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2.1. TIME-DEPENDENT HAMILTONIAN 

Mixing of eigenstates by a time-dependent potential 

For many time-dependent problems, most notably in spectroscopy, we often can partition the 

time-dependent Hamiltonian into a time-independent part that we can describe exactly and a 

time-dependent part  

H H  V t+ ( )= 0  (2.1) 

Here H0 is time-independent and V t( )  is a time-dependent potential, often an external field. 

Nitzan, Sec. 2.3., offers a nice explanation of the circumstances that allow us to use this 

approach. It arises from partitioning the system into internal degrees of freedom in H0 and 

external degrees of freedom acting on H0. If you have reason to believe that the external 

Hamiltonian can be treated classically, then eq. (2.1) follows in a straightforward manner.  Then 

there is a straightforward approach to describing the time-evolving wavefunction for the system 

in terms of the eigenstates and energy eigenvalues of H0 . We know 

H n  E= n . (2.2)0 n

The state of the system can be expressed as a superposition of these eigenstates: 

c t n  (2.3)ψ (t ) =∑ n ( ) 
n 

The TDSE can be used to find an equation of motion for the expansion coefficients  

c t = k ψ (t ) (2.4)k ( ) 

Starting with 

∂ ψ −i
= H ψ (2.5)

∂t 

∂ c tk ( ) = − i k H  t  (2.6)ψ ( )
∂t 

iinserting ∑ n n =1 = −  ∑ k H n c t  (2.7)n( )
n n 
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substituting eq. (2.1) we have: 

∂ c t( )  ik ∑= −  k H  V t  ( + ( )) n c t  ( )0 n∂t  n (2.8)
i

= −  ⎡E  V t c t  ∑⎣ n δkn + kn ( )⎤⎦ n ( )
n 

or, 
∂c t( )

+
i E c t  ( )  − i V  t c t  . (2.9)k = ( )  ( )  

∂t  k k   ∑ kn n 
n 

If we make a substitution 

iE t c t( ) = e− m b t  ( ) , (2.10)m m 

which defines a slightly different expansion coefficient, we can simplify considerably. Notice 
2 2

that = c t  ( )  0 In practice what we are doing is pulling out the. Also, bk ( ) = ck (0) .b t( )k k 

“trivial” part of the time-evolution, the time-evolving phase factor for state m. The reasons will 

become clear later when we discuss the interaction picture. It is easy to calculate k ( )b t  and then 

add in the extra oscillatory term at the end.  Now eq. (2.9) becomes  

e−iEkt  ∂bk = −
i V t e−iEnt b t  (2.11)∑ kn ( )   

n ( )∂t n 

or i ∂
∂ 

b
t
k = 

n 
kn ( ) e−iωnkt b t  n ( )  (2.12)∑V t  

This equation is an exact solution. It is a set of coupled differential equations that describe how 

probability amplitude moves through eigenstates due to a time-dependent potential.  Except in 

simple cases, these equations can’t be solved analytically, but it’s often straightforward to 

integrate numerically. 
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Resonant Driving of Two-level System 

As an example of the use of these equations, let’s describe what happens when you drive a two-

level system with an oscillating potential. 

V t( ) =V cos ωt V= f t  ( ) (2.13) 

Note: This is what you expect for an electromagnetic field interacting with charged particles, i.e. 

dipole transitions. In a simple sense, the electric field is 

E t ( ) = E0 cosωt (2.14) 

For a particle with charge q in a field E , the force on the particle is 

F q= E (2.15) 

which is the gradient of the potential 

∂VF = −  = qE ⇒ V = −qE x  (2.16)x x x∂x 

qx is just the x  component of the dipole moment μ . So matrix elements in V look like: 

| ( ) |   = −q xk V t  | |  E  k x  cos  ωt (2.17) 

More generally, 

V E μ .= − ⋅  (2.18) 

We’ll look at this a bit more carefully later. 

So, 
V t( ) =V cosωt = −  E0 ⋅ μ cos ωt 

. (2.19)
V t( ) =V cos ωt = −  E ⋅ μ cos ωtk  k  0 k  

We will now couple our two states k  and  with the 

oscillating field. Let’s ask if the system starts in  what is the 

probability of finding it in k  at time t ? 



2-4 

The system of differential equations that describe this situation are: 

∂ 
k ∑ n kn 

−iωnkti b t( ) = b t V t( )  ( ) e 
∂t n (2.20) 

= b t V  e−iωnk t × e−i tω + e i t∑ n ( )  kn 
1 ( + ω ) 

n 2 

Or more explicitly 

 1 ⎡ i(ωk  −ω)t i(ωk  +ω)t ⎤ 1 − ωi b = b V e + e + b V ⎡ei tω + e i t ⎤k 2  k  ⎢⎣ ⎥⎦ 2 k kk ⎣ ⎦ 

⎡ei t + e−i tω ⎤ + 1 b V  ⎡ei( k −ω)t + ei(ω k +ω)t ⎤ω ω  1i b  = 2 ⎣ ⎦ 2 k k ⎢⎣ ⎥⎦ (2.21) 
or 

⎡ −i(ωk  +ω)t −i(ωk  −ω)t ⎤ 
⎢ e + e ⎥⎣ ⎦ 

Two of these terms can be dropped since (for our case) the diagonal matrix elementsVii = 0 . We 

also make the secular approximation (rotating wave approximation) in which the nonresonant 
± ω ω)tterms are dropped. Whenωk  ≈ω , terms like e i t  or ei(ωk  +  oscillate very rapidly (relative 

−1to Vk  ) and so don’t contribute much to change of cn .  (Remember that ωk  is positive). So we 

have: 

b =
−i b V ei(ωk  −ω)t (2.22)k  k2

b =
−i b V e−i(ωk  −ω)t (2.23) k k2

Note that the coefficients are oscillating out of phase 

with one another. 

b V  

Now if we differentiate eq. (2.22): 

b =
−i ⎡b V ei(ωk  −ω)t + i (ω −ω)b V e i(ωk  −ω)t (2.24) ⎤ 

k 2 ⎣⎢  k  k  k  ⎦⎥ 
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Rewrite eq. (2.22): 

b  = 
2i  bk e−i(ωk  −ω)t (2.25)
Vk  

and substitute (2.25) and (2.23) into (2.24), we get linear second order equation forbk . 

 b = 0 (2.26)bk − i (ωk  −ω)bk + 
Vk  

2

2 

k4

This is just the second order differential equation for a damped harmonic oscillator: 

ax + bx + cx = 0 (2.27) 

2 )x = e −(b a t  (Acos μt + B sin μt ) 
1 

μ = 
2
1 
a 
⎡⎣4ac −b2 ⎤⎦

2 
(2.28) 

With a little more work, and remembering the initial conditions b (0) = 0 andb  0 =1, we findk ( )

2 
2= b t 

2 
=

+

V 
2 

k 

( 
 

ωk  −ω)
sin Ω t (2.29)k ( )Pk 2 2 rVk  

Where the Rabi Frequency 

2 2 2Ω =
1 ⎡Vk  +  (ωk  −ω) ⎤⎦ (2.30)R 2 ⎣ 

2Also, P = −1 bk (2.31) 

The amplitude oscillates back and forth between the two states at a frequency dictated by the 

coupling between them. [ Note a result we will return to later: Electric fields couple quantum 

states, creating coherences! ] 

An important observation is the importance of resonance between the driving potential 

and the energy splitting between states. To get transfer of probability density you need the 

driving field to be at the same frequency as the energy splitting. On resonance, you always drive 

probability amplitude entirely from one state to another. 

