Wigner-Eckart Theorem

CTDL, pages 999-1085, esp. 1048-1053
Last lecture on $1 \mathrm{e}^{-}$Angular Part
Next: 2 lectures on $1 \mathrm{e}^{-}$radial part
Many-e- problems
What do we know about 1 particle angular momentum?

1. $\quad|\mathrm{JM}\rangle$ Basis set
$\left[\mathbf{J}_{\mathrm{i}}, \mathbf{J}_{\mathrm{j}}\right]=\mathrm{i} \hbar \sum_{\mathrm{k}} \varepsilon_{\mathrm{ijk}} \mathbf{J}_{\mathrm{k}} \quad$ definition \rightarrow all matrix elements in $\left|\mathrm{JM}_{\mathrm{J}}\right\rangle$ basis set.
2. $\mathbf{J}=\mathbf{J}_{1}+\mathbf{J}_{2}$ Coupling of 2 angular momenta
coupled \leftrightarrow uncoupled basis sets
transformation via $\mathbf{J}_{-}=\mathbf{L}_{-}+\mathbf{S}_{-}$plus orthogonality. Also more general methods.
$\mathbf{H}^{\text {SO }}+\mathbf{H}^{\text {Zeeman }}$ example * easy vs. hard basis sets

* limiting cases, correlation diagram
* pert. theory - patterns at both limits plus distortion

TODAY:

1. Define Scalar, Vector, Tensor Operators via Commutation Rules. Classification of an operator tells us how it transforms under coordinate rotation.
2. Statement of the Wigner-Eckart Theorem
3. Derive some matrix elements from Commutation Rules

Scalar	S	$\Delta \mathrm{J}=\Delta \mathrm{M}=0, \mathrm{M}$ independent
Vector	V	$\Delta \mathrm{J}=0, \pm 1, \Delta \mathrm{M}=0, \pm 1$, explicit M dependences of matrix elements

These commutation rule derivations of matrix elements are tedious. There is a more direct but abstract derivation via rotation matrices. The goal here is to learn how to use 3-j coefficients.

Classification of Operators via Commutation Rules with CLASSIFYING ANGULAR MOMENTUM

scalar vector			ω	Like	components (μ)
	"constant"		0	$\mathrm{J}=0$	$\mu=0$
	3 components		1	$\mathrm{J}=1$	$\mu=0 \leftrightarrow \mathrm{z}$
					$+1 \leftrightarrow-2^{1 / 2}(x+i y)$
					$-1 \leftrightarrow+2^{-1 / 2}(\mathrm{x}-\mathrm{iy})$
tensor	$(2 \omega+1)$	2 nd	2	2	+2, .., -2
	components				
	[ω is "rank"]	3 rd	3	3	

Spherical Tensor Components [CTDL, page 1089 \#8] ...
Definition: $\left[\mathbf{J}_{ \pm}, \mathbf{T}_{\mu}^{(\omega)}\right]=\hbar[\omega(\omega+1)-\mu(\mu \pm 1)]^{1 / 2} \mathbf{T}_{\mu \pm 1}^{(\omega)}$

$$
\left[\mathbf{J}_{z}, \mathbf{T}_{\mu}^{(\omega)}\right]=\hbar \mu \mathbf{T}_{\mu}^{(\omega)}
$$

This classification is useful for matrix elements of $\mathbf{T}_{\mu}^{(\omega)}$ in $|J M\rangle$ basis set.
Example: $\mathbf{J}=\mathbf{L}+\mathbf{S}$

1. $[\overrightarrow{\mathbf{L}}, \overrightarrow{\mathbf{S}}]=0 \quad \therefore \mathbf{L} \& \mathbf{S}$ act as scalar operators with respect to each other.
(vector analysis) $\{3 . \quad \overrightarrow{\mathbf{L}} \cdot \overrightarrow{\mathbf{S}}$ acts as scalar wrt \mathbf{J}
2. $\overrightarrow{\mathbf{L}} \times \overrightarrow{\mathbf{S}}$ gives components of a vector wrt \mathbf{J}.
[Because $\mathbf{L} \times \mathbf{S}$ is composed of products of components of two vectors, it could act as a second rank tensor. But it does not !]
[Nonlecture: given 1 and 2 , prove 3]
Once operators are classified (classifications of same operator are different wrt different angular momenta), Wigner-Eckart Theorem provides angular factor of all matrix elements in any basis set!

