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updated November 4, 2002

Wigner-Eckart Theorem
CTDL, pages 999 - 1085, esp. 1048-1053

Last lecture on 1e– Angular Part
Next:  2 lectures on 1e– radial part
Many-e– problems

What do we know about 1 particle angular momentum?

* easy vs. hard basis sets
* limiting cases, correlation diagram
* pert. theory – patterns at both limits plus distortion

TODAY:

1. Define Scalar, Vector, Tensor Operators via Commutation
Rules.  Classification of an operator tells us how it
transforms under coordinate rotation.

2. Statement of the Wigner-Eckart Theorem
3. Derive some matrix elements from Commutation Rules

Scalar S ∆J = ∆M = 0, M independent
Vector V ∆J = 0,±1, ∆M = 0, ±1, explicit M dependences of

matrix elements

These commutation rule derivations of matrix elements are tedious.  There
is a more direct but abstract derivation via rotation matrices.  The goal
here is to learn how to use 3-j coefficients.
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 Basis set

definition  all matrix elements in JM  basis set.J J J[ ] = →∑h ε

2 1 2. J J J

J L S

H H

= +
↔

= +− − −

 Coupling of 2 angular momenta

coupled  uncoupled basis sets

transformation via  plus orthogonality.  Also more general methods.

 +   exampleSO Zeeman
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ω Like componen t s (µ)
scalar "constant" 0 J = 0 µ = 0
vec tor 3 components 1 J = 1 µ = ↔
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2 n d 2 2 +2, …, –2

[ω  is "rank"] 3 r d 3 3

Classification of Operators via Commutation Rules with CLASSIFYING
ANGULAR MOMENTUM

Spherical Tensor Components [CTDL, page 1089 #8] …

Definition:

Example:  J = L + S

common sense?
(vector analysis)

        This classification is useful for matrix elements of  in  basis set.Tµ
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 &  act as scalar operators with respect to each other.

2.  and  act as vectors 

3.  acts as scalar 

 gives components of a vector 

[Because    is composed of products of components of two vectors,
it could act as a second rank tensor.  But it does not !]

wrt

wrt

wrt

[Nonlecture:  given 1 and 2, prove 3]

Once operators are classified (classifications of same operator are
different wrt different angular momenta), Wigner-Eckart Theorem
provides angular factor of all matrix elements in any basis set!

specifies
everything

else
redundant-

usually omitted

′ ′ ′ = ′ ′µ µ ′[ ]
′

′ +µ

′ µ

N J M NJM A N J NJM M
J J

M M

M M

T T( )
,

( )ω ω ωδ
vector coupling

coefficient

reduced matrix element
no , , no 

123 1 244 344
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, ,[ ] = [ ]∴
= +

  is vector wrt 

* triangle rule

* reduced matrix element contains all radial dependence – when there is no radial
factor in the operator, then the J′,J dependence can often be evaluated as well

* vector coupling coefficients are tabulated – lots of convenient symmetry properties:
A.R. Edmonds, “Ang. Mom. in Q.M.”, Princeton Univ. Press (1974).

J J J T J− ≤ ′ ≤ + ∆ = ± ± − …µω ω ω ωω: , , ( ), .( ) selection rule for 1 0

rank of tensor – like an
angular momentum

Nonlecture:  L & S act as vectors wrt J but scalars wrt each other

•

•

•

•

••• Show that L•S acts as scalar wrt J

etc.

L,S

J,L L S,L L,L J L

L T

[ ] =
[ ] = +[ ] = [ ] ∴
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0

1

scalars wrt each other

 vector wrt.  if  is an angular momentum

components of  satisfy the  definition
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What is so great about W-E Theorem?

vast reduction of independent matrix elements
e.g.  J = 10, ω = 1 (vector operator)
possible values of J′ limited to 9, 10, 11 by triangle rule

Total # of M. E. #R.M.E.
J′ = 9 (2•9+1)(2•10+1) 399 1 9 10T(1)