1
2 
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The efficiency of driving between  and k  states drops off with detuning.  Here plotting the 

maximum value of Pk  as a function of frequency: 

Readings 

This lecture draws from 

1.	 C. Cohen-Tannoudji, B. Diu, and F. Lalöe, Quantum Mechanics, Vol. 2. (Wiley-

Interscience, Paris, 1977) 

2.	 J. J. Sakurai, Modern Quantum Mechanics. (Addison-Wesley, Reading, MA, 1994). 
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2.2. QUANTUM DYNAMICS 

The motion of a particle is described by a complex wavefunction ψ (r t, )  that gives the 

probability amplitude of finding a particle at point r  at time t . If we know ψ (r t , 0 ) , how does 

it change with time? 

?ψ (r t, 0 ) ⎯⎯→ψ (r t, ) t t0 (2.32)>

We will use our intuition here (largely based on correspondence to classical mechanics).  We are 

seeking an equation of motion for quantum systems that is equivalent to Newton’s (or more 

accurately Hamilton’s) equations for classical systems. 

We start by assuming causality: ψ (t0 ) precedes and determines ψ t .  So will be  

deriving a deterministic equation of motion for 
( )  

ψ (r t , ) . Also, we assume time is a continuous 

parameter:   

lim ψ (t ) =  (2.33)ψ (t )0t t0→ 

Define an operator that gives time-evolution of system.   

ψ (t ) U t t  , (2.34)= ( 0 ) ψ (t )0 

This “time-displacement operator” or “propagator” is similar to the “space-displacement 

operator” 

= e ( − 0 )ik r r (2.35)ψ (r ) ψ (r )0 

which moves a wavefunction in space.  

We also say that U  does not depend on the particular state of the system ψ . This is 

necessary for conservation of probability, i.e. to retain normalization for the system.  If 

ψ t0 = a1 + a2 (2.36)( )  ϕ1 (t ) ϕ2 (t )0 0 

then 

ψ ( )t  U t t  ,= ( 0 ) ψ (t )0 

U t t  a  ϕ t  U t t  a  ϕ t (2.37)1 ( )  0 2 ( )  0 = ( , 0 ) 1 + ( , 0 ) 2 

a t  a t  = 1 ( )  + 2 ( )ϕ1 ϕ2 
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This is a reflection of the importance of linearity in quantum systems. While a t  typically not 

equal to 

i ( )
,a ( )i 0 

∑

2
 2 

(2.38)a t  =∑ a tn ( )  n ( )0 
n n 

Properties of U(t,t0) 

1) 	 Unitary. Note that for eq. (2.38) to hold and for probability density to be conserved, U must 

be unitary 

†P =	 ψ (t ) ψ (t ) = ψ (t0 ) U U  (2.39)ψ (t )0 

which holds only ifU † =U −1 . In fact, this is the reason that equates unitary operators with 

probability conservation. 

2) Time continuity: 

U t t( , ) =1. (2.40) 

3) 	 Composition property. If we take the system to be deterministic, then it stands to reason 

that we should get the same wavefunction whether we evolve to a target time in one step 

(t → t )  or multiple steps (t → → tt ) :0 2	 0 1 2 

U t  t  ( 2 , 0 ) = ( 2 , 1 ) ( 1, 0 )	 (2.41)U t  t U t t  

 Note, since U acts to the right, order matters:  

ψ ( )t2 U t  t U t t  0 = ( 2 , 1 ) ( 1, ) ψ (t0 ) 
(2.42)

U t  t  ,=	 ( 2 1  ) ψ ( )  t1 

Equation (2.41) is already very suggestive of an exponential form.  Furthermore, since time 

is continuous and the operator is linear it also suggests what we will see that the time 

propagator is only dependent on a time interval 
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( , ) = ( 1 − )	 (2.43)U t t  1 0  U t  t  0 

and 

U t( − t ) = U t  ( − t U t  t  ) ( − )	 (2.432 0 2 1 1 0 

4) 	 Time-reversal. The inverse of the time-propagator is the time reversal operator.  From eq. 

(2.41): 

( ,	 0 ) ( 0 , ) 1 (2.32)U t t  U t t =

∴U −1 t t  , 0 = U t  t  , . 	(2.33)( ) ( 0 ) 

Finding an equation of motion for U 

Let’s find an equation of motion that describes the time-evolution operator using the change of 

the system for an infinitesimal time-step,δ t : U t( 0 +δ t t  , 0 ) 

lim U t( 0 +δ t t  , 0 )=1	 (2.34)
δ t→0 

We expect that for smallδ t , the difference between U t t ) and ( +δ t t, 0 )  will be linear in ( 0 , 0 U t0 

δ t  (This is based on analogy to how we think of deterministic motion in classical systems)   

( 0 , ) ( 0 , ) −  Ω(t0 )δ t	 (2.35)U t +δ t t  0 = U t  t  0 i ˆ 

We take Ω̂  to be a time-dependent Hermetian operator.  We’ll see later why the second term 

must be imaginary.  So, now we can write a differential equation for U. We know that 

U t  (	 +δ t t, 0 ) = U t  ( +δ t t U t t  , ) ( , 0 ) . (2.36) 

Knowing the change of U during the period δt allows us to write a differential equation for the 

time-development of U t t  ( , 0 ) . The equation of motion for U is 
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d U t t  , 0 U t +δ t t  , −U t t  , 0 

dt δ t→0 δ t 
U t( +δ t t  ) −1 U t t  ) 

(2.37) 

( )
= lim ( 0 ) ( ) 

= lim ⎣
⎡ , ⎦⎤ ( , 0 

δ t→0 δ t 

Where I have substituted eqn. (2.35) in the second step. So we have:   

U t t  ,∂ ( 0 ) = − Ω  ˆ ( , ) (2.38)i U t t  0∂t 

You can now see that the operator needed a complex argument, because otherwise probability 

density would not be conserved (it would rise or decay).  Rather it oscillates through different 

states of the system.   

We note that Ω̂  has units of frequency. Since (1) quantum mechanics says E = ω and 

(2) in classical mechanics the Hamiltonian generates time-evolution, we write 

Ω̂ = 
Ĥ 

(2.39)

Where Ω̂ can be a function of time.  Then 

i U t t  ( , 0 ) HU t t  , 0 ) (2.40)∂
= ˆ (

∂t 

Multiplying from right by ψ t0 gives the TDSE( )

∂i ψ = Ĥ ψ (2.41)
∂t 

We are also interested in the equation of motion for U † which describes the time-evolution of the 

conjugate wavefunctions. Following the same approach and recognizing that † ( , 0  acts toU t t ) 

the left:   

†= ψ (t0 ) U  t t  ( , 0 ) , (2.42)ψ (t ) 

we get 

∂ † † ˆ( , ) =U  t t H  ( , 0 ) (2.43)−i U  t t  0∂t 
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Evaluating U(t,t0) for Time-independent Hamiltonian 

Direct integration of eqn. (2.40) suggests that U can be expressed as: 

( )  , 0 = exp  ⎡
⎢ 

i ( − 0 
⎤
⎥U t t  − H t  t  ) (2.44)

⎣ ⎦ 

Since H  is an operator, we will define this operator through the expansion: 

⎤ iH −i ⎞ ⎣H t  t  ( 0 )⎤⎦ 
2 

exp ⎡− iH ( − ) 1 − t t− 0 ) +
⎛ 

⎟ 
2 ⎡ − 

+… (2.45)⎢  
t t0 ⎥ =  +  

 
( ⎜ 2⎣ ⎦ ⎝ ⎠ 

Note H commutes at all t . You can confirm the expansion satisfies the equation of motion 

forU . 

