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NOTES ON MATRIX METHODS 

1. Matrix Algebra 

Margenau and Murphy, The Mathematics of Physics and Chemistry, Chapter 10, give almost all the back

ground relevant for physical applications. Schiff, Quantum Mechanics, Chapter VI, and many other texts, 

give useful brief summaries. Here we shall note only a few of the most important definitions and theorems. 

The matrix is a square or rectangular array of numbers that can be added to or multiplied into another 

matrix according to certain rules. For a matrix A, the elements are denoted Ai j, where indices refer to rows 

and columns respectively. 

Addition. If two matrices A and B have the same rank (same number of rows and the same number of 

columns) they may be added element by element. If the sum matrix is called C = A + B then 

Ci j = Ai j + Bi j. (1.1) 

The addition is commutative: 

A + B = B + A. (1.2) 

Multiplication. Two matrices A and B can be multiplied together to give C= AB by the following rule 

Ci j = ΣkAik Bk j. (1.3) 

If A has m rows and n columns, B must have n rows and m columns if C is a square matrix with m rows 

and m columns. Each element Ci j of the product is a sum of products along the ith row of A and the jth 

column of B. For example, for 2 × 2 matrices: 

A11A12 B11B12 A11 B11 + A12 B21 A11 B12 + A12 B22 
= 

A21A22 B21B22 A21 B11 + A22 B21 A21 B12 + A22 B22 

Note that in general matrix multiplication is not commutative: 

AB � BA. (1.4) 

From the definitions it follows at once that the distributive law of multiplication still holds for matrices: 

A(B + C) = AB + AC. (1.5) 
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Likewise, the associative law holds: 

A(BC) = (AB)C. (1.6) 

Inverse of a matrix. Matrix division is not defined. A matrix may or may not possess an inverse A−1, 

which is defined by 

AA−1 = E and A−1A = E (1.7) 

where E is the unit matrix (consisting of 1’s along the diagonal and 0’s elsewhere). The Matrix A is said 

to be nonsingular if it possesses an inverse and singular if it does not. If A is nonsingular and of finite 

rank, it can be shown to be square and the i j element of its inverse is just the cofactor of Aji divided by the 

determinant of A. Thus A is singular if its determinant vanishes. It is readily verified from (1.3) and (1.7) 

that for nonsingular matrices 

(ABC)−1 = C−1B−1A−1 . (1.8) 

The determinant of a square matrix is found from the usual rule for the computation of the determinant of 

a square array of numbers, e.g. 

A11A12A13


A21A22A23


A31A32A33 

= A11A22A33 + A12A23A31 + A13A32A21 − A13A22A31 − A12A21A33 − A11A32A23. 

The complementary minor of an element Ai j within a determinant is the smaller determinant formed by 

crossing out row i and column j; thus, for the above example the minor of A21 is 

A12A13


A32A33


Another important quantity derived from a matrix is the trace (also called the spur or diagonal sum), 

which is the sum of the diagonal elements, 

TrA = ΣiAii. 

Transpose and Adjoint Matrices. The transpose A′ of a square matrix is formed by interchanging rows 

and columns, i.e. A′ i j = Aji. The adjoint A† is obtained by taking the complex conjugate of each element 

of the transpose, i.e. A† i j = A
⋆ 
ji. From the definitions it is readily verified that the adjoint of a product of 

matrices is the product of their adjoints in the reverse order, 

(ABC)† = C†B†A† . (1.9) 

Special Matrices. A matrix is real if all the elements are real. It is symmetric if it is the same as its 

transpose; Hermitian if it is the same as its adjoint; orthogonal if it is the same as its inverse; unitary if its 
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adjoint is the same as its inverse. In summary: 

Type of Matrix Definition Relation 
Real A⋆ = A 
Symmetric A′ = A 
Hermitian A′† = A 
Orthogonal A′ = A−1 

Unitary A† = A−1 

Also, a matrix is diagonal if all its non-diagonal elements are zero and null if all of its elements are zero. 

Be forewarned that various authors use different symbols to denote some of these special matrices. 