µ

10 (2•10+1)(2•10+1) 441 1 10 10T(1)
µ

11 (2•11+1)(2•10+1) 483 1 11 10T(1)
µ

1323 3

p. 46 Edmonds (1974) general formula

3 1 2 11 2 3

1 2 3
3

1

2
1 1 2 2 1 2 3 3

1 2 3−






= −( ) +( )  −( )− − −
J

J J J

M M M
J J M J M J J J M

J J M
:

Constraint:  M M M1 2 3 0+ + =

all serve
same

function

Vector Coupling Coefficients
Clebsch - Gordan Coefficients
3 - J coefficients
all related to what you already know how to obtain by ladders and orthogonality for











W-E Theorem is an extension of V-C idea because we think of operators as
“like angular momenta” and we couple them to angular momenta to make new
angular momentum eigenstates.

   
′ ′ µJ M JMT( )1

 

JJ J M J M J M J M J M JJ J M
M M M
M J

J

1 2 1 1 2 2 1 1 2 2 1 2

2 1

2 2

2

=
= −
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+

∑
v.c. coefficient

1 2444 3444 completeness

This constraint is imposed in (|) notation but not
in 〈|〉 notation.]
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JM JM JM JM
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JM JM

JM
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JM JM

J S SJ s J

s J

s s J

CTD-L, pages 1048-1053
Outline proof of various parts of W-E Theorem

Scalar Operators S

[Ji,S] = 0 Definition (for all i)

  

1 0 0

2 0 0

3 0

. ,

. ,
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∆ = [ ] =
∆ = [ ] =

[ ] =±

J

M z

 selection rule from 

 selection rule from 

M - independence from 

2J S

J S

J S

      

J S

J S SJ S
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0 1 1
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,[ ] =

= ′ ′ −( ) = ′ ′ +( ) − +( )[ ] ′ ′

′ = ′ ′ =

∆ =( )

J M JM J J J J J M JM

J J J M JM

J

h

either  or 

only  matrix elements of  can be nonzero

     
2 0 0. :   show  if M M∆ = ′ = ′ ≠M JM JMS

3 show M - Independence of matrix elements

  

J S

J S SJ S

S

z

z zJM JM M M JM JM

M M JM JM

,[ ] =

= ′ −( ) = ′ −( ) ′

′ = ′ =

0

0

0

h

either  or 

J S±[ ] =, 0
uses ∆J = ∆M = 0 for S

1 0 0. :  show  if J J∆ = ′ = ′ ≠J J M JMS

direction of
 operation by J2

direction of
 operation
by S

[Should skip pages 27-6,7,8 and go directly to recursion relationship on page 27-10.]

we already
know that S is
diagonal in M.
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1. M selection rules

  

Vector Operators V

J V Vi j
k

ijk ki,[ ] = ∑h ε
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Thus either or 

Thus  is independent of M

Putting all results for  together
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1 244 344

δ

      

LHS J M JM

J J J J J J J J J M JM

RHS J J J J J M JM J M

= ′ ′ ( ) − − +

= ′ ′ +( )( ) − +( ) ′ ′ +( ) + +( )[ ] ′ ′

= ′ ′ +( ) + +( )[ ] ′ ′ − ′ ′ ⋅
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4
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2 1 1 4

h
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r

r (( )J JM

2. M selection rules

scalar

′= ′′ ′= ′′J J M M,

two cases for overall matrix element
A.

B.

′ ≠
′ =

J J

J J

  

Thus we have selection rules:  acts like  on 

 acts like  on 

V J

V J
z z M

M± ±

  

need to use a result that requires lengthy derivation

see proof in Condon and Shortley,  pages 59 - 60

J J V J V J V J VJ2 2 2 2 22 2, ,[ ][ ] = − ⋅( ) +[ ]








h

    
Take  Matrix elements of both sides of above Eq.′ ′J M JM
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A. ′ ≠J J

B. ′ =J J

  
0 1 1 14 2 2= − = = ′ ′ ′ −( ) −[ ] ′ + +( ) −[ ]LHS RHS J M JM J J J Jalgebra h V

(J ′ = –J is impossible
except for J′ = –J = 0,
but this violates J′ ≠ J

assumption)

  