 To evaluate U for the time-independent Hamiltonian, we expand in a set of eigenkets: 

H n = E  n  n n  =1 (2.46)∑n 
n 

So we have 

U t t  ( )  0 =∑exp  − H t  t  ( − 0 /, ⎡⎣ i )  ⎤⎦ n n  
n (2.47) 

=∑ n ⎣ n ( − 0 ) ⎦⎤exp ⎡−iE  t  t  / n 
n 

and 

t =U t t  ( , 0 )ψ ( )  ψ (t )0 

=∑ n nψ ( )t0 exp ⎡−i E  t  t  ( − )⎤ (2.48) ⎢⎣  n 0 ⎥⎦ 
n ( )0 

n 
c t  

=∑ n c  t  ( )n 
n 

Expectation values of operators are given by 

= ψ (t ) Aψ (t )A t( )  
(2.49)

†t U  t t  A( )  , 0 U t t  ( )  , 0 ψ ( )= ψ ( )0 t0 
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ψ t0 =∑cn n , we showed in eq. 1.48 thatFor an initial state ( )
n 

+i m (t t0 )ω − −i n (t t  0 )ω −A =∑cm 
* m m e  m A n e  n n cn 

,n m  

* ωnm t t0= c c A  e  −i ( − ) (2.50)∑ m n  mn  
,n m  

c t c  t A  = * ( )  ( )  ∑ m n mn 
,n m  

which is Tr(ρ(t)A). The correlation amplitude β ψ (t ) was given in eq. 1.45. 
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Evaluating the time-evolution operator: Time-dependent Hamiltonian 

At first glance it may seem straightforward to deal with. If H is a function of time, then the 

formal integration of i U t H∂ = U gives∂ 

U t t  exp t′ (2.51)
⎣ 0 ⎦

( ), 0 = ⎡
⎢
−i
∫t

t
H t d( )′ ⎤

⎥ 

We would define this exponential as an expansion in a series, and substitute into the equation of 

motion to confirm it: 

( )t0 1 
 

i
∫t

t 

0 

H t dt( )′ + 
2
1 
! ⎜
⎛
⎝ 
−i ⎞
⎠ 

2 

t

t 

0 

t 

0 

′ ′ ′ +…U t, = −  ′ ∫ ∫t ′′ ( )  ( )  ′  (2.52)⎟ dt dt H t H t 

Then if we know the eigenstates of H, we could use eq. (2.46) to express U as 

U t t  ∑ n exp ⎢
⎡−i
∫t

t 

j ( )′ t′⎥
⎤E t d n (2.53)( ), 0 = 

n ⎣ 0 ⎦ 

However, this is dangerous; we are not treating H as an operator. We are assuming that the 

Hamiltonians at different times commute! ⎡H t  H, ′′ = 0 . It is only the case for special⎣ ( ′) ( )⎦⎤ 
Hamiltonians with a high degree of symmetry, in which the eigenstates have the same symmetry 

at all times. This holds for instance in the case of a degenerate system, i.e., spin ½ system, with 

a time-dependent coupling. Generally speaking this is not the case. 

Now, let’s proceed a bit more carefully assuming that the Hamiltonian at different times 

does not commute. Integrate 

∂ U t t( ) = −i H t U t t( )  )  (2.54)
∂t 

, 0 , 0 

To give: ( ) 1 i t
d H τ U τ , t )U t t, 0 = − ∫ τ ( ) (  0 (2.55)

t0 

This is the solution; however, it’s not very practical since ( , 0 ) is a function of itself.  But weU t t

can solve by iteratively substituting U into itself.  First Step: 

t

(  
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( ), = −1 
 

i
∫t

t 

0 

d H ( )τ ⎡
⎣ 
1 

 

i
∫t 
τ 

0 

d H′ ( )  (  τ ′ U τ , )⎤⎥⎦ 
U t t0 τ ⎢ − τ ′ t0 

(2.56) 
1 ⎛ −i ⎞ t

d Hτ ( ) + ⎛ −i ⎞
2 

t 
τ

τ
d H ( )  ( ) (  τ H τ U τ , t )= +  τ d τ⎜ ⎟ ∫ ⎜ ⎟ ∫ ∫ ′ ′ ′ 0

⎝  ⎠ t0 ⎝ ⎠ t0 t0 

Note in the last term of this equation, the integration variable τ ′ preceedsτ . Pictorally, the area 

of integration is 

Next Step: 

, 0 1 ⎛ −i 
⎟
⎞ t

d H τU t t  = + ⎜ τ( ) ∫t ( )
 0⎝ ⎠ 

⎜ ⎟ ∫ ∫  ( ) ( )τ H τ ′ (2.57)+⎛
−i ⎞

2 
t
dτ

τ
d H′ τ 

⎝  ⎠ t0 t0 

+⎛
−i ⎞

3 
t
dτ

τ
dτ ′

τ ′ 
d Hτ ′′ ( )  ( )  ( ) (  τ H τ ′ H τ ′′ U τ ′′, t )⎜ ⎟ ∫ ∫  ∫  0

⎝ ⎠ t0 t0 t0 

From this expansion, you should be aware that there is a time-ordering to the interactions. For 

the third term, τ ′′ acts beforeτ ′ , which acts beforeτ : t0 ≤τ τ ′ τ′′ ≤ ≤ ≤ t . 

Imagine you are starting in state =  and you are working toward a targetψ 0 

state ψ = k . The possible paths and associated time variables are: 
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The expression for U describes all possible paths between initial and final state.  Each of these 

paths interfere in ways dictated by the acquired phase of our eigenstates under the time-

dependent Hamiltonian. The solution for U obtained from this iterative substitution is known as 

the (positive) time-ordered exponential 

( ), 0 + 

⎡
⎣⎢
− 

 

i
∫t

t 

0 

d H ( )τ ⎤
⎦⎥

U t t  ≡ exp τ 

≡ T̂ exp ⎢
⎡−i
∫t

t 
τ ( )⎥

⎤d H τ (2.58)
 0⎣ ⎦ 

∞ n
⎛ ⎞= +∑ −i t

dτ n 

τ
d n… 

t
d Hτ1 ( ) (  )  τ n H τ n 1 …H ( )11 ⎜ ⎟ ∫ ∫t t 

τ ∫t − τ 
0 0 0n=1 ⎝ ⎠ 

( T̂ is known as the Tyson time-ordering operator.) In this expression the time-ordering is: 

t0 τ1 τ 2 →τ3 ....τ n → t→ →  

t0 → … τ τ ′ τ 
(2.59)

′′ → → 

So, this expression tells you about how a quantum system evolves over a given time interval, and 

it allows for any possible trajectory from an initial state to a final state through any number of 

intermediate states. Each term in the expansion accounts for more possible transitions between 

different intermediate quantum states during this trajectory. 

Compare the time-ordered exponential with the traditional expansion of an exponential: 

+
∞ 1 −i n

t
d 

t 
τ ( ) (  )  τ H τ …H ( ) (2.60)1 ⎛ ⎞ τ d H τ∑ ⎜ ⎟ ∫ n…∫ 1 n n−1 1 

= n! 0 0n 1 ⎝ ⎠ t t 
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Here the time-variables assume all values, and therefore all orderings for H ( )τ i are calculated. 

The areas are normalized by the n! factor. (There are n! time-orderings of the τ n  times.) 