Transformations of Matrices. Two square matrices A and B are said to be related by a similarity 

transformation if 

A = T−1BT (1.10) 

where T is a nonsingular square matrix. Clearly, the inverse transformation gives 

B = T−1
)−1 

A T−1 = TAT−1 . (1.11) 

The form of any matrix equation is unaffected by transformation, thus the equation 

AB + CDE = F 

may be transformed into 

T−1ABT + T−1CDET = T−1FT 

which is equivalent to 

T−1AT T−1BT + T−1CT T−1DT T−1ET = T−1FT 

where the parentheses indicate the transforms of the individual matrices. This invariance of matrix equa

tions makes it possible to work with any convenient transformation of a set of matrices without affecting 

the validity of any results obtained. 

A matrix M is said to be diagonalized by the transformation T if the resulting matrix T−1MT is diag

onal. We denote this diagonal matrix by Λ, with elements λiδi j; the elements λi are called the eigenvalues 

of the matrix M. To find Λ explicitly, we have 

T−1MT = Λ 

or 

MT = TΛ. (1.12) 
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If we write out the i j element of this equation, we obtain 

Σk MikTk j = ΣkTikλkδk j = Ti jλ j for i = 1, N (1.13) 

where λ j is a particular eigenvalue and the index k is summed over from 1 to the rank N of the matrix M. 

(1.13) defines a set of N homogeneous algebraic equations for the unknown transformation matrix element 

Ti j, where j is fixed. The necessary and sufficient condition that these equations have a solution is that the 

determinant of their coefficients vanish, or that the determinant of the square matrix Mik − λ jδik be zero. 

This provides a single algebraic equation, called the secular equation, which is of order N and has N roots 

λ j. 

The matrices which occur in quantum mechanics are primarily Hermitian matrices and unitary ma

trices. There is a fundamental theorem which states that any Hermitian matrix can be diagonalized by a 

unitary transformation. This has several important corollaries, including: 

1.	 The eigenvalues of a Hermitian matrix are unique, except perhaps for the order in which they are 

arranged. 

2.	 The eigenvalues of a Hermitian matrix are real. 

3.	 A matrix that can be diagonalized by a unitary transformation and has real eigenvalues is Hermitian. 

4.	 The necessary and sufficient condition that two Hermitian matrices can be diagonalized by the same 

unitary transformation is that they commute. 

2. The Two-State Problem 

We consider the problem of diagonalizing a 2 × 2 matrix M. Suppose first that M is a real symmetric 

matrix. 

Method I. Solution of the secular equation is a direct but cumbersome procedure to find the eigenval

ues (λ1 and λ2) and the transformation coefficients (Ti j). The condition 

T−1MT = Λ 

is equivalent to 

MT = T1 (2.1) 

M11 M12 T11T12 T11T12 λ1 0 
= 

M12 M22 T21T22 T21T22 0 λ2 
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This gives 2 sets of 2 equations, one for each value of λ: 

M11T11 + M12T21 = T11λ1 (2..2a) 

M12T11 + M22T21 = T21λ1 

and 

M11T12 + M12T22 = T12λ2 (2..2b) 

M12T12 + M22T22 = T22λ2. 

If we drop the second subscript on T and that on λ, these two sets are the same, namely 

(M11 − λ)T1 + M12T2 = 0 (2..3) 

M12T1 + (M22 − λ)T2 = 0. 

In order that there exist nontrivial solutions (other than T1 = T2 = 0) the determinant of the coefficients 

must vanish: 
M11 − λ M12 

M12 M22 − λ 
= 0. (2..4)


This is the secular equation. In expanded form, it is 

(M11 − λ)(M22 − λ) − M
2 = 012 

or 

λ2 − (M11 + M22)λ + M11 M22 − M
2 = 0. (2..5) 12 

The roots are given by 

1
 )]1/2 
(M11 + M22) ± (M11 + M22)2 M11 M22 − M

2 
12 − 4
 (2..6)
λ =


2


so 

1 1 
+ 4M2(M11 − M22)2 

12 

]1/2 
= (M11 + M22) +

2 
(2..7a) λ1 2


1 1

(M11 − M22)2 + 4M12 

]1/2 
= (M11 + M22) − 

2 
(2..7b) λ2 2


With these values of the roots, the customary prescription calls for solving (2.2) for the ratios 

