$\mathbf{H}^{\text {SO }}+\mathbf{H}^{\text {Zeeman }}$ in $\left|\mathrm{JLSM}_{\mathrm{J}}\right\rangle$ and $\left|\mathrm{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$

Last time:

$$
\begin{aligned}
\mathbf{H}^{\mathrm{SO}} & =\zeta \boldsymbol{\ell} \cdot \mathbf{s} & & \rightarrow\left|J L S M_{J}\right\rangle \\
\mathbf{H}^{\mathrm{Zeeman}} & =-\gamma B_{z}\left(\mathbf{L}_{Z}+2 \mathbf{S}_{Z}\right) & & \rightarrow\left|L M_{L}\right\rangle\left|S M_{S}\right\rangle
\end{aligned}
$$

OK to set up \mathbf{H} in either basis
problem about $\mathbf{H}^{\text {Zeeman }}$ in Coupled Basis \rightarrow need to work out explicit transformation between basis sets to evaluate matrix elements of $\mathbf{H}^{\text {Zeeman }}$ in coupled basis.

Today:

1. Ladders and Orthogonality method for $\left|\operatorname{JLSM}_{J}\right\rangle \leftrightarrow\left|\operatorname{LM}_{\mathrm{L}} \mathrm{SM}_{\mathrm{S}}\right\rangle$
(coupled \leftrightarrow uncoupled) transformation, term by term.
2. evaluate $\mathbf{H}^{\text {Zeeman }}$ in coupled basis for ${ }^{2} \mathrm{P}$ state.
3. Correlation Diagram, Noncrossing Rule

* simple patterns without calculations
* guidance for "intermediate case"

War between two limits

* one term creates $\Delta E_{i j}^{(0)} \neq 0$
* other term causes $H_{i j}^{(1)} \neq 0$

The two terms play opposite roles in the two basis sets.
4. Stepwise picture of level structure working out from 2 opposite limits

* strong spin-orbit, weak Zeeman
* strong Zeeman, weak spin-orbit

Distortions from limiting patterns (via 2nd-order nondegenerate perturbation theory) give the "other" (pattern distorting) parameter.
How does a zero-order picture identify the "picture defining" and the "picture destroying parameters.

$$
\mathrm{H}^{\text {Zeeman }}=-\gamma B_{z}\left(\mathbf{L}_{z}+2 \mathbf{S}_{z}\right)=-\gamma B_{z}\left(\mathbf{J}_{z}+\mathbf{S}_{z}\right)
$$

OK Not OK for coupled basis
to evaluate matrix elements of \mathbf{L}_{z} or \mathbf{S}_{z} in $\left|J L S M_{J}\right\rangle$
need to work out $\left|J L S M_{J}\right\rangle=\sum_{M_{L}} a_{m_{L}}\left|L M_{L}\right\rangle\left|S M_{S}=M_{J}-M_{L}\right\rangle$
ladders and orthogonality $\quad \mathbf{J}_{ \pm}=\cdots_{ \pm}+\mathbf{S}_{ \pm}$
begin with "extreme" $\mathrm{J}=\mathrm{L}+\mathrm{S} \mathrm{M}_{\mathrm{J}}=\mathrm{J} ; \mathrm{M}_{\mathrm{L}}=\mathrm{L}, \mathrm{M}_{\mathrm{S}}=\mathrm{S}$ basis states where there is a 1:1 correspondence