We are also interested in the Hermetian conjugate of ( , 0 ) , which has the equation ofU t t  

motion in eq. (2.43) 

U t t  0 t t  , 0 t	 (2.61)∂	 † ( )  , =
+i U † (  ) ( )  H 

∂t 

If we repeat the method above, remembering that U t t  acts to the left:   † (	 , 0 ) 

ψ (t ) = ψ (t0 ) U † (t t  , 0 )	 (2.62) 

then from 

t† ( )  ,	 0 =U † (t0 , t0 ) +
i 
∫ d U  † (  ) ( )  ,τ H τ (2.63)U t t 	 τ t 

t0 

we obtain a negative-time-ordered exponential: 

U t t  (  )  = exp  dτ H ( )†	 , 0 − 

⎡
⎢⎣  

i 
∫t

t 

0 

τ ⎤
⎥⎦ 

(2.64)
∞ n
⎛ ⎞  τn τ21	 ∑ 

i 
∫t

t 

0 

d ∫t0 

τ n 1 ∫t0 

τ 2 τ= + ⎜ ⎟ τ n d − … dτ1H ( )  ( )  1 H τ …H ( )  n 
n=1 ⎝ ⎠  

Here the H ( )τ i act to the left.   

Readings 

This lecture draws from the following: 

1.	 Merzbacher, E. Quantum Mechanics, 3rd ed. (Wiley, New York, 1998), Ch. 14. 

2.	 Mukamel, S. Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New 

York, 1995), Ch. 2. 

3.	 Sakurai, J. J. Modern Quantum Mechanics, Revised Edition (Addison-Wesley, Reading, MA, 

1994), Ch. 2. 
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2.3. 	 SCHRÖDINGER AND HEISENBERG REPRESENTATIONS 

The mathematical formulation of the dynamics of a quantum system is not unique.  So far we 

have described the dynamics by propagating the wavefunction, which encodes probability 

densities. This is known as the Schrödinger representation of quantum mechanics.  Ultimately, 

since we can’t measure a wavefunction, we are interested in observables (probability amplitudes 

associated with Hermetian operators).  Looking at a time-evolving expectation value suggests an 

alternate interpretation of the quantum observable: 

( )  ( )  ( )  ( )  ( )  

( )( ) ( )( ) 
( ) ( ) ( )  

† 

† 

† 

ˆ ˆ ˆ0 0 

ˆ0 0 

ˆ0 0 

A t  t  A  t  U AU  

U A U  

U AU  

ψ ψ ψ ψ 

ψ ψ 

ψ ψ 

= = 

= 

=

 (2.65) 


The last two expressions here suggest alternate transformation that can describe the dynamics. 

These have different physical interpretations:  

1) Transform the eigenvectors: ψ (t ) →U ψ . Leave operators unchanged. 

ˆ † ˆ2) Transform the operators: A t( ) →U AU . Leave eigenvectors unchanged.   

(1) 	 Schrödinger Picture: Everything we have done so far.  Operators are stationary. 

Eigenvectors evolve underU t t  .( , 0 ) 

(2) 	 Heisenberg Picture: Use unitary property of U  to transform operators so they evolve 

in time.  The wavefunction is stationary.  This is a physically appealing picture, because 

particles move – there is a time-dependence to position and momentum. 

Let’s look at time-evolution in these two pictures: 

Schrödinger Picture 

We have talked about the time-development of ψ , which is governed by 

∂i ψ = H ψ (2.66)
∂t 
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in differential form, or alternatively ψ (t ) =U  t t  ,  in an integral form.  In the  ( 0 ) ψ (t )0 

∂ASchrödinger picture, for operators typically = 0 . What about observables? For expectation 
∂t 

Âvalues of operators :Â( )t = ψ ( )t tψ ( )  

⎡∂ ∂ψ ∂ψˆ Â Âi  A t  ( )  = i  ⎢ ψ + ψ + ψ 
∂t ∂t ∂t⎢

⎣ 
ˆ= ψ A H ψ − ψ H A  ˆ ψ 

ˆ= ψ ⎡A H, ⎤ ψ⎣ ⎦ 

A H ⎤= ⎡⎣
ˆ, ⎦

Alternatively, written for the density matrix: 

∂ ˆi  A t  ( )  = i  Tr A   
∂
∂ 

t ( ˆρ )∂t 
⎛ ˆ ∂ ⎞ = i Tr A  ρ⎜ ⎟
⎝ ∂t ⎠ 

Tr A H [ , ρ])= ( ˆ 

ˆ= Tr (⎣⎡ , ⎦ )A H ⎤ ρ 

Â 
t 

∂ 

∂ 

⎤ 
ψ ⎥


⎥

⎦ 

(2.67) 

(2.68) 

If Â  is independent of time (as we expect in the Schrödinger picture) and if it commutes with H , 

it is referred to as a constant of motion.   

Heisenberg Picture 

From eq. (2.65) we can distinguish the Schrödinger picture from Heisenberg operators:  

ˆ † ˆÂ ˆA t( )  = ψ t ψ t = ψ t0 U  AU  ψ t0 = ψ ψ (2.69)( )  ( )  ( )  ( )  A t  ( )
S S H 

where the operator is defined as   

ˆ 
H ( ) ( 0 ) ˆ 

S ( 0 ) (2.70) 
A t  =U † t t  , A U  t t  , 
ˆ ˆA t( ) = AH 0 S 
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t 0 can∂ =  , we  relate the 

Schrödinger and Heisenberg wavefunctions as 

Also, since the wavefunction should be time-independent ∂ ψ H 

ψ S (t ) = ( , 0 )U t t (2.71)ψ H 

U t t, ψ S (t ) =  (2.72)So, = † ( 0 )ψ H ψ S (t0 ) 

In either picture the eigenvalues are preserved: 

Â 
S 
= aiϕi ϕi S 

† ˆ	 †U AUU  = aU † (2.73)ϕi S i ϕi S 

Â 
H H 

= aiϕi ϕi H 

The time-evolution of the operators in the Heisenberg picture is: 

∂Â 
H	 ∂ † ˆ ∂U †

ˆ † ˆ ∂U †= (U A U ) = A U U A S + S +U 
∂t	 ∂t S ∂t ∂t 

i † ˆ i † ˆ A ⎞∂ 

∂⎝

⎛ ˆ 
= U H A U − U A H U + ⎜ ⎟⎜ ⎟ S  S t ⎠ H (2.74) 

i H Â −
i ˆ 

H =	 H H A H H  

=
−i ⎡
⎣A Hˆ, ⎤

⎦H 

The result: 	 i ∂ Â 
H = ⎣

ˆ, ⎦H 
⎡A H ⎤	 (2.75)

∂t 

†is known as the Heisenberg equation of motion. Here I have written HH =U H U . Generally 

U e−iHt /speaking, for a time-independent Hamiltonian = , U and H commute, and HH = H . For 

a time-dependent Hamiltonian, U and H need not commute. 

ˆ 
SA 
t 

∂ 

∂ 
U 
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Particle in a potential 

Often we want to describe the equations of motion for particles with an arbitrary potential: 

2 

H = 
p 

+ ( )V x  (2.76)
2m 

For which the Heisenberg equation gives: 

∂V p = −  . (2.77)
∂x 

x =
p (2.78)
m 

⎡ x̂ p̂ x̂Here, I’ve made use of ⎣ 
n , ⎤⎦ = i n n−1 (2.79) 

⎡ x̂ ˆ, pn ⎤ = i np̂ n−1 (2.80)⎣ ⎦ 

These equations indicate that the position and momentum operators follow equations of motion 

identical to the classical variables in Hamilton’s equations. These do not involve factors of  . 

Note here that if we integrate eq. (2.78) over a time period t we find: 

p t
= + 0 (2.81)x t( )  x ( )

m 

implying that the expectation value for the position of the particle follows the classical motion. 