rank of tensor - like an angular momentum

* triangle rule $|\mathrm{J}-\omega| \leq \mathrm{J}^{\prime} \leq \mathrm{J}+\omega$: selection rule for $\mathrm{T}_{\mu}^{(\omega)}, \Delta \mathrm{J}= \pm \omega, \pm(\omega-1), \ldots 0$.
* reduced matrix element contains all radial dependence - when there is no radial factor in the operator, then the J^{\prime}, J dependence can often be evaluated as well
* vector coupling coefficients are tabulated - lots of convenient symmetry properties: A.R. Edmonds, "Ang. Mom. in Q.M.", Princeton Univ. Press (1974).

Nonlecture: L \& S act as vectors wrt J but scalars wrt each other

- $[\mathbf{L}, \mathbf{S}]=0 \quad$ scalars wrt each other
- $[\mathbf{J}, \mathbf{L}]=[\mathbf{L}+\mathbf{S}, \mathbf{L}]=[\mathbf{L}, \mathbf{L}] \therefore$ vector wrt. \mathbf{J} if \mathbf{L} is an angular momentum components of L satisfy the $T_{\mu}^{(1)}$ definition
$\mathbf{T}_{+1}^{(1)}[L]=-2^{-1 / 2}\left[\mathbf{L}_{\mathrm{x}}+\mathrm{i} \mathbf{L}_{\mathrm{y}}\right]$
- $\left[\mathbf{J}_{z},-2^{-1 / 2}\left[\mathbf{L}_{\mathrm{x}}+\mathrm{i} \mathbf{L}_{\mathrm{y}}\right]\right]=-2^{-1 / 2 / 2} \mathrm{i} \hbar\left[\mathbf{L}_{\mathrm{y}}-\mathrm{i} \mathbf{L}_{\mathrm{x}}\right]=-2^{-1 / 2} \hbar\left[\mathbf{L}_{\mathrm{x}}+\mathrm{i} \mathbf{L}_{\mathrm{y}}\right]$ $=+\hbar \mathbf{T}_{+1}^{(1)}[\mathrm{L}]$
$\left[\mathbf{J}_{z}, \mathbf{T}_{+1}^{(1)}[\mathrm{L}]\right]=\hbar(+1) \mathbf{T}_{+1}^{(1)}[\mathrm{L}]$
This notation means: construct an operator classified as $\mathrm{T}_{+1}^{(1)}$ out of components of $\overrightarrow{\mathbf{L}}$.
- $\quad[\mathbf{J}, \mathbf{S}]=[\mathbf{S}, \mathbf{S}] \therefore \mathbf{S}$ is vector wrt \mathbf{J}
etc.
-• Show that $\mathbf{L} \cdot \mathbf{S}$ acts as scalar wrt \mathbf{J}