$$
\begin{aligned}
& \left|J L S M_{J}=J\right\rangle=\left|L M_{L}=L\right\rangle\left|S M_{S}=S\right\rangle \\
& =\mathrm{L}+\mathrm{S} \\
& \mathbf{J}_{-}|L+S \quad L \quad S \quad L+S\rangle=\left(\mathbf{L}_{-}+\mathbf{S}_{-}\right)|L L\rangle|S S\rangle \\
& {[(L+S)(L+S+1)-(L+S)(L+S-1)]^{1 / 2}|L+S \quad L \quad S \quad L+S-1\rangle=} \\
& {[L(L+1)-L(L-1)]^{1 / 2}|L L-1\rangle|S S\rangle+[S(S+1)-S(S-1)]^{1 / 2}|L L\rangle|S S-1\rangle} \\
& |L+S \quad L \quad S \quad L+S-1\rangle=\frac{[2 L]^{1 / 2}|L L-1\rangle|S S\rangle+[2 S]^{1 / 2}|L L\rangle|S S-1\rangle}{[2(L+S)]^{1 / 2}} \\
& |L+S \quad L \quad S \quad L+S-1\rangle=\left(\frac{L}{L+S}\right)^{1 / 2}|L L-1\rangle|S S\rangle_{+}\left(\frac{S}{L+S}\right)^{1 / 2}|L L\rangle|S S-1\rangle \\
& \text { for }{ }^{2} \mathrm{P} L=1, S=1 / 2 \\
& |3 / 2181 / 2 \quad 1 / 2\rangle_{\mathrm{c}}=\left(\frac{2}{3}\right)^{1 / 2} \left\lvert\, \begin{array}{llll}
1 & 0 & \rangle & \frac{1}{2} \\
\frac{1}{2} & \left.\frac{1}{2}\right\rangle_{\mathrm{u}}+\left(\frac{1}{3}\right)^{1 / 2}|11\rangle\left|\frac{1}{2}-\frac{1}{2}\right\rangle_{\mathrm{u}}
\end{array}\right.
\end{aligned}
$$

orthogonality: there are only $2 \mathrm{M}_{\mathrm{J}}=1 / 2$ possibilities, $\mathrm{J}=3 / 2$ and $\mathrm{J}=1 / 2$ for specified L,S
$\left|\frac{1}{2} 1 \frac{1}{2} \frac{1}{2}\right\rangle=-\left(\frac{1}{3}\right)^{1 / 2}|10\rangle\left|\frac{1}{2} \frac{1}{2}\right\rangle+\left(\frac{2}{3}\right)^{1 / 2}|11\rangle|1 / 2-1 / 2\rangle$
(I always choose - sign in front of smaller coefficient - arbitrary phase choice)
Nonlecture: Summary for ${ }^{2} \mathrm{P} \quad$ (coupled \rightarrow uncoupled)
$\left|\frac{3}{2} 1 \frac{1}{2} \frac{3}{2}\right\rangle=\left|11 \frac{1}{2} \frac{1}{2}\right\rangle$
$\left|\frac{3}{2} 1 \frac{1}{2} \frac{1}{2}\right\rangle=\left(\frac{2}{3}\right)^{1 / 2}\left|10 \frac{1}{2} \frac{1}{2}\right\rangle+\left(\frac{1}{3}\right)^{1 / 2}\left|11 \frac{1}{2}-\frac{1}{2}\right\rangle=\binom{(2 / 3)^{1 / 2}}{(1 / 3)^{1 / 2}}_{u}$
$\left|\frac{1}{2} 1 \frac{1}{2} \frac{1}{2}\right\rangle=-\left(\frac{1}{3}\right)^{1 / 2}\left|10 \frac{1}{2} \frac{1}{2}\right\rangle+\left(\frac{2}{3}\right)^{1 / 2}\left|11 \frac{1}{2}-\frac{1}{2}\right\rangle=\binom{-(1 / 3)^{1 / 2}}{(2 / 3)^{1 / 2}}_{\mathrm{u}}$
continue down to $\mathrm{M}_{\mathrm{J}}=-1 / 2, \mathrm{M}_{\mathrm{J}}=-3 / 2$ (or start at $\mathrm{M}_{\mathrm{J}}=-3 / 2$ and ladder up.

Now work in Coupled Representation for $\mathbf{H}^{\text {SO }}+\mathbf{H}^{\text {Zeeman }}$

$$
\begin{gathered}
\mathbf{H}^{\mathrm{SO}}+\mathbf{H}^{\text {Zeeman }}=\underbrace{\frac{\zeta_{n \ell}}{\hbar} \boldsymbol{\ell} \cdot \mathbf{s}-\gamma B_{z} \mathbf{J}_{z}}_{\text {diagonal, easy }}-\underbrace{\gamma B_{z} \mathbf{S}_{z}}_{\begin{array}{l}
\text { off diagonal in J } \\
\text { (can't be off }
\end{array}} \\
\text { recall }\left[\begin{array}{ll}
\boldsymbol{\ell} \cdot \mathbf{s}=\frac{\hbar^{2}}{2}[J(J+1)-L(L+1)-S(S+1)] \\
\mathbf{J}_{z}=\hbar M_{J} & \text { L,S,S.M } \mathrm{M}_{\mathrm{J}} \text { in }- \text { WHY?) }
\end{array}\right.
\end{gathered}
$$

For ${ }^{2} \mathrm{P}$, there are $2 \times 2 \mathrm{M}_{\mathrm{J}}=1 / 2$ and $\mathrm{M}_{\mathrm{J}}=-1 / 2$ blocks.