These equations also hold for the expectation values for the position and momentum operators 

(Ehrenfest’s Theorem) and indicate the nature of the classical correspondence. In correspondence 

to Newton’s equation, we see 

∂2 x 
m = −  ∇  V (2.82)

∂t2 
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THE INTERACTION PICTURE 

The interaction picture is a hybrid representation that is useful in solving problems with time-

dependent Hamiltonians in which we can partition the Hamiltonian as  

= H  V t  (2.83)H t( ) 0 + ( ) 

H0 is a Hamiltonian for the degrees of freedom we are interested in, which we treat exactly, and 

can be (although for us generally won’t be) a function of time. V t( ) is a time-dependent potential 

which can be complicated. In the interaction picture we will treat each part of the Hamiltonian in 

a different representation. We will use the eigenstates of H0 as a basis set to describe the 

dynamics induced by V t( ) , assuming that V t( )  is small enough that eigenstates of H0 are a 

useful basis to describe H. If H0  is not a function of time, then there is simple time-dependence 

to this part of the Hamiltonian, that we may be able to account for easily.

 Setting V to zero, we can see that the time evolution of the exact part of the Hamiltonian 

H0 is described by 

∂ ( , 0 ) =
−i H  t U  t t  ( )  (  0 , 0 ) (2.84)U t t  0 0∂t 

where, most generally, U t t  0 ( , 0 ) = exp  + ⎢
⎡ i ∫t

t 

0 

τ 0 ( )⎥
⎤ (2.85)d H t

⎣ ⎦ 

−iH t t but for a time-independent H0 U t t  0 ( , 0 ) = e 0 ( − 0 ) (2.86) 

through:We define a wavefunction in the interaction picture ψ I 

ψ S (t ) U  t t  ( , 0 ) ψ I (t ) (2.87)≡ 0 

or =U0
† (2.88)ψ I ψ S 

Effectively the interaction representation defines wavefunctions in such a way that the phase 
iH t accumulated under e− 0 is removed.  For small V, these are typically high frequency 

oscillations relative to the slower amplitude changes in coherences induced by V. 
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We are after an equation of motion that describes the time-evolution of the interaction 

picture wave-functions. We begin by substituting eq. (2.87) into the TDSE: 

∂i = H (2.89)ψ S ψ S∂t 

∂ −iU t, t = H t U  t, t0 ( 0 ) ( )  0 ( 0 )ψ I ψ I∂t  

∂U0 (2.90)=
−i (H  V t U t( )  ( , tψ I +U0 

∂ ψ I 
0 + ) 0  0`  ) ψ I∂t ∂t  

0 
−i H U0 = +V t  Uψ I +U0 

∂ ψ I −i ( H0 ( )) 0 ψ I  ∂t  

∴ i
∂ ψ I =VI (2.91)ψ I∂t 

where V t  U t, t V t U t, t (2.92)I ( ) = 0
† ( 0 ) ( ) 0 ( 0 ) 

satisfies the Schrödinger equation with a new Hamiltonian:  the interaction picture ψ I 

Hamiltonian, I ( ) U0  unitary transformation of V t . Note: Matrix elements in V t , which is the ( ) 
i t  VI = l = e− ωlk Vkl where k and l are eigenstates of H0.k VI 

We can now define a time-evolution operator in the interaction picture: 

ψ I (t ) =U t( , t ) (2.93)ψ (t )I 0 I 0 

where U t t  = exp  ⎡
⎢
−i
∫t0 

d V τ ⎤⎥ . (2.94)I ( , 0 ) +
⎣  

t 
τ I ( )

⎦ 

Now we see that 

t =U t( , t ) ψ I (t )ψ S ( )  0 0 

= t U t, ) t (2.95)U t( , ) (  t ψ (  )  0 0 I 0 I 0 

= t U t, ) tU t( , ) (  t ψ (  )  0 0 I 0 S 0 

∴ U t, t =U t, t U  t, t (2.96)( 0 ) 0 ( 0 ) I ( 0 ) 
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Using the time ordered exponential in eq. (2.94), U can be written as 

U t t  (  )  =U  t t  (  )  +, 0 0 , 0 

∞ n 

dτ dτ d U t  ( ,τ ) ( )  (  U τ τ  … (2.97)∑⎜
⎛ −i 

⎟
⎞ ∫t

t 

n ∫t 
τn

n−1 … ∫t 
τ2 τ1 0 n V τ n 0 n , n−1 )

0 0 0n=1 ⎝ ⎠ 
U τ τ, V τ U τ , t(  ) ( ) (  )0 2 1 1 0 1 0 

where we have used the composition property of U t t  . The same positive time-ordering ( , 0 ) 

applies.  Note that the interactions V(τi) are not in the interaction representation here.  Rather we 

used the definition in eq. (2.92) and collected terms. 

For transitions between two eigenstates of H0 ( l and k): 

The system evolves in eigenstates of H0 during the different 

time periods, with the time-dependent interactions V driving the 

transitions between these states. The time-ordered exponential 

accounts for all possible intermediate pathways. 

Also, the time evolution of conjugate wavefunction in 

the interaction picture is expressed as  

† † † ⎡+i t ⎤ ⎡+i t ⎤U t t  ( )  , =U  t t U t t  ( ) ( )  , = exp  d V  τ ( ) exp  τ ( )  (2.98)0 I , 0 0 0 −
⎣⎢  ∫t0 

I τ 
⎦⎥ 

−
⎣⎢ ∫t0 

d H  0 τ 
⎦⎥ 

iH t t or U0
† = e ( − 0 ) when H0  is independent of time. 

The expectation value of an operator is:   

ˆ Â= ψ ( )t ψ tA t( )  ( )  

= ψ t U  t t  A, 0 U t t  , 0 ψ t0( )  † ( )  ˆ ( )  ( )0 
(2.99)

† †= ψ ( )t U U ÂU U  ψ ( )0 I 0 0 I t0 

t Â 
I t= ψ I ( )  ψ I ( )  

≡ †where A  U A U (2.100)I 0 S 0 

Differentiating AI  gives: 
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H A  (2.101)∂ Â 
I = 

i 
⎣
⎡ 

0 , ˆ I ⎦⎤ ∂t 

∂ −ialso, = V t  (2.102)I ( )ψ I ψ I∂t 

Notice that the interaction representation is a partition between the Schrödinger and Heisenberg 

representations. Wavefunctions evolve under VI , while operators evolve under H0. 

−iFor H0 = 0, V t  ( ) = H ⇒
∂Â 

= 0; ∂ 
= H Schrödinger ψ S ψ S∂t ∂t  (2.103)

ˆ

For H0 = , ( ) = 0 ⇒

∂t 
= ⎣H A  , ˆ ⎤

⎦ ; 
∂t 

= 0
H V t  ∂A i  ⎡ ∂ψ Heisenberg 
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The relationship between UI(t,t0) and bn(t) 

For problems in which we partition a time-dependent Hamiltonian,  

= 0 + ( ) (2.104)H H  V t

H0 is the time-independent exact zero-order Hamiltonian and V t( )  is a time-dependent 

potential. We know the eigenkets and eigenvalues of H0 : 

H n  E= n (2.105)0 n

and we can describe the state of the system as a superposition of these eigenstates: 

ψ (t ) n (2.106)= c t( )∑ n 
n 

The expansion coefficients c t are given byk ( ) 


c t( ) =
 k ψ (t ) = k U t( , t0 ) (2.107)ψ (t )k 0 

Alternatively we can express the expansion coefficients in terms of the interaction picture 

wavefunctions 

b t( ) = k ψ I (t ) = k UI ψ (t0 ) (2.108)k 

(This notation follows Cohen-Tannoudji.) Notice 

(2.109) 

( ) ( ) 
( )  

( )  