$$
\begin{aligned}
& {\left[\mathbf{J}_{ \pm}, \mathbf{L} \cdot \mathbf{S}\right]=\left[\mathbf{J}_{\mathbf{x}}, \mathbf{L}_{\mathbf{x}} \mathbf{S}_{\mathbf{x}}+\mathbf{L}_{\mathbf{y}} \mathbf{S}_{\mathbf{y}}+\mathbf{L}_{\mathbf{z}} \mathbf{S}_{\mathbf{z}}\right] \pm i\left[\mathbf{J}_{\mathbf{y}}, \mathbf{L}_{\mathbf{x}} \mathbf{S}_{\mathbf{x}}+\mathbf{L}_{\mathbf{y}} \mathbf{S}_{\mathbf{y}}+\mathbf{L}_{\mathbf{z}} \mathbf{S}_{z}\right]} \\
& =\text { four terms } \\
& {\left[\mathbf{J}_{ \pm}, \mathbf{L} \cdot \mathbf{S}\right]=\left[\mathbf{L}_{x}, \mathbf{L}_{x} \mathbf{S}_{x}+\mathbf{L}_{y} \mathbf{S}_{y}+\mathbf{L}_{z} \mathbf{S}_{z}\right]+\left[\mathbf{S}_{x}, \mathbf{L}_{x} \mathbf{S}_{x}+\mathbf{L}_{y} \mathbf{S}_{y}+\mathbf{L}_{z} \mathbf{S}_{z}\right]} \\
& \pm i\left[\mathbf{L}_{y}, \mathbf{L}_{x} \mathbf{S}_{x}+\mathbf{L}_{y} \mathbf{S}_{y}+\mathbf{L}_{z} \mathbf{S}_{z}\right] \pm i\left[\mathbf{S}_{y}, \mathbf{L}_{x} \mathbf{S}_{x}+\mathbf{L}_{y} \mathbf{S}_{y}+\mathbf{L}_{z} \mathbf{S}_{z}\right] \\
& =\left[i \hbar\left(\mathbf{L}_{z} \mathbf{S}_{y}-\mathbf{L}_{y} \mathbf{S}_{z}\right)+i \hbar\left(\mathbf{L}_{y} \mathbf{S}_{z}-\mathbf{L}_{z} \mathbf{S}_{y}\right)\right. \\
& \left. \pm i i \hbar\left(-\mathbf{L}_{z} \mathbf{S}_{x}-\mathbf{L}_{x} \mathbf{S}_{z}\right) \pm i i \hbar\left(-\mathbf{L}_{x} \mathbf{S}_{z}+\mathbf{L}_{z} \mathbf{S}_{x}\right)\right] \\
& =0 \\
& {\left[\mathbf{J}_{z}, \mathbf{L} \cdot \mathbf{S}\right]=\left[\mathbf{L}_{z}, \mathbf{L}_{x} \mathbf{S}_{x}+\mathbf{L}_{y} \mathbf{S}_{y}+\mathbf{L}_{z} \mathbf{S}_{z}\right]+\left[\mathbf{S}_{z}, \mathbf{L}_{x} \mathbf{S}_{x}+\mathbf{L}_{y} \mathbf{S}_{y}+\mathbf{L}_{z} \mathbf{S}_{z}\right]} \\
& =i \hbar\left(\mathbf{L}_{y} \mathbf{S}_{x}-\mathbf{L}_{x} \mathbf{S}_{y}\right)+i \hbar\left(\mathbf{L}_{x} \mathbf{S}_{y}-\mathbf{L}_{y} \mathbf{S}_{x}\right) \\
& =0 \\
& \therefore \mathbf{L} \cdot \mathbf{S} \text { acts as } \mathbf{T}_{0}^{(0)} \\
& \mathbf{T}_{0}^{(0)}[\mathrm{A}, \mathrm{~B}]=\sum_{\mathrm{k}=-\omega}^{\infty}(-1)^{\mathrm{k}} \mathbf{T}_{\mathrm{k}}^{(\omega)}[\mathrm{A}] \mathbf{T}_{-\mathrm{k}}^{(\omega)}[\mathrm{B}]
\end{aligned}
$$

all serve $\left\{\begin{array}{l}\text { Vector Coupling Coefficients } \\ \text { Clebsch - Gordan Coefficients }\end{array}\right.$
all related to what you already know how to obtain by ladders and orthogonality for

$$
\left|J J_{1} J_{2} M\right\rangle=\sum_{\substack{M_{2}=M-M_{1} \\ M_{2}=-J_{2}}}^{+J_{2}}\left|J_{1} M_{1} J_{2} M_{2}\right\rangle \underbrace{\left\langle J_{1} M_{1} J_{2} M_{2} \mid J J_{1} J_{2} M\right\rangle}_{\text {v.c. coefficient }} \quad \text { completeness }
$$

p. 46 Edmonds (1974) general formula

$$
\begin{aligned}
& \quad 3-\mathrm{J}:\left(\begin{array}{rrr}
\mathrm{J}_{1} & \mathrm{~J}_{2} & \mathrm{~J}_{3} \\
\mathrm{M}_{1} & \mathrm{M}_{2} & \mathrm{M}_{3}
\end{array}\right)=(-1)^{\mathrm{J}_{1}-\mathrm{J}_{2}-\mathrm{M}_{3}}\left(2 \mathrm{~J}_{3}+1\right)^{-\frac{1}{2}}\left(\mathrm{~J}_{1} \mathrm{M}_{1} \mathrm{~J}_{2} \mathrm{M}_{2} \mid \mathrm{J}_{1} \mathrm{~J}_{2} \mathrm{~J}_{3}-\mathrm{M}_{3}\right) \\
& \text { Constraint: } M_{1}+M_{2}+M_{3}=0 \\
& \\
& \\
& \text { This constraint is imposed in (l|) notation but not } \\
& \text { in }\langle\mathrm{l} \text { notation.] }
\end{aligned}
$$

W-E Theorem is an extension of V-C idea because we think of operators as "like angular momenta" and we couple them to angular momenta to make new angular momentum eigenstates.

