text{E}_{\pm} = \text{same as coupled (even though matrices are different)}$

$$M_{j} = -1/2 \quad j = 3/2 \begin{pmatrix} \zeta / 2 + \frac{2\gamma B_{z}}{3} & -\frac{2}{3}^{1/2} \gamma B_{z} \\ j = 1/2 \begin{pmatrix} \gamma B_{z} & 2^{-1/2} \zeta \\ sym & -\zeta + \frac{1}{3} \gamma B_{z} \end{pmatrix} \qquad \qquad \begin{pmatrix} \gamma B_{z} & 2^{-1/2} \zeta \\ sym & -\zeta/2 \end{pmatrix}$$

$$E_{M_{J}=-1/2}^{\pm} = \left(-\frac{\zeta}{4} + \frac{\gamma B_{z}}{2}\right) \pm \left[\frac{9}{16}\zeta^{2} + \frac{1}{4}(\gamma B_{z})^{2} - \frac{\gamma B_{z}\zeta}{4}\right]^{1/2} \qquad E^{\pm} = \text{ same as coupled}$$
$$E_{M_{J}} = -3/2 \qquad \zeta/2 + 2\gamma B_{z} \qquad \zeta/2 + 2\gamma B_{z}$$

updated November 4, 2002

Energy eigenvalues come out to be identical (as they must) in both representations.

Coupled picture is good for 2nd order perturbation theory in the weak field ($|\gamma B| \ll \zeta_{n\ell}$) limit.

updated November 4, 2002

5.73 Lecture #26

26 - 8

Uncoupled picture is good for strong field limit where B_z causes $\tilde{L} + \tilde{S}$ to uncouple from \vec{J} and into the laboratory (Paschen - Back limit).

This is a regular Zeeman pattern, but with small distortions (shown as vertical arrors on expanded scale) from equal intervals, from which ζ may be determined.