T11 M11 λ1 − M22 
= = (2..8a) 

T21 λ1 − M11 M12 

T12 M12 λ2 − M22 
= = . (2..8b) 

T22 λ2 − M11 M12 
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The calculation of the coefficients is completed by normalizing them according to 

T 2 
21 = 1 (2..9a) 11 + T 2 

T 2 
22 = 1. (2..9b) 12 + T 2 

This is a rather tedious procedure even for a 2 × 2 problem! The reader may readily confirm that the 

solution has the form 

T11 = cos θ, T12 = ∓ sin θ 

T21 = ± sin θ, T22 = cos θ. 

As indicated, there is an ambiguity in sign (which corresponds to rotation via +θ or −θ). The upper sign 

will be used. Also, Eqs. (2.8) give 

2M12 tan θ = . (2..10) 
(λ1 − λ2) + (M11 − M22) 

Note also that, as with any quadratic equation, (2.5) can also be written in factored form as 

(λ − λ1)(λ − λ2) = 0. 

Thus, we may compare (2.5) with 

λ2 − (λ1 + λ2)λ + λ1λ2 = 0 

and thus establish the sum and product rules: 

λ1 + λ2 = M11 + M22 

λ1λ2 = 
M11 M12 

M12 M22 
.


Method II. A real symmetric matrix can be diagonalized by an orthogonal transformation 

cos θ − sin θ
T = (2..11) 

sin θ cos θ 

in which the rotation angle θ is chosen to eliminate the off-diagonal elements in the transformed matrix. 

Thus we want 

T−1MT = Λ 
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where Λ is a diagonal matrix with elements λ1 and λ2. The transformation gives 

T−1MT = 
C S M11 M12 C −S 
−S C M12 M22 S C 

CM11 − S M12 CM12 + S M22 S −S 
= 
−S M11 + CM12 −S M12 + CM22 S C 

C2 M11 + 2CS M12 + S 2 M22 (C2 − S 2)M12 − S C(M11 − M22) 
= 

(C2 − S 2)M12 − S C(M11 − M22) S 2 M11 − 2CS M12 + C2 M22 

where C = cos θ and S = sin θ. The off-diagonal elements are eliminated if 

(C2 
− S 2)M12 − S C(M11 − M22) = 0, (2..12) 

that is, if θ is chosen such that 
2CS 2M12 tan 2θ = = . (2..13) 

C2 − S 2 M11 − M22 

With this choice of θ the diagonal elements are given by 

λ1 = C
2 M11 + 2CS M12 + S 2 M22 (2..14a) 

λ2 = S 2 M11 − 2CS M12 + C
2 M22. (2..14b) 

Note again that the trace of the matrix (sum of the diagonal elements), 

λ1 + λ2 = M11 + M22 (2..15a) 

and the determinant of the matrix 

λ1λ2 = M11 M22 − M
2 (2..15b) 12 

are both unchanged by the transformation. The equivalence of Methods I and II is apparent from the 

following geometrical construction: 

M11 – M22 

λ1 – λ2 

2θ 
θ 

θ 

2M12 
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Treatment of a Hermitian Matrix. If M is a Hermitian matrix, its off-diagonal elements will in gen

eral be complex. However, the diagonalization problem is easily reduced to that for a real symmetric 

matrix. A Hermitian matrix may be written in the form 

M11 M12 |M11| |M12|eia 

= 
M21 M22 |M12|e−ia |M22| 

since M12 = 21. Also, the diagonal elements are real. The unitary transformation M⋆ 

(2..16)


eia 0
A =
 (2..17)


0 1


will convert M into a real symmetric matrix, since 

e−ia ia eia 0
0
 |M11| |M12|eA−1MA = 
0 1 |M12|e−ia |M22| 0 1 

|M11|e−ia |M12| e−ia 0 
= 
|M12|eia |M22| 0 1 

|M11| |M12| 
= . 
|M12| |M22| 

The diagonalization is then completed as before. The complete transformation matrix is 

ia 0 C −S
e
AT = 

0 1 S C


eiaC −eiaS 
(2..18)
= .