J L S $\quad \mathrm{M}_{\mathrm{J}}$

Evaluate

$$
\langle 3 / 2 \quad 1 \quad 1 / 2 \quad 1 / 2| \mathbf{S}_{\mathrm{z}}|3 / 2 \quad 1 \quad 1 / 2 \quad 1 / 2\rangle
$$

by inserting the above transformation into the uncoupled basis set.
$\left.\begin{array}{l}L \quad M_{L} S \\ \frac{2}{3}\left\langle\begin{array}{lllll}3 & 0 & 1 / 2 & 1 / 2\left|\mathbf{S}_{z}\right| 1 & 0 \\ 1 & 1 / 2 & 1 / 2\end{array}\right\rangle+\frac{1}{3}\left\langle\begin{array}{llllll}1 & 1 & 1 / 2 & -1 / 2 \mathbf{S}_{z} \mid 1 & 1 & 1 / 2\end{array}\right. \\ -1 / 2\end{array}\right]=$

$$
\hbar\left[\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)\left(-\frac{1}{2}\right)\right]=\hbar\left[\frac{1}{6}\right]
$$

THERE ARE NO OFF-DIAGONAL MATRIX ELEMENTS OF $H^{\text {Zeeman }}$ IN THE UNCOUPLED BASIS SET.

5.73 Lecture \#26

$\left\langle\begin{array}{llll}3 / 2 & 1 & 1 / 2 & 1 / 2\left|\mathbf{S}_{z}\right| 1 / 2 \\ 1 & 1 / 2 & 1 / 2\rangle=-\frac{2}{3}^{1 / 2}\left(\frac{1}{2}\right)+\frac{2}{3}^{1 / 2}\left(-\frac{1}{2}\right)=-\frac{2}{3}^{1 / 2}, ~\end{array}\right.$
etc. for $\mathbf{S}_{\mathrm{z}}\left({ }^{2} \mathrm{P}\right)$

$$
\begin{gathered}
\left(\text { trace } \mathbf{S}_{\mathrm{z}}=0\right) \\
22 \times \text { 2's and }^{2} 1 \times \text { 1's }
\end{gathered}
$$

[If we had worked in uncoupled representation, $\mathbf{H}^{\text {Zeeman }}$ would have been fully diagonal but $\mathbf{H}^{\text {so }}$ would be 2×2 's and $21 \times 1^{\prime}$ s. $\mathbf{H}^{\text {Zeeman }}$ produces $\Delta E_{i j}^{(0)} \neq 0$ across which $\mathbf{H}^{\text {So }}$ has $H_{i j}^{(1)} \neq 0$.

If we work in coupled representation, $\mathbf{H}^{\text {So }}$ is diagonal but $\mathbf{H}^{\text {Zeeman }}$ is off - diagonal. $\mathbf{H}^{\text {SO }}$ produces $\Delta E_{i j}^{(0)} \neq 0$ across which $\mathbf{H}^{\text {Zeeman }}$ has $H_{i j}^{(1)} \neq 0$.

WAR: $\quad \mathbf{H}^{\text {SO }}$ tries to force system to coupled representation $\mathbf{H}^{\text {Zeeman }}$ tries to force system to uncoupled representation

2 Limiting Cases: weak and strong spin-orbit.
extreme level patterns

correlation diagram: noncrossing rule for M_{J} : why?
states of same M_{J} do not cross