0 0 

0 
k 

k 

k I 

i t  
I 

i t  
k 

c t  k U U  t  

k U  t  

b t  

e 
e 

ω 

ω 

ψ 

ψ− 

− 

= 

= 

=

This is the same identity we used earlier to derive the coupled differential equations that describe 

the change in the time-evolving amplitude of the eigenstates: 

i ∂bk = V  t e  ( )  −iωnk t b t  ( )  (2.110)∑ kn n∂t n 

So, bk  is the expansion coefficient of the interaction picture wavefunctions. Remember 

2 2 
andb 0 = c 0 . If necessary we can calculate b t  and then add in theb t( )  = c t( )  k ( )  k ( )  k ( )k k 

extra oscillatory term at the end. 
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2.4 PERTURBATION THEORY 

Given a Hamiltonian ( ) = 0 +  where we know the eigenkets for H : 0H t  H V t( ) 0 H n  E= n , wen

can calculate the evolution of the wavefunction that results from V t( ) : 

ψ I (t ) ∑b t n  (2.111)= n ( ) 
n 

• using the coupled differential equations for the amplitudes of n . For a complex time-

dependence or a system with many states to be considered, solving these equations isn’t 

practical. Alternatively, we can choose to work directly with U t( , t0 ) , calculate b t( )  as: I k

= k U t( , t ) (2.112)ψ (t0 )bk I 0 

where U t( , t0 ) = exp  + 

⎡
⎢
−i
∫t

t 

0 

VI ( )τ dτ ⎤⎥ (2.113)I 
⎣ ⎦ 

Now we can truncate the expansion after a few terms.  This is perturbation theory, where the 

dynamics under H0 are treated exactly, but the influence of V t( ) on b  is truncated.  Thisn

works well for small changes in amplitude of the quantum states with small coupling matrix 

elements relative to the energy splittings involved  ( b t ≈ bk (0 ;) V  E E  − ) As we’ll see,k ( ) k n 

the results we obtain from perturbation theory are widely used for spectroscopy, condensed 

phase dynamics, and relaxation. 

Transition Probability 

Let’s take the specific case where we have a system prepared in  , and we want to know the 

probability of observing the system in k  at time t , due toV t( ) . 

2
P t  b t  b t  k U t, 0  (2.114)k ( ) = k ( )  k ( ) = I ( t ) 

(2.115)b t  k exp + 

⎡
⎢−

i t
d V ( )τ ⎤

k ( ) = 
⎣ ∫t0 

τ I ⎥⎦ 
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b t( ) = k  − 
i
∫

t
d  kτ VI ( )τ k 

(2.116) 
+ ⎜
⎛ −i 

⎟
⎞

2 

∫t
t
dτ 2 ∫t 

τ2 d kτ1 V ( )  ( )  τ V τ  +…I 2 I 1 
0 0⎝ ⎠ 

i t  using k V t  ( )  = k U V t U  = e− ω k V  t  ( ) 	 (2.117)0 
† ( )  0I k  

k k  − ∫ 1 
k 1 

k  τ1  “first order” 
t0 

So, b t( ) = δ 
i t

dτ e−iω τ V ( ) 	 (2.118) 

+	 ⎟ dτ 2 dτ e mk 2 V τ e m 1 Vm  τ1 +… (2.119) 
m ⎝ ⎠
∑⎜

⎛ −i ⎞
2 

∫t
t 

0 
∫t 
τ 

0

2 

1 
−iω τ  

km ( )2 
−iω τ  ( )  

“second order” 

The first-order term allows only direct transitions between  and k , as allowed by the matrix 

element in V, whereas the second-order term accounts for transitions occuring through all 

possible intermediate states m . For perturbation theory, the time ordered integral is truncated at 

the appropriate order. Including only the first integral is first-order perturbation theory.  The 

order of perturbation theory that one would extend a calculation should be evaluated initially by 

which allowed pathways between  and k  you need to account for and which ones are 

allowed by the matrix elements.  

For first order perturbation theory, the expression in eq. (2.118) is the solution to the 

differential equation that you get for direct coupling between  and k	 : 

∂ b =
−i −i t  ω k ( )  ( )0	 (2.120)e  V t b  

∂t k k  

This indicates that the solution doesn’t allow for the feedback between  and k that accounts 

for changing populations. This is the reason we say that validity dictates ≈ bk ( )0 .b t( )k 

If  is not an eigenstate, we only need to express it as a superposition of eigenstates,  ψ 0 

= b 0 n and b t = bn (0) k n . 	(2.121)∑ n ( )  k ( ) ∑ψ 0 UI 
n	 n 

0t
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Now there may be interference effects between the pathways initiating from different states:  

2 
2 2

P t( ) = c t  ( )  = b t  ( )  = k  (2.122)nb t( )∑k k k n 
n 

Also note that if the system is initially prepared in a state  , and a time-dependent 

perturbation is turned on and then turned off over the time interval t = −∞  to +∞ , then the 

complex amplitude in the target state k  is just the Fourier transform of V(t) evaluated at the 

energy gapω k . 

k ( )  i
∫
+∞ −iω τ  

k  ( )b t = −  dτ e k V τ (2.123)
−∞ 

If the Fourier transform is defined as  

V ω  
⎣ ⎦ 

1 +∞ 

( )  i t  ( ) ≡ F ⎡V t  ( )  ⎤ = 
2π ∫−∞ 

dt V t  exp ( ω ) , (2.124) 

2
then Pk  = V (ωk  ) . (2.125) 
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Example: First-order Perturbation Theory 

Vibrational excitation on compression of harmonic oscillator.  Let’s subject a harmonic oscillator 

to a Gaussian compression pulse, which increases its force constant. 

First write the Hamiltonian:  

H t( ) = + ( ) = 
p2 

+
1 k t x  2 (2.126)T  V t  ( )

2m 2 

Now partition it according to H H= 0 +V t  ( ) : 

⎛ ( − )2 ⎞ 
k t( ) = k0 +δ k t  ( )  k0 = mΩ2 δ k t( ) = δ k0 exp ⎜− 

t t0 ⎟ (2.127)
⎜ 2σ 2 ⎟
⎝ ⎠

−p2 1 2 1 2 
⎛ (t t0 )

2 ⎞ 
H = + k x  + δ k x  exp⎜− ⎟ (2.128)

2m 2 0 2 0 ⎜
⎝ 2σ 2 ⎟

⎠ 
H0 V t( )  

⎛ † 1 ⎞ ⎛ 1 ⎞H n = E n H0 = Ω⎜a a  + ⎟ En = Ω⎜n + ⎟ (2.129)0 n 
⎝ 2 ⎠ ⎝ 2 ⎠ 

If the system is in 0  at t0 = −∞ , what is the probability of finding it in n  at t = ∞ ? 
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n 
−i 
∫t

t 

0 

eiωn0τFor n ≠ 0 :  b t( ) = dτ Vn0 ( )τ (2.130)
2

Using ωn0 = (En − E0 )  = nΩ : 

2 +∞
dτ einΩτe−τ 2

b t( ) = −i δ k n x 0 2σ 2 
(2.131)n 0 ∫−∞2

2 2  e−n σ Ω2 /2 (2.132)2So, b t( ) = −i δ k 2πσ  n x 0n 02

Here we used: 

What about the matrix element? 

2  † 2 † † † †x = (a + a ) = (aa + a a + aa + a a ) (2.133)
2mΩ 2mΩ 

First-order perturbation theory won’t allow transitions to n =1, only n = 0 and n = 2 . 

Generally this wouldn’t be realistic, because you would certainly expect excitation to v=1 

would dominate over excitation to v=2.  A real system would also be anharmonic, in which case, 

the leading term in the expansion of the potential V(x), that is linear in x, would not vanish as it 

does for a harmonic oscillator, and this would lead to matrix elements that raise and lower the 

excitation by one quantum.   