RHS J J J J J M JM

LHS J J J J J J J J J M JM

= ′ ′ +( ) + +( )[ ] ′ ′

= ′ ′ +( ) − +( ) ′ ′ +( ) + +( )[ ] ′ ′

2 1 1

1 2 1 1 1

4
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2

2
2

h

h

r
V

V

 ∴ ∆ = ±J 1 selection rule for 
r
V

ME = 0 unless J′ = J ± 1 or J′ = –J

  

LHS

RHS J J JM JM J J JM JM

=

= = +( ) ′ − ⋅ ′[ ]
0

0 4 12 2
h h V J V J

      

JM JM
J J

J J
JM JM

C J

′ =
⋅

+( ) ′
r

1 244 344

r
V

J V
J

h
2 1

0 ( )

          

A WONDERFUL AND MEMORABLE RESULT.  It says that all  matrix
elements of  are  corresponding matrix element of !   A simplified form of 
W - E Theorem for vector operators.

∆ =
∝

J 0
r r
V J
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V
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V
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h h
/ /

Lots of (NONLECTURE) algebra needed to generate all ∆J = ±1 matrix
elements of

SUMMARY OF C.R. RESULTS:  Wigner-Eckart Theorem for Vector Operator

  
r
V.

only Co(J), C+(J), C–(J) : 3 unknown J-dependent constants for each J.

NONLECTURE (to end of notes).  Example of how recursion relationships (reduced
matrix elements) are derived for each possible ∆J.

expand using
completeness

          

∆ = ±

∆ = + [ ] =
∆ ∆ = +
∆ ∆ = +

+ +

+ +

J

M

M M

M M

1

1 0

1

2

 matrix elements of 
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 selection rule for  is 

 selection rule for  is 
+
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V

J V

V
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,

      

CR J M JM

J M J M J M JM

J M JM JM JM

= = + + −( ) −

= + + + + −

− + + −

+ + + +

+ +

+ +

0 1 1 1

0 1 1 1 1 1

1 1 1

J V V J

J V

V J
(J+ operates to left)

(arrow denotes J+
operates to right)

The matrix elements in the
denominator are to be

replaced by their values,
and a common factor is

cancelled

∆ = =

± = +( ) − ±( )[ ]
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J M JM C J J M J Mz

V

V

m

special case:  These are exactly
the same form as corresponding
matrix element of Ji.



27 - 105.73 Lecture #27

updated November 4, 2002

multiply both sides by  to display symmetryJ M+ +[ ]−1 1 2/

M M→ + 1 recursion relationship

sign chosen so
that Vz matrix
elements will be
+C+(J)

ratio is independent of M

       

Remaining to do for  matrix elements

A.  gives  matrix element when we take 

matrix element of both sides

B.  gives  matrix element when we take  

matrix element of both sides

∆ = ±

[ ] = − ∆ =

[ ] = ∆ = −














− +

− − −
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M

M

z z
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1
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J V V V

J V V V

,

,

h

h

  
A.   selection rule for both sidesJ V V− +[ ] = − ∆ =, 2 0h z M

  

RHS J M JM

LHS J M JM

J M J M J M JM

J M JM JM JM

J J M M J M JM

J J M M
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= + + + + +
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V
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]] + −+

1 2

1 1
/

J M JMV

    rearrange this and use  recursion rule from aboveV+

J M JM

J M J M

J M JM

J M J M
C J

+ −
+( ) + +( )

=
+ +

+ +( ) + +( )
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+
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+
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≡ ′ +
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α α1

1 1 1 2
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LHS C J J M J M J M J M

C J J M J M

= + +( ) − +( )[ ] +( ) − + +( )[ ]
= − + +( ) − +( )[ ]

+

+

h

h
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1 1 2

2 1 1

1 2 1

1 2
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RHS = LHS

VERY COMPLICATED AND TEDIOUS ALGEBRA

            
B.  take J V V− −[ ] = + −, z J M JMh 1 1L

J M JM C J J M J Mz+ = + +( ) − +( )[ ]+1 1 1
1 2

V ( )
/

  

RHS J M JM
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J M JM JM JM

C J J M J M

z

z
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−

−

−

+
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 J M JM C J J M J M+ − = + − +( ) − +( )[ ]− +1 1 2 1
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