What is so great about W-E Theorem?
vast reduction of independent matrix elements
e.g. $\mathrm{J}=10, \omega=1$ (vector operator)
possible values of J^{\prime} limited to $9,10,11$ by triangle rule

$$
\left\langle J^{\prime} M^{\prime}\right| \mathbf{T}_{\mu}^{(1)}|J M\rangle
$$

Total \# of M. E.
$\mathrm{J}^{\prime}=9 \quad(2 \bullet 9+1)(2 \bullet 10+1)$
$10(2 \cdot 10+1)(2 \cdot 10+1)$
$11(2 \cdot 11+1)(2 \cdot 10+1)$
\#R.M.E.
399
441
$\underline{483}$
1323
1
$\left\langle 9\left\|\mathbf{T}_{\mu}^{(1)}\right\| 10\right\rangle$
$\left\langle 10\left\|\mathbf{T}_{\mu}^{(\mathbf{1}}\right\| 10\right\rangle$
$\left\langle 11\left\|\mathbf{T}_{\mu}^{(1)}\right\| 10\right\rangle$

CTD-L, pages 1048-1053
Outline proof of various parts of W-E Theorem
Scalar Operators \mathbf{S}
$\left[\mathbf{J}_{\mathrm{i}}, \mathbf{S}\right]=0 \quad \underline{\text { Definition }}$ (for all i)

1. $\Delta J=0$ selection rule from $\left[\mathbf{J}^{2}, \mathbf{S}\right]=0$
2. $\Delta M=0$ selection rule from $\left[\mathbf{J}_{z}, \mathbf{S}\right]=0$
3. M - independence from $\left[\mathbf{J}_{ \pm}, \mathbf{S}\right]=0$
4. show $\Delta J=0:\left\langle J^{\prime} M\right| \mathbf{S}|J M\rangle=0$ if $\mathrm{J}^{\prime} \neq \mathrm{J}$

	$\left[\mathbf{J}^{2}, \mathbf{S}\right]=0$
	$0=\left\langle J^{\prime} M^{\prime}\right\|\left(\mathbf{J}^{2} \mathbf{S}-\mathbf{S} \mathbf{J}^{2}\right)\|J M\rangle=\hbar^{2}\left[J^{\prime}\left(J^{\prime}+1\right)-J(J+1)\right]\left\langle J^{\prime} M^{\prime}\right\| \mathbf{S}\|J M\rangle$
direction of operation by \mathbf{J}^{2}	$\mathbf{J}^{2} \quad \stackrel{\text { either } J^{\prime}}{ }=J \text { or }\left\langle J^{\prime} M^{\prime}\right\| \mathbf{S}\|J M\rangle=0$
	(only $\Delta J=0$ matrix elements of \mathbf{S} can be nonzero)

2. \quad show $\Delta M=0:\left\langle J M^{\prime}\right| \mathbf{S}|J M\rangle=0$ if $\mathrm{M}^{\prime} \neq \mathrm{M}$

$$
\begin{aligned}
& {\left[\mathbf{J}_{z}, \mathbf{S}\right]=0} \\
& 0=\left\langle J M^{\prime}\right|\left(\mathbf{J}_{z} \mathbf{S}-\mathbf{S} \mathbf{J}_{z}\right)|J M\rangle=\hbar\left(M^{\prime}-M\right)\left\langle J M^{\prime}\right| \mathbf{S}|J M\rangle \\
& \quad \text { either } M^{\prime}=M \text { or }\left\langle J M^{\prime}\right| \mathbf{S}|J M\rangle=0
\end{aligned}
$$

3 show M-Independence of matrix elements

[Should skip pages 27-6,7,8 and go directly to recursion relationship on page 27-10.]