S C 

3. Numerical Methods for Larger Matrices 

We now consider an N × N symmetric matrix. 

Method I. The secular equation gives, when all values of i and j are used, N sets of N equations for 

the Ti j’s and λ j, one set for each λ j. If the subscript j is dropped, these sets are all the same, and have the 

form 

M11T1 + M12T2 + · · · + M1NTN = T1λ


M21T1 + M22T2 + · · · + M2NTN = T2λ. (3..1)


This single set of N homogeneous equations in N unknown Ti’s can be solved for the ratios of the Ti 

elements if the determinant of the coefficients vanishes, 

M11 − λ M12 . . . M1N 
= 0. (3..2)


M21 M22 − λ . . . M2N 



/ 

∑ 
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This is an Nth degree equation in λ and the roots give the N eigenvalues λ j. For each allowed value of λ j 

obtained from (3.2), we may substitute into (3.1) and solve for the N − 1 ratios Ti j T1 j, and then complete 

the determination of the Ti j by one of the normalization requirements, 

Ti j 
2 = 1 

i 

or 
 −1/2N [ ] 


∑
( )2  

 Ti j = 






 1 + Ti j/T1 j 






 . (3..3) 
i=2 

This procedure is clumsy but useful for small matrices. 

Method II. Other methods are more effective with large matrices and electronic computers. Consider 

the effect of the following transformation: 

column m column n 
  
 1 

 
  
  
  


 1 

 
  
  
  
  
 1  
  
  


 row m C −S 

 


 1 

 
  
  
 T = 






 1 






 (3..4) 
  
  
 1  
  
  
  
 S C 

 
 row n 1 



 
 
  
  
  
  
 1 

 
  
 

1 

in which Ti j = δi j if neither i nor j = n or m and Tmm = Tnn − cos θ, Tmn = −Tnm = sin θ. The elements of 

the transformed matrix, 

M′ = T′ MT 

are given by 

Mi j 
′ = Σk1Tki Mk1T1 j. (3..5) 

(a) If both i and j differ from m and n, 

Mi j 
′ = Σk1δki Mk1δ1 j = Mi j (3..6) 

and these elements are unchanged by the transformation. 
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(b) If i = m and j � m or n, 

M′ m j = Σk1Tkm Mk1δ1 j = ΣkTkm Mk j.


The index k runs over all values but Tkm = 0 except for k = m and k = n, so


M′
m j = cos θMm j + sin θMn j. 

Similarly, for i = n and j � m or n,


M′
 = n j − sin θMm j + cos θMn j.


Since the transformed matrix is symmetric, we have


M′ = M′ = (3..7a) jm m j CMm j + S Mn j 

M′ jn = M
′ 
n j = −S Mm j + CMn j. (3..7b) 

(c) The elements Mmm, Mnn, and Mmn transform exactly as they did for a 2 × 2 matrix, and 

M′ mm = C
2 Mmm + 2CS Mmn + S 2 Mnn (3..8a) 

M′ = S 2 Mmm − 2CS Mmn + C
2 Mnn (3..8b) nn 

M′ = (C2 − S 2)Mmn − CS (Mmm − Mnn) (3.9) mn 

These simple relations are the basis of two methods which diagonalize a large matrix by use of 

successive 2 × 2 rotations. 

Method IIA. In one procedure, we select the largest nondiagonal element Mi j of the parent matrix, set 

i = m, j = n, and use (3.9) to make M′ = 0, with mn 

2Mmn tan 2θ = . (3..10) 
Mmm − Mnn 

The remainder of the parent matrix is then transformed using (3.6), (3.7), and (3.8). Again the largest 

nondiagonal element is selected, and the procedure repeated. The first Mi j which was originally eliminated 

might not become different from zero, but if so it will be much smaller than before. The process is 

continued until all nondiagonal elements become close enough to zero to be neglected. 

