5.73 Lecture #27 27 -1

Wigner-Eckart Theorem
CTDL, pages 999 - 1085, esp. 1048-1053

Last lecture on 1e- Angular Part
Next: 2 lectures on le™ radial part
Many-e~ problems

What do we know about 1 particle angular momentum?
1. |JM) Basis set
[J . | j] = ihz guJ,  definition — all matrix elements in |JM J> basis set.
2. J=J +1J, kCoupling of 2 angular momenta
coupled <> uncoupled basis sets
transformation viaJ_=L_+S_ plus orthogonality. Also more general methods.

H* + H”"™" example * gasy vs. hard basis sets
* limiting cases, correlation diagram
* pert. theory — patterns at both limits plus distortion

TODAY:

1. Define Scalar, Vector, Tensor Operators via Commutation
Rules. Classification of an operator tells us how it
transforms under coordinate rotation.

Statement of the Wigner-Eckart Theorem

3. Derive some matrix elements from Commutation Rules

po

Scalar S AJ = AM = 0, M independent

Vector \Y AJ =0,£1, AM = 0, +£1, explicit M dependences of
matrix elements

These commutation rule derivations of matrix elements are tedious. There

1s a more direct but abstract derivation via rotation matrices. The goal
here is to learn how to use 3-j coefficients.
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Classification of Operators via Commutation Rules with CLASSIFYING

ANGULAR MOMENTUM
® Like components(u)
scalar "constant" 0 J=0 u=0
vector 3 components 1 J=1 H=0ez
+1 ¢ 2" (x +1y)
1> 27" (x—1y)
tensor (2o + 1) 2nd 2 2 +2, ..., =2
components
[ 1s "rank"] 3rd 3 3

Spherical Tensor Components [CTDL, page 1089 #8] ...

Definition: [J i,Tﬁm)] =Ho@+1D)-puE D] T
[J.. 7] = AT
This classification is useful for matrix elements of T’ in |JM) basis set.

Example: J =L+ S

1. |L,8]=0 .. L&S$ act as scalar operators with respect to each other.
common sense? 2. I: afld S act as vectors wrt J
(vector analysis) <3. L-S acts as scalar wrt J

4. Lx8S gives components of a vector wrt J.
[Because L x S is composed of products of components of two vectors,
it could act as a second rank tensor. But it does not !]

[Nonlecture: given 1 and 2, prove 3]
Once operators are classified (classifications of same operator are

different wrt different angular momenta), Wigner-Eckart Theorem
provides angular factor of all matrix elements in any basis set!

<N’J’M’

TONIM)= AR Byt NV ITINY)

reduced matrix element
no M’,M, no

vector coupl

— coefficient
specifies
everything redundant-
else usually omitted
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rank of tensor — like an
angular momentum

* triangle rule [J-o|<]’ <J+w: selection rule for TL(L‘”), AJ =+, (0 -1),...0.

* reduced matrix element contains all radial dependence — when there is no radial
factor in the operator, then the J’,J dependence can often be evaluated as well

* vector coupling coefficients are tabulated — lots of convenient symmetry properties:
A.R. Edmonds, “Ang. Mom. in Q.M.”, Princeton Univ. Press (1974).

Nonlecture: L & S act as vectors wrt J but scalars wrt each other

[ L,S ] scalars wrt each other
[ J,L ]: [L+S L] [L,L] -~ vector wrt. J if L is an angular momentum
components of L satisfy the T." definition

T[L)= 2L, +iL,]

. [J =27 [LX + 1Ly J: 27 21}‘1[Ly - le] =-27" h[LX + iLy] | This notation means: construct
= +ATO[L] “lan operator classified as T},
[ J1.T (1> L ] 7( +1)T(“[ ] out of components of L.

[ J.S]=[S.S] .. Sis vector wrtJ

=L+S
etc.

«++ Show that LL.*S acts as scalar wrt oJ

[9..L-8]=[J,, LS, +L,S, +L,S,|£i]J,,LS, +LS, +L,S.]|

four terms

[J..L-S]=[L,LS,+LS +LS]+[S.LS,+LS +LS]
+L,LS +LS +LS|+iS.LS +LS +LS|

=[in(L.S,-L,S,)+in(L,S ~LS,)

+iin(-L,S, - LS, ) £iin(-L,S, +L.S, )]

=0
[J..L-S]=[L.,LS,+LS +LS]+[S.,LS +LS +LS ] This notation means:
=i(L, S, -LS )+i(L,S —LS,) construct an operator
=0 classified as T,
out of the
T,”[A,B] = D' [AIT[B]
- L-Sacts as T” [ 2 D —k co;nionents of A
and B.
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Vector Coupling Coefficients
all serve | cjehsch - Gordan Coefficients

same o
function |3~ Y coefficients

27 -4

all related to what you already know how to obtain by ladders and orthogonality for

+J,

|JJ1J2M> = 2

M,=M-M,
My==7J,

| M, J, M, (T M, T, M, | I, T, M)

v.c. coefficient

p. 46 Edmonds (1974) general formula

completeness

J J J - L
3-1I ( : ’ ’ ]:(_1)11 » M3(2J3+1) 2(J1M1J2M2|J1J2]3_M3)

M, M, M;

Constraint: M, + M, + M, =0 This constraint is imposed in (|) notation but not

in (|) notation.]