Thus either $\mathbf{s}_{J M}=\mathbf{s}_{J M}$, or $\left\langle J M^{\prime}\right| \mathbf{J}_{ \pm}|J M\rangle=0$
Thus $\mathrm{s}_{J M}$ is independent of M

Putting all results for \mathbf{S} together

$$
\left\langle J^{\prime} M^{\prime}\right| \mathbf{S}|J M\rangle=\delta_{J^{\prime} J} \delta_{M M}\langle J\|\mathbf{S}\| J\rangle
$$

Vector Operators \mathbf{V}

$$
\left[\mathbf{J}_{i}, \mathbf{V}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \mathbf{V}_{k}
$$

1. $\quad \mathrm{M}$ selection rules from $\left[\mathbf{J}_{z}, \overrightarrow{\mathrm{~V}}\right]$
2. J selection rules from $\left[\mathbf{J}^{2},\left[\mathbf{J}^{2}, \overrightarrow{\mathbf{V}}\right]\right]$
3. $\quad \mathrm{M}$ - dependence of matrix elements of V from double commutator
4. $\quad \mathrm{M}$ selection rules
a. $\left[\mathbf{J}_{z}, \mathbf{V}_{z}\right]=0$

$$
\begin{aligned}
& 0=\left\langle J^{\prime} M^{\prime}\right|\left(\mathbf{J}_{z} \mathbf{V}_{z}-\mathbf{V}_{z} \mathbf{J}_{z}\right)|J M\rangle=\hbar\left(M^{\prime}-M\right)\left\langle J^{\prime} M^{\prime}\right| \mathbf{V}_{z}|J M\rangle \\
& \text { either } M=M^{\prime} \text { or } M E=0
\end{aligned}
$$

b. $\left[\mathbf{J}_{z}, \mathbf{V}_{ \pm}\right]=\left[\mathbf{J}_{z}, \mathbf{V}_{x}\right] \pm i\left[\mathbf{J}_{z}, \mathbf{V}_{y}\right]=i \hbar\left(\mathbf{V}_{y} \pm i\left(-\mathbf{V}_{x}\right)\right)$

$$
= \pm \hbar \mathbf{V}_{ \pm}
$$

$$
\left\langle J^{\prime} M^{\prime}\right|\left(\mathbf{J}_{z} \mathbf{V}_{ \pm}-\mathbf{V}_{ \pm} \mathbf{J}_{z}\right)|J M\rangle= \pm \hbar\left\langle J^{\prime} M^{\prime}\right| \mathbf{V}_{ \pm}|J M\rangle
$$

$$
\hbar\left(M^{\prime}-M\right)\left\langle J^{\prime} M^{\prime}\right| \mathbf{V}_{ \pm}|J M\rangle= \pm \hbar\left\langle J^{\prime} M^{\prime}\right| \mathbf{V}_{ \pm}|J M\rangle
$$

$$
\hbar\left(M^{\prime}-M \mp 1\right)\left\langle J^{\prime} M^{\prime}\right| \mathbf{V}_{ \pm}|J M\rangle=0
$$

$$
M^{\prime}=M \pm 1 \text { or } \quad M E=0
$$

Thus we have selection rules: $\quad \mathbf{V}_{z}$ acts like J_{z} on M $\mathbf{V}_{ \pm}$acts like $J_{ \pm}$on M

2. M selection rules
[need to use a result that requires lengthy derivation
$\left[\mathbf{J}^{2},\left[\mathbf{J}^{2}, \mathbf{V}\right]\right]=2 \hbar^{2}\left[\mathbf{J}^{2} \mathbf{V}-2(\mathbf{J} \cdot \mathbf{V}) \mathbf{J}+\mathbf{V} \mathbf{J}^{2}\right]$
see proof in Condon and Shortley, pages 59-60
Take $\left\langle J^{\prime} M^{\prime}\right| \quad|J M\rangle$ M atrix elements of both sides of above Eq.

$$
\begin{aligned}
L H S & =\left\langle J^{\prime} M^{\prime}\right| \mathbf{J}^{2}\left(\mathbf{J}^{2} \mathbf{V}\right)-\mathbf{J}^{2} \mathbf{V} \mathbf{J}^{2}-\mathbf{J}^{2} \mathbf{V} \mathbf{J}^{2}+\mathbf{V} \mathbf{J}^{2} \mathbf{J}^{2}|J M\rangle \\
& =\hbar^{4}\left[\left(J^{\prime}\left(J^{\prime}+1\right)\right)^{2}-2 J(J+1) J^{\prime}\left(J^{\prime}+1\right)+J^{2}(J+1)^{2}\right]\left\langle J^{\prime} M^{\prime}\right| \overrightarrow{\mathbf{V}}|J M\rangle \\
R H S & =2 \hbar^{4}\left[J^{\prime}\left(J^{\prime}+1\right)+J(J+1)\right]\left\langle J^{\prime} M^{\prime}\right| \overrightarrow{\mathbf{V}}|J M\rangle-4 \hbar^{4}\left\langle J^{\prime} M^{\prime}\right| \underbrace{(\mathbf{J} \cdot \mathbf{V})}_{\text {scalar }} \boldsymbol{J}|J M\rangle
\end{aligned}
$$