However for the present case, 

22 x 0 = 2 (2.134)
2mΩ 

−i π δ k ΩSo, b2 = 0 σ e−2σ 2 2  
(2.135)

2mΩ

2 2 2 2  ⎛ 2 ⎞ 2 2
and P2 = 

2 = 
πδ k0 σ e−4σ Ω =σ 2Ω2 π δ k0 e−4σ Ω (2.136)b2 2m2Ω2 2 ⎜⎝ k0

2 ⎟
⎠
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From the exponential argument, significant transfer of amplitude occurs when the compression 

pulse is short compared to the vibrational period. 

σ << 
1 (2.137)
Ω

Validity: First order perturbation theory doesn’t allow for bn to change much from its initial 

value. For P2 <<1 

π ⎛ δ k 2 ⎞
σ 2Ω2 

⎜ 0
2 ⎟ << 1 (2.138)

2 ⎝ k0 ⎠

Generally, the perturbation δk(t) must be small compared to k0, i.e. >> V , but it should alsoH0 

work well for the impulsive shock limit (σΩ<<1). 
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FIRST-ORDER PERTURBATION THEORY 

A number of important relationships in quantum mechanics that describe rate processes come 

from 1st order perturbation theory. For that, there are a couple of model problems that we want 

to work through: 

Constant Perturbation  (Step-Function Perturbation) 

ψ (−∞) =  . A constant perturbation of amplitude V  is applied to t0 . What is Pk ? 

V t( ) =θ (t − t0 )V 

⎧0 t < 0 
= ⎨ 
⎩V t  ≥ 0 

=V eiωk  (t−t0 )†k U  V U  To first order, we have: 0 0 

i iω τbk = δk  − ∫
t 
τ e k  ( −t0 )Vk  ( )  (2.139)d τ 

 t0 

Here Vk  is independent of time. Now, assuming k ≠  and setting t0 = 0 we have 

t
bk = −  

 

i Vk  ∫0 
dτ eiωk τ (2.140) 

= − 
Ek

V 
− 
k  

E  

⎡⎣exp i ( ωk t ) −1⎤⎦ (2.141) 

= −
2iVk  e

iωk t /  2 

sin (ωk t / 2) (2.142)
Ek − E  

2 sin  (θ 2) . NowWhere I used eiθ − =1 2i eiθ 

2 
2 4 VkPk =
 = sin  2 1

2 ω t (2.143)bk 2 kEk − E
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Writing this as we did in Lecture 1: 

Pk = 
V 

2

2 

sin2 (Δt / ) (2.144)
Δ 

where Δ = (E E− ) 2 . Compare this with the exact result we have for the two-level problem: k  

V 2
2 ( 2 2 )P = sin Δ +  V t /  (2.145)k V 2 + Δ2 

Clearly the perturbation theory result works for V << Δ. 

We can also write the first-order result as 

2 2  

Pk = 
V t  

2 sinc 2 (Δt / 2 ) (2.146)

x sin wheresinc ( ) = ( )  x x . Since lim sinc (x) =1, 
x→0 

2 2lim P V= t 2 (2.147)kΔ→0 

The probability of transfer from  to k  as a function of the energy level splitting (E E )− :k  

Area scales linearly 
with time. 

Since the energy spread of states to which transfer is efficient scales approximately 

as E E   < 2  t , this observation is sometimes referred to as an uncertainty relation − πk

with Δ ⋅Δ ≥E t 2π  . However, remember that this is really just an observation of the principles of 

Fourier transforms, that frequency can only be determined by the length of the time period over 

which you observe oscillations. Since time is not an operator, it is not a true uncertainly relation 

like Δ ⋅Δ  ≥p x 2π  . 
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Now turning to the time-dependence: 

The quadratic growth for Δ=0 is certainly unrealistic (at least for long times), but the expression 

shouldn’t hold for what is a “strong coupling” case Δ=0. However, let’s continue looking at this 

behavior. In the long time limit, the sinc2(x) function narrows rapidly with time giving a delta 

function: 

sin 2 (ax 2) π ( )lim = δ x (2.148)
→∞t ax2 2 

2 

lim P k ( )t = 
2π Vk  

k δ (E − E ) t (2.149)
t→∞ 

The delta function enforces energy conservation, saying that the energies of the initial and target 

state must be the same in the long time limit.   

What is interesting in eq. (2.149) is that we see a probability growing linearly in time. 

This suggests a transfer rate that is independent of time, as expected for simple kinetics: 

2 

w t( ) = ∂P t( )
= 

2π Vkk δ (E − E ) (2.150)k k ∂t 

This is one statement of Fermi’s Golden Rule −the state-to-state form− which describes 

relaxation rates from first order perturbation theory.  We will show that this rate properly 

describes long time exponential relaxation rates that you would expect from the solution 

to dP dt = −wP . 
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Slowly Applied (Adiabatic) Perturbation 

Our perturbation was applied suddenly at t t0  (step function) >

V t =θ t  t V t  ( ) ( − ) ( )0 

This leads to unphysical consequences—you generally can’t turn on a perturbation fast enough 

to appear instantaneous. Since first-order P.T. says that the transition amplitude is related to the 

Fourier Transform of the perturbation, this leads to additional Fourier components in the spectral 

dependence of the perturbation—even for a monochromatic perturbation! 

So, let’s apply a perturbation slowly . . . 

V t( ) = V eηt 

here η is a small positive number. η−1 is the 

effective turn-on time of the perturbation. 

The system is prepared in state  at t = −∞ . Find P t( ) .k

t eητkbk = k U  I  =
−i
∫ dτ eiω τ  k V   

 −∞ 

−iV exp [ηt i  t  + ω ]b = k  k
k
  η + iωk  

η + ( − E t  ) / ⎤exp ⎡⎣ t i E  k  ⎦= Vk  Ek − E  + iη  

2 
2 Vk  exp 2  [ ηt] Vk  exp 2  t2 [ η ]Pk = = =bk 2 η 2 +ωk 

2 
 (Ek − E  )

2 + (η )2 

This is a Lorentzian lineshape in ωk  with width 2η  . 



2-36 

Gradually Applied Perturbation Step Response Perturbation 

The gradually turned on perturbation has a width dependent on the turn-on rate, and is 

independent of time.  (The amplitude grows exponentially in time.)  Notice, there are no nodes 

in Pk . 

Now, let’s calculate the transition rate:   

2
2η e2ηt∂Pk Vkwkl = ∂t 

= 2 η 2 +ωk 
2 

 

Look at the adiabatic limit;η→0 . Setting e2ηt →1 and using 

lim η 
= πδ ω(  )  

η → 0 η 2 +ωk 
2 

 
k  

2π 2 wk  = 2 V δ (Ek − E  )
2 ( )  2 

 

π 
k  δ ωk  = Vk  

We get Fermi’s Golden Rule—independent of how perturbation is introduced!   
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Harmonic Perturbation 

Interaction of a system with an oscillating perturbation 

turned on at time t0 = 0 . This describes how a light 

field (monochromatic) induces transitions in a system 

through dipole interactions. Again, we are looking to 

calculate the transition probability between states  

and k: 

V t( ) =V cosωt = −μE0 cos ωt (2.151) 

V t( ) =V cosωtk  k  

V i t  −i tω 
(2.152) 

= 
2 
k
⎣⎡e

ω + e ⎦⎤ 

To first order, we have: 

bk = k ψ I ( )t =
−i
∫t

t
d V  τ k  ( )τ eiωk τ 

 0 

−iV i ω τ  ( ω τ  = k  ∫0 

t
dτ ⎣

⎡e (ωk  + ) − ei ωk  − )
⎦
⎤ setting t0 → 0 (2.153)