W-E Theorem is an extension of V-C 1dea because we think of operators as
“like angular momenta” and we couple them to angular momenta to make new

angular momentum eigenstates.

What is so great about W-E Theorem?

vast reduction of independent matrix elements
e.g. J =10, w = 1 (vector operator)

possible values of J’ limited to 9, 10, 11 by triangle rule

<J’M' T

JM>

Total # of M. E.
=9 (209+1)(2¢10+1)

10 (2010+1)(2¢10+1)

11 (2011+1)(2¢10+1)

399

#R.M.E.

(11

oo

N 10>

1

1]io)

updated November 4, 2002



5.73 Lecture #27 27 -5

CTD-L, pages 1048-1053
Outline proof of various parts of W-E Theorem

Scalar Operators S

[J.,S] =0  Definition (for all 1)

1. AJ = 0 selection rule from [J2,S] =0
2. AM = 0 selection rule from [JZ,S] =0
3. M - independence from [Jt,S] =0
1. show AJ =0: (J'MIS|JM)=0if ] #]
[92,8] =0
0={JMm (ys-59) M) = w2l )= I+ 1)) T prslm)
direction of > , A _
operation by J2 either J’ = J or <JM SJM> =0
(only AJ =0 matrix elements of S can be nonzero)
2. showAM =0: (JM|S|JM)=0if M= M
J..8|=0
0= <JM’ (9.5- SJZ)‘JM> = 1y - M) apa[s|Tm )
either M’ = M or <JM’ SJM> =0
3 show M - Independence of matrix elements
[Ji,S]:O @AJ=AM=Of0rSj
direction of !
operation 0= <JM’ (9,5-84,) JM> = S (IM1]0.|IM)
by S
- sJM,<JM' J, JM>
= (s, —s JM,)<JM’ J. JM> we already

know that S is
diagonal in M.

[Should skip pages 27-6,7,8 and go directly to recursion relationship on page 27-10.]
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Thus either s, =s,,. or <JM’

Ji

JM> -0

Thus s, is independent of M

Putting all results for S together
(MM = 3,8, 1817

27 -6

Vector Operators V
[3.,V,]= Y eV,
k

1. M selection rules from [JZ,V]

J selection rules from [JZ,[J2,VH

M - dependence of matrix elements of V from double commutator

1. M selection rules
a. [J.,V.]=0

0= <J’M"(JZVZ - VZJZ)‘JM> =1y - M) M|V I
either M = M’ or ME =0

b. [3.,V.]=[d..v.]¢a..V

hV,

i +
<J’M"(JZV+ - V+Jz)‘JM> = +h(JM’
<

(M - M)<J’M’

Vi

JM> — +h
h(M’—M$1)<J’M’ViJM =0
M =M=+1 or ME =0

] =in(v, £ i(-v,))

J'M’
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Thus we have selection rules: 'V, acts like J, on M
V., acts like J, on M

2. M selection rules

need to use a result that requires lengthy derivation
(92,[92, V]| = 2232V - 2(3 . V)T + V2]
see proof in Condon and Shortley, pages 59-60

Take <J’M" ‘JM> Matrix elements of both sides of above Eq.

LHS = <J’M’ JAJ2V) = JVI? — J2VI? + VI2J?

JM>

- h4[<J'(J’ £1)) —2J(T+ DI +1) + 2T + 1)2]<J’M’

V‘JM>

RHS =2 [J(J7 +1) + J(J + 1)]<J’M’

(JﬂJ‘JM>

scalar

V‘JM> —4h4<J’M’

<J’M’(J-V)J‘JM> -y M)

J/M ”

(3-V) {”M"><J"M"

J'=J" M’k

(o

—(Ja. VHJ'><J'M' J JM>

~

J’'=J

J JM>5J,J

= (g Vi)

two cases for overall matrix element
A. J£=J
B. J'=J

updated November 4, 2002



5.73 Lecture #27 27 - 8
A. J = J

RHS = 2n*[J(J" +1) + J(J + 1)]<J’M’ \7\JM>

LHS = h4[J'2(J’ +1) —2d(T+ DI (T +1) + J2(J + 1)2]<J’M’