This method gives rapid convergence and provides quite accurate results for the Ti j elements. The final 

result for the T–matrix is obtained by multiplying together the series of 2 × 2 rotations, i.e., 

T = T1T2T3 . . . 
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Method IIB. Another procedure involves making the Mm
′
−1,n element vanish by use of (3.7b), which 

requires 

M′ = 0 = CMn,m−1S Mm,m−1m−1,n 

or 
Mm−1,ntan θ = . (3..11) 
Mm−1,m 

In practice, for an N × N matrix, we would proceed by eliminating the M1
′ 
N element (by a rotation with 

m = 2 and n = N) and then the M1
′ 
,N−1 element (by a rotation with m = 2 and n = N − 1), etc. With this 

method, once an element is made zero it is never changed by a later rotation, and m and n are systematically 

varied until all possible elements are eliminated. Usually the first row is treated and then the second row, 

etc. However, it is impossible to eliminate the elements adjacent to the diagonal, such as M12, etc., as this 

would require m and n to be the same (e.g. both = 2 for the M12 case), which would be no rotation. Hence 

so far this method reduces the matrix to the form 

  
 M12  M�11 � 

 
  
  
 � 

 � 0 �  
  
 � �  
 �  
 � 



 

 M12 M22 M�23 
 �  
  
 � �  
  
 �  
 �  
 � �  


 M23 M33 

 
 � 

 � 
 0  
  
 �  
  
 �  
  

with zero everywhere except the diagonal and adjacent to it. This is called a tridiagonal matrix. 

The secular equation for a tridiagonal matrix is relatively easy to solve. Several efficient methods are 

available. One of the best is due to Givens [see J. Assoc. Computing Machinery 4, 298 (1957)]. His 

method gives very accurate eigenvalues and is very fast, but unfortunately does not give good transfor

mation matrices. Continued fraction methods are very convenient, if there are no difficulties from near 

degeneracies. For example, for a 5 × 5 tridiagonal matrix, we have 

(M11 − λ)T1 + M12T2 = 0 

M12T1 + (M22 − λ)T2 + M23T3 = 0 

M23T2 + (M33 − λ)T3 + M34T4 = 0 

M34T3 + (M44 − λ)T4 + M45T5 = 0 

M45T4 + (M55 − λ)T5 = 0. 

The first equation may be rewritten as 

T1/T2 = M12/(M11 − λ), 
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the second as 

M12(T1/T2) + M22 − λ = −M23(T3/T2). 

Combining these we have 

T2 −M23 
= 

T3 M22 − λ + M12(T1/T2) 
−M23 

= . 
M2 

M22 − λ − M11

I
−
2 
λ 

Similarly, the third equation gives 

M23(T2/T3) + M33 − λ = −M34(T4/T3) 

or 
T3 −M34 
= . 

23 T4 M33 − λ − 
M2 

M2 
M22−λ− 

12 
M11−λ 

The fourth equation gives an analogous expansion for T4/ T5 and the fifth gives 

λ = M55 + M45 (T4/ T5) . 

Thus, finally we have 
M2 

λ = M55 − 
45 

M2 
. 

M44 − λ − 
34 

M2 
M33−λ− 

23 
M2 

M22−λ− 
12 

M11−λ 

The trial λ is selected and substituted in the right hand side, generating a new value of λ on the left. This 

new value is used as a second approximation on the right and the process repeated until the trial λ and the 

final λ agree to within the desired accuracy. In the absence of degeneracies this procedure converges very 

rapidly. It also provides the ratios Ti/ Ti+1 at each stage. For detailed discussion of this continued fraction 

method, see Swalen and Pierce, J. Math. Phys. 2, 736 (1961) and Pierce, ibid., 740 (1961). See J. H. 

Wilkinson, The Algebraic Eigenvalue Problem (Oxford, 1965). 