$$
\left\langle J^{\prime} M^{\prime}\right|(\mathbf{J} \cdot \mathbf{V}) \mathbf{J}|J M\rangle=\sum_{J^{\prime \prime} M^{\prime \prime}}\left\langle J^{\prime} M^{\prime}\right|\left(\underset{\substack{J^{\prime} \\ J^{\prime \prime}, M^{\prime}=M^{\prime \prime}}}{(\mathbf{J} \cdot \mathbf{V})} J^{\prime \prime} M^{\prime \prime}\right\rangle\left\langle J^{\prime \prime} M^{\prime \prime}\right| \mathbf{J}|J M\rangle
$$

$$
=\left\langle J^{\prime}\|\mathbf{J} \cdot \mathbf{V}\| J^{\prime}\right\rangle \underbrace{\left\langle J^{\prime} M^{\prime}\right| \mathbf{J}|J M\rangle}_{J^{\prime}=J}
$$

$$
=\langle J\|\mathbf{J} \cdot \mathbf{V}\| J\rangle\left\langle J M^{\prime}\right| \mathbf{J}|J M\rangle \delta_{J^{\prime} J}
$$

two cases for overall matrix element
A. $J^{\prime} \neq J$
B. $J^{\prime}=J$
A. $\quad J^{\prime} \neq J$

$$
\begin{aligned}
& R H S=2 \hbar^{4}\left[J^{\prime}\left(J^{\prime}+1\right)+J(J+1)\right]\left\langle J^{\prime} M^{\prime}\right| \overrightarrow{\mathbf{V}}|J M\rangle \\
& L H S=\hbar^{4}\left[J^{\prime 2}\left(J^{\prime}+1\right)^{2}-2 J(J+1) J^{\prime}\left(J^{\prime}+1\right)+J^{2}(J+1)^{2}\right]\left\langle J^{\prime} M^{\prime}\right| \mathbf{V}|J M\rangle
\end{aligned}
$$

$$
0=L H S-R H S=\text { algebra }=\hbar^{4}\left\langle J^{\prime} M^{\prime}\right| \mathbf{V}|J M\rangle\left[\left(J^{\prime}-J\right)^{2}-1\right]\left[\left(J^{\prime}+J+1\right)^{2}-1\right]
$$

$$
\text { ME }=0 \text { unless } \mathrm{J}^{\prime}=\mathrm{J} \pm 1 \text { or } \mathrm{J}^{\prime}=-\mathrm{J}
$$

$$
\left(J^{\prime}=-J\right. \text { is impossible }
$$

$$
\text { except for } \mathrm{J}^{\prime}=-\mathrm{J}=0 \text {, }
$$

$\therefore \Delta J= \pm 1$ selection rule for $\overrightarrow{\mathbf{V}}$
but this violates $\mathrm{J}^{\prime} \neq \mathrm{J}$ assumption)
B. $J^{\prime}=J$

$$
\begin{aligned}
& L H S=0 \\
& \qquad \begin{array}{l}
0=R H S=4 \hbar^{2}\left[\hbar^{2} J(J+1)\left\langle J M^{\prime}\right| \mathbf{V}|J M\rangle-\langle J\|\mathbf{J} \cdot \mathbf{V}\| J\rangle\left\langle J M^{\prime}\right| \mathbf{J}|J M\rangle\right] \\
\\
\left\langle J M^{\prime}\right| \overrightarrow{\mathbf{V}}|J M\rangle= \\
\underbrace{\frac{\hbar^{2} J(\|\mathbf{J} \cdot \mathbf{V}\| J\rangle}{}}_{C_{0}(J)}\left\langle J M^{\prime}\right| \overrightarrow{\mathbf{J}}|J M\rangle
\end{array}
\end{aligned}
$$

A WONDERFUL AND MEMORABLE RESULT. It says that all $\Delta J=0$ matrix elements of $\overrightarrow{\mathbf{V}}$ are \propto corresponding matrix element of $\vec{J}!$ A simplified form of W-E Theorem for vector operators.