V‘JM>
0= LHS — RHS = algebra = h* (J'M/|V|IM ) (J" = J)* =1][(J" + 7 +1)* = 1]

ME=0unlessJ’=J+1orJ’ =-J (J’ = -J is impossible
except for J' = —J =0,

. = but this violates J’ # J
~. AJ = *1 selection rule for V assumption)

B. J' =J

LHS =0
0= RHS = 4h2[h2J(J + 1)<JM’

VjuM)— (13- VI ) M’ J‘JM>]

—

G JM> ) (J1a-vil)

2T +1)

Co(J)

<JM’ <JM’

J JM>

A WONDERFUL AND MEMORABLE RESULT. It says that all AJ =0 matrix
elements of V are « corresponding matrix element of J A simplified form of
W - E Theorem for vector operators.
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Lots of (NONLECTURE) algebra needed to generate all AJ =+1 matrix
elements of V-

SUMMARY OF C.R. RESULTS: Wigner-Eckart Theorem for Vector Operator

AT=0 <JM \Y JM> =C ()hM special case: These are exactly
‘ ° " the same form as corresponding
<JM + 1|Vi|JM> = Co(J)[J(J +1)-M(M + 1)] matrix element of oJ..
AJ = +1 (J+1M£1|V[1M) = FC, DM+ 2T M+ 1)]”
(J+1MV,IM) = +C, (DT + M+ DI -M+1)]"
AY=-1 (J-M1|V_[1M) = . DUFMI M +1)]”
(J-IMV,|IM) = +C (DI -M)T+ M|

only C,(J), C.(J), C_(J) : 3 unknown J-dependent constants for each J.

NONLECTURE (to end of notes). Example of how recursion relationships (reduced
matrix elements) are derived for each possible AJ.

AJ = +1 matrix elements of V

AM = +1 using [J+,V+] =0
AM selection rule for V, is AM = +1
AM selection rule for J.V, is AM = +2

<‘CR‘> =0= <J 1M+ 1‘(J+V+ _ V+J+) JM - 1> (arrow denotes dJ,
0= <J 1M +1d [T+ 1M><J + 1MV, |JM - 1> operates to right)
~(J 1M +1|V,|IM)(IMJ | TM 1) expand using
< | completeness (J, operates to left)
(J+IMVIM-1)  (T+IM+1V,[IM)

F (IMJJ,IM -1 _F (J+IM+ 1T, 5 +1M)

AT+ MT-M+D]” “H+M+ 2)0/10( D]

172

The matrix elements in the
denominator are to be
replaced by their values,
and a common factor is
cancelled
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172

multiply both sides by [J + M +1]"" to display symmetry

(J+1M|V [IM-1) (J+1M +1V,|IM)
+M"T+M+D"” J+M+D)"T+M+2)"

=—C,(J)

M — M +1 recursion relationship

sign chosen so
that V, matrix

elements will be
C,.(J)=(oVJ +1IVlo) +C,(J)

(J+IM+ 1V, IM)=-C,[(J+ M+ DI + M +2)]”

ratio is independent of M

_Remaining to do for AJ = £1 matrix elements
A. [Jf,V+] =-2hV_ gives V, matrix element when we take AM =0
matrix element of both sides

B. [J_,VZ] = hV_ gives V_ matrix element when we take AM = -1

matrix element of both sides

A. [J_,V+] = -2hV, AM = 0 selection rule for both sides
RHS = -2h{J +1M|V_|-JM)
LHS = <J +1M(JV, - V+J_)‘JM>

:<J+1MJ7‘J+1M+1><J+1M+1V+

M)

—<J + 1MV |JM - 1><JM— 1‘J_‘JM>

v,

—nl(g+1)(T+2) - M1+ 1)]1/2<J +1M+1 JM>

—nlg(T+1) - m(m - 1)]1/2<J 1MV |JM - 1>

v,

rearrange this and use V, recursion rule from above

LHS = hC,. ()T +M+DUT =M+ D] [(J+M) =T+ M +2)]
=2hC, (NI +M+1)(J-M+1)

]1/2
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RHS = LHS

(J+IM|V,|IM) = C,()[(J + M +1)(J = M +1)

]1/2

B. [J.V]=nv take (/ +1M - 1-{JM)
RHS = h(J +1M = 1|V_|IM)
LHS =(J +1M = 1J_|J + 1M ){J + 1M|V,|JM)
~(J+1M =1V JJM = 1)(JM = 1|J_|JM )
=hC, (DT -M+2)(J-M+1)]"

(J+1M = 1V_|IM) = +C (D[ - M +2)(J - M + D]

VERY COMPLICATED AND TEDIOUS ALGEBRA
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