In coupled (strong spin-orbit) picture $\mathbf{H}^{\text {Zeeman }}$ is $\mathbf{H}^{(1)}$
In uncoupled picture (strong field) $\mathbf{H}^{\text {SO }}$ is $\mathbf{H}^{(1)}$
${ }^{2} \mathrm{P}$ matrices for $\mathbf{H}^{\mathrm{SO}}+\mathbf{H}^{\text {Zeeman }}$
coupled

$$
\begin{array}{cc}
M_{J}=3 / 2 & \zeta / 2-2 \gamma B_{z} \\
M_{J}=1 / 2 & j=3 / 2\left(\begin{array}{cc}
\zeta / 2-\frac{2}{3} \gamma B_{z} & \frac{2^{3}}{3} \\
& \gamma B_{z} \\
\text { sym } & -\zeta-\frac{1}{3} \gamma B_{z}
\end{array}\right)
\end{array}
$$

uncoupled

$$
\begin{gathered}
\zeta / 2-2 \gamma B_{z} \\
M_{L}, M_{S}=\left(\begin{array}{cc}
(1,-1 / 2) \\
(0,1 / 2)
\end{array}\left(\begin{array}{cc}
-\zeta / 2 & 2^{-1 / 2} \zeta \\
s y m & -\gamma B_{z}
\end{array}\right)\right.
\end{gathered}
$$

Spin orbit only
$\mathrm{B}_{\mathrm{z}} \diamond 0 \quad \mathrm{M}_{\mathrm{J}}$
Zeeman only $\left(\mathrm{M}_{\mathrm{L}}, \mathrm{M}_{\mathrm{S}}\right)$

There are only repulsions (shown by vertical arrows) between same- M_{J} pairs.

$$
\left.\begin{array}{cc}
\text { coupled } & \text { uncoupled } \\
E_{M_{J}=1 / 2}^{ \pm}=\left(-\frac{\zeta}{4}-\frac{\gamma B_{z}}{2}\right) \pm\left[\frac{9}{16} \zeta^{2}+\frac{\left(\gamma B_{z}\right)^{2}}{4}-\frac{\gamma B_{z} \zeta}{4}\right]^{1 / 2} & \begin{array}{c}
\mathrm{E}_{ \pm}=\text {same as coupled (e } \\
\text { though matrices are diff }
\end{array} \\
M_{J}=-1 / 2 \quad j=3 / 2\left(\zeta / 2+\frac{2 \gamma B_{z}}{3}\right. & -\frac{2^{1 / 2}}{3} \gamma B_{z} \\
\operatorname{sym} & -\zeta+\frac{1}{3} \gamma B_{z}
\end{array}\right) \quad\left(\begin{array}{cc}
\gamma \mathrm{B}_{\mathrm{z}} & 2^{-1 / 2} \zeta \\
\text { sym } & -\zeta / 2
\end{array}\right)
$$

Energy eigenvalues come out to be identical (as they must) in both representations.

Coupled picture is good for 2nd order perturbation theory in the weak field $\left(|\gamma \mathrm{B}| \ll \zeta_{\mathrm{n} \ell}\right)$ limit.

Zeeman splitting (and tuning rates, $\frac{d E}{d B_{z}}$, as B_{z} is varied)

coupled	first order	second order
picture	correction	correction

$\mathbf{H}^{(0)}=\mathbf{H}^{\mathrm{SO}} \quad \begin{array}{cc}E^{(1)}=\left\langle\mathbf{H}^{\mathrm{Zee}}\right\rangle \\ 2 \gamma \mathrm{~B}_{\mathrm{z}} & \mathrm{E}^{(2)}=\frac{\left|\mathbf{H}_{\mathrm{ij}}^{\mathrm{zeman}}\right|^{2}}{\mathrm{E}_{\mathrm{i}}^{(0)}-\mathrm{E}_{\mathrm{j}}^{(0)}}\end{array}$

5.73 Lecture \#26

Uncoupled picture is good for strong field limit where B_{z} causes $\overrightarrow{\mathrm{L}}+\overrightarrow{\mathrm{S}}$ to uncouple from $\overrightarrow{\mathrm{J}}$ and into the laboratory (Paschen - Back limit).

ZERO-ORDER FIRST-ORDER SECOND-ORDER

$-2 \gamma \mathrm{~B}_{z} \xrightarrow[(1,1 / 2) \quad \uparrow+\zeta / 2]{ }$

Regular
Zeeman
Pattern.

Small distortions from equal intervals, from which ζ may be determined.

Extra distortions.
Repulsions between SameM_{J} components

This is a regular Zeeman pattern, but with small distortions (shown as vertical arrors on expanded scale) from equal intervals, from which ζ may be determined.