Lots of (NONLECTURE) algebra needed to generate all $\Delta \mathrm{J}= \pm 1$ matrix elements of $\overrightarrow{\mathrm{V}}$.

SUMMARY OF C.R. RESULTS: Wigner-Eckart Theorem for Vector Operator

$$
\begin{array}{ll}
\Delta \mathrm{J}=0\langle\mathrm{JM}| \mathbf{V}_{\mathrm{z}}|\mathrm{JM}\rangle=\mathrm{C}_{\mathrm{o}}(\mathrm{~J}) \mathrm{M} \\
& \langle\mathrm{JM} \pm 1| \mathbf{V}_{ \pm}|\mathrm{JM}\rangle=\mathrm{C}_{\mathrm{o}}(\mathrm{~J})[\mathrm{J}(\mathrm{~J}+1)-\mathrm{M}(\mathrm{M} \pm 1)]^{1 / 2}
\end{array} \begin{aligned}
& \begin{array}{l}
\text { special case: These are exactly } \\
\text { the same form as corresponding } \\
\text { matrix element of } \mathrm{J}_{\mathrm{i}} .
\end{array} \\
& \Delta \mathrm{J}=+1 \quad
\end{aligned} \begin{aligned}
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \left.\Delta \mathrm{J}+1 \mathrm{~J}+1 \mathrm{M}\left|\mathbf{V}_{\mathrm{z}}\right| \mathrm{JM}\right\rangle=+\mathbf{V}_{ \pm}|\mathrm{JM}\rangle=\mp \mathrm{C}_{+}(\mathrm{J})[(\mathrm{J})[\mathrm{J} \pm \mathrm{J} \pm \mathrm{M}+2)(\mathrm{J} \pm \mathrm{M}+1)(\mathrm{J}-\mathrm{M}+1)]^{1 / 2}
\end{aligned}
$$

only $\mathrm{C}_{0}(\mathrm{~J}), \mathrm{C}_{+}(\mathrm{J}), \mathrm{C}_{-}(\mathrm{J}): 3$ unknown J-dependent constants for each J.
NONLECTURE (to end of notes). Example of how recursion relationships (reduced matrix elements) are derived for each possible ΔJ.
$\Delta J= \pm 1$ matrix elements of $\overrightarrow{\mathrm{V}}$
$\Delta M=+1$ using $\left[\mathbf{J}_{+}, \mathbf{V}_{+}\right]=0$
ΔM selection rule for V_{+}is $\Delta M=+1$
ΔM selection rule for $\mathbf{J}_{+} \mathbf{V}_{+}$is $\Delta M=+2$

$$
\begin{aligned}
\langle | C R\rangle=0 & =\langle J+1 M+1|\left(\mathbf{J}_{+} \mathbf{V}_{+}-\mathbf{V}_{+} \mathbf{J}_{+}\right)|J M-1\rangle \\
0 & =\langle J+1 M+1| \mathbf{J}_{+}|J+1 M\rangle\langle J+1 M| \mathbf{V}_{+}|J M-1\rangle
\end{aligned}
$$

(arrow denotes \mathbf{J}_{+} operates to right)

$$
-\langle J+1 M+1| \mathbf{V}_{+}|J M\rangle\langle J M| \mathbf{J}_{+}|J M-1\rangle \begin{aligned}
& \text { expand using } \\
& \text { completeness }
\end{aligned}
$$

(\mathbf{J}_{+}operates to left)

$$
\frac{\langle\mathrm{J}+\mathrm{M}| \mathbf{V}_{+}|\mathrm{JM}-1\rangle}{>\langle\mathrm{JM}| \mathbf{J}_{+}|\mathrm{JM}-1\rangle} \begin{aligned}
& \hbar[(\mathrm{J}+\mathrm{M})(\mathrm{J}-\mathbf{M}+1)]^{1 / 2}
\end{aligned}=\frac{\langle\mathrm{J}+1 \mathrm{M}+1| \mathbf{V}_{+}|\mathrm{JM}\rangle}{\rightarrow\langle\mathrm{J}+1 \mathrm{M}+1| \mathbf{J}_{+}|\mathrm{J}+1 \mathrm{M}\rangle} \begin{aligned}
& \hbar[(\mathrm{J}+\mathbf{M}+2)(\mathrm{J}-\mathbf{M}+1)]^{1 / 2}
\end{aligned}
$$