2  

−Vk  
⎡ei(ωk  +ω)t −1 ei(ωk  −ω)t −1⎤ 

= ⎢ + ⎥2 ⎣ ωk  +ω ωk  −ω ⎦ 

2Now, using eiθ 1 2i iθ− = e sin (θ 2) as before: 

−iVk  ⎢
⎡ei(ωk  −ω)t /2 sin ⎣⎡(ωk  −ω) t / 2 ⎦⎤ ei(ωk  +ω)t /2 sin ⎣⎡(ωk  +ω) t / 2 ⎦⎤ ⎥

⎤ 
bk = + (2.154)

⎣
⎢ ωk  −ω ωk  +ω 

⎦
⎥ 

Notice that these terms are only significant when ω ≈ωk  . As we learned before, resonance is 

required to gain significant transfer of amplitude. 
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 First Term Second Term

 max at : ω = +ωk  ω = −ωk  

Ek > E  Ek < E  

Ek = E  + ω Ek = E  − ω 

Absorption  Stimulated Emission 

(resonant term) (anti-resonant term) 

For the case where only absorption contributes, Ek > E  , we have: 

2 
2 Vk= 2 sin2 ⎡⎣

1
2 (ωk  −ω) t⎤⎦Pk  = bk 2 (ωk  −ω) (2.155)

2E0
2 μkor 2 sin2 

⎣⎡
1
2 (ωk  −ω) t⎦⎤ (ωk  −ω) 

We can compare this with the exact expression: 

2 
2 = 

Vk  
2 sin 2 ⎡

⎢ 
1 V 2 + (ωk  −ω)

2 t⎥
⎤ (2.156)Pk  = bk k

⎣2  ⎦2 (ωk  −ω)
2 + Vk  

which points out that this is valid for couplings Vk  that are small relative to the 

detuning ω (  −ω) . The maximum probability for transfer is on resonance ω  =ωΔ = ωk k
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Limitations of this formula:  

3 

By expanding sin = −
x
+…  , we see that on resonance Δω =ωkx x −ω → 0 

3! 

2lim Vk  
k ( )  2 t 2 (2.157)P t = 

Δ → 0 4ω 

This clearly will not describe long-time behavior.  This is a result of 1st order perturbation theory 

not treating the depletion of  . However, it will hold for small Pk , so we require 

2t << (2.158)
Vk  

At the same time, we can’t observe the system on too short a time scale.  We need the field to 

make several oscillations for it to be a harmonic perturbation.   

1 1t > ≈ (2.159)
ω ωk  

 These relationships imply that 

Vk  << ωk  (2.160) 
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Adiabatic Harmonic Perturbation 

What happens if we slowly turn on the harmonic interaction? 

V t( ) = V eηt cosωt 

b = −i t
dτ V e  iω τ +ητ  ⎡eiωτ + e−iωτ ⎤ 

k  
k  ∫−∞ k  

⎣
⎢ 2 ⎦

⎥ 

= Vk  eηt ⎡ ei(ωk  +ω)t 
+ 

ei(ωk  −ω)t ⎤ 

2  ⎣
⎢−(ωk  +ω)+ iη −(ωk  −ω) + iη ⎦

⎥ 

Again, we have a resonant and anti-resonant term, which are now broadened byη . If we only 

consider absorption: 

2 
2 Vk  e2ηt 1Pk = =bk 4 2 (ωk  −ω)

2 +η 2 

which is the Lorentzian lineshape centered at ωk =ω with width Δω = 2η . Again, we can 

calculate the adiabatic limit, setting η → 0 . We will calculate the rate of transitions ωk  = ∂Pk / ∂t . 

But let’s restrict ourselves to long enough times that the harmonic perturbation has cycled a few 

times (this allows us to neglect cross terms) → resonances sharpen. 

π 2 ⎡ ( −ω) + ( +ω)⎤wk  = 2 Vk  ⎣δ ωk  δ ω  k  ⎦2  
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2.5 FERMI’S GOLDEN RULE 

The transition rate and probability of observing the system in a state k after applying a 

perturbation to  from the constant first-order perturbation doesn’t allow for the feedback 

between quantum states, so it turns out to be most useful in cases where we are interested just the 

rate of leaving a state.   This question shows up commonly when we calculate the transition 

probability not to an individual eigenstate, but a distribution of eigenstates.  Often the set of 

eigenstates form a continuum of accepting states, for instance, vibrational relaxation or 

ionization. 

Transfer to a set of continuum (or bath) states forms the basis for a describing irreversible 

relaxation.  You can think of the material Hamiltonian for our problem being partitioned into two 

portions, = S + B + SB ( )  SH H  H V t , where you are interested in the loss of amplitude in the H 

states as it leaks into HB . Qualitatively, you expect deterministic, oscillatory feedback between 

discrete quantum states.  However, the amplitude of one discrete state coupled to a continuum 

will decay due to destructive interferences between the oscillating frequencies for each member 

of the continuum. 

So, using the same ideas as before, let’s calculate the transition probability from  to a 

distribution of final states: Pk . 

2Pk = bk Probability of observing amplitude in discrete eigenstate of H0 

( )k : Density of states—units in1 Ek , describes distribution of finalρ E


states—all eigenstates of H0


If we start in a state  , the total transition probability is a sum of probabilities 

Pk =∑Pk . (2.161) 
k 

We are just interested in the rate of leaving  and occupying any state k or for a continuous 

distribution: 
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P = ∫ dEk ( k ) k (2.162)k ρ E P  

For a constant perturbation: 

2 
2 sin ( E  E t  ) 

(2.163)
( k −  ) / 2 

Pk = ∫ dEk ρ ( Ek ) 4 Vk  2E E  −k  

Now, let’s make two assumptions to evaluate this expression: 

1) ρ ( Ek ) varies slowly with frequency and there is a 


continuum of final states. (By slow what we are saying is 

that the observation point t is relatively long). 


2) The matrix element Vk  is invariant across the final 
states. 

These assumptions allow those variables to be factored out of integral  

2 +∞ sin 2 ( E  E t  − ) / 2 
Pk = ρ Vk  ∫−∞ 

dEk 4 k  
2 (2.164)

E E  ( − )k  

Here, we have chosen the limits −∞ → +∞  since ρ ( Ek ) is broad relative to Pk . Using the 

identity 

+∞ sin2 aΔ
∫−∞ 

dΔ
Δ2 = aπ (2.165) 

with a t /  we have= 

2π 2 t (2.166)Pk = ρ Vk  

The total transition probability is linearly proportional to time.  For relaxation processes, we will 

be concerned with the transition rate, wk  : 
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∂Pk  wk  = 
∂t (2.167)

2π 2 wk  = ρ Vk  

Remember that Pk  is centered sharply at Ek = E  . So although ρ is a constant, we usually write 

eq. (2.167) in terms of ρ (Ek = E )  or more commonly in terms of δ ( Ek − E  ) : 

2 (2.168)wk  = 
2π ρ ( Ek = E  ) Vk  

2π 2 δ ( Ek − E  ) wk  = ∫ dE  k ρ ( Ek ) wk  (2.169)wk  = Vk   

This expression is known as Fermi’s Golden Rule.  Note the rates are independent of time.  As 

we will see going forward, this first-order perturbation theory expression involving the matrix 

element squared and the density of states is very common in the calculation of chemical rate 

processes. 

Range of validity 

For discrete states we saw that the first order expression held for Vk  << ωk  , and for 

times such that Pk  never varies from initial values.  

Pk = wk  (t − t0 ) t << 
1 (2.170)

wk

However, transition probability must also be sharp compared to ρ ( Ek ) , which implies  

t >>  / ΔEk (2.171) 

So, this expression is useful where 

Δ >>  E wk  

. 
Δωk >>  wk  

(2.172) 