The matrix elements in the denominator are to be replaced by their values, and a common factor is cancelled
multiply both sides by $[J+M+1]^{-1 / 2}$ to display symmetry

$$
\begin{gathered}
\frac{\langle J+1 M| \mathbf{V}_{+}|J M-1\rangle}{(J+M)^{1 / 2}(J+M+1)^{1 / 2}}=-\frac{\langle J+1 M+1| \mathbf{V}_{+}|J M\rangle}{(J+M+1)^{1 / 2}(J+M+2)^{1 / 2}} \equiv-C_{+}(J) \\
M \rightarrow M+1 \text { recursion relationship }
\end{gathered}
$$

sign chosen so
ratio is independent of M

$$
\begin{gathered}
C_{+}(J) \equiv\left\langle\alpha^{\prime} J+1\|\mathbf{V}\| \alpha J\right\rangle \\
\langle J+1 M+1| \mathbf{V}_{+}|J M\rangle=-C_{+}[(J+M+1)(J+M+2)]^{1 / 2}
\end{gathered}
$$

Remaining to do for $\Delta J= \pm 1$ matrix elements
A. $\left[\mathbf{J}_{-}, \mathbf{V}_{+}\right]=-2 \hbar \mathbf{V}_{z}$ gives \mathbf{V}_{z} matrix element when we take $\Delta M=0$ matrix element of both sides
B. $\left[\mathbf{J}_{-}, \mathbf{V}_{z}\right]=\hbar \mathbf{V}_{-}$gives \mathbf{V}_{-}matrix element when we take $\Delta M=-1$ matrix element of both sides
A. $\quad\left[\mathbf{J}_{-}, \mathbf{V}_{+}\right]=-2 \hbar \mathbf{V}_{z} \quad \Delta M=0$ selection rule for both sides

$$
\begin{aligned}
R H S & =-2 \hbar\langle J+1 M| \mathbf{V}_{z}|J M\rangle \\
L H S & =\langle J+1 M|\left(\mathbf{J}_{-} \mathbf{V}_{+}-\mathbf{V}_{+} \mathbf{J}_{-}\right)|J M\rangle \\
& =\langle J+1 M| \mathbf{J}_{-}|J+1 M+1\rangle\langle J+1 M+1| \mathbf{V}_{+}|J M\rangle \\
& -\langle J+1 M| \mathbf{V}_{+}|J M-1\rangle\langle J M-1| \mathbf{J}_{-}|J M\rangle \\
& =\hbar[(J+1)(J+2)-M(M+1)]^{1 / 2}\langle J+1 M+1| \mathbf{V}_{+}|J M\rangle \\
& -\hbar[J(J+1)-M(M-1)]^{1 / 2}\langle J+1 M| \mathbf{V}_{+}|J M-1\rangle
\end{aligned}
$$

rearrange this and use V_{+}recursion rule from above

$$
\begin{aligned}
L H S & =\hbar C_{+}(J)[(J+M+1)(J-M+1)]^{1 / 2}[(J+M)-(J+M+2)]^{1} \\
& =-2 \hbar C_{+}(J)[(J+M+1)(J-M+1)]^{1 / 2}
\end{aligned}
$$

RHS = LHS

$$
\langle J+1 M| \mathbf{V}_{z}|J M\rangle=C_{+}(J)[(J+M+1)(J-M+1)]^{1 / 2}
$$

B. $\left[\mathbf{J}_{-}, \mathbf{V}_{z}\right]=\hbar \mathbf{V}_{-} \quad \operatorname{take}\langle J+1 M-1| \ldots|J M\rangle$

$$
\begin{aligned}
& R H S= \hbar\langle J+1 M-1| \mathbf{V}_{-}|J M\rangle \\
& \begin{aligned}
& L H S= \\
&\langle J+1 M-1| \mathbf{J}_{-}|J+1 M\rangle\langle J+1 M| \mathbf{V}_{z}|J M\rangle \\
&-\langle J+1 M-1| \mathbf{V}_{z}|J M-1\rangle\langle J M-1| \mathbf{J}_{-}|J M\rangle \\
&=\hbar C_{+}(J)[(J-M+2)(J-M+1)]^{1 / 2} \\
&\langle J+1 M-1| \mathbf{V}_{-}|J M\rangle=+C_{+}(J)[(J-M+2)(J-M+1)]^{1 / 2}
\end{aligned}
\end{aligned}
$$

VERY COMPLICATED AND TEDIOUS ALGEBRA

