# 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

## MASSACHUSETTS INSTITUTE OF TECHNOLOGY Chemistry 5.76 Spring 1985

#### **Problem Set #2 ANSWERS**

- 1. The number of possible spin eigenfunctions for a single particle of spin I is 2I + 1.
  - (a) How many linearly independent spin eigenfunctions are possible for two equivalent particles of spin *I*? **ANSWER** (2I + 1)(2I + 1) spin eigenfunctions
  - (b) For a particle with I = 1, denote the three spin eigenfunctions by  $\alpha$ ,  $\beta$ , and  $\gamma$ , corresponding to the eigenvalues  $M_z = +, 0, -$ . How many linearly independent symmetric and how many linearly independent antisymmetric spin states are there for two equivalent particles with I = 1?

ANSWER: 6 symmetric eigenfunctions, 3 antisymmetric eigenfunctions symmetric:  $\begin{aligned}
|\alpha\alpha\rangle, |\beta\beta\rangle, |\gamma\gamma\rangle, \\
\frac{1}{\sqrt{2}}(|\alpha\beta\rangle + |\beta\alpha\rangle), \\
\frac{1}{\sqrt{2}}(|\alpha\gamma\rangle + |\gamma\alpha\rangle), \\
\frac{1}{\sqrt{2}}(|\beta\gamma\rangle + |\gamma\beta\rangle)
\end{aligned}$ anti-symmetric:  $\begin{aligned}
\frac{1}{\sqrt{2}}(|\alpha\beta\rangle - |\beta\alpha\rangle), \\
\frac{1}{\sqrt{2}}(|\alpha\gamma\rangle - |\gamma\alpha\rangle), \\
\frac{1}{\sqrt{2}}(|\beta\gamma\rangle - |\gamma\beta\rangle)
\end{aligned}$  Atomic eigenfunctions contain a factor exp(*iMφ*). When the atom is a magnetic field *B*, the quantum number *M* represents the projection of the *J*-vector on *B* (−*J* ≤ *M* ≤ +*J*). The usual selection rules for *L*, *S*, and *J* still hold for moderate *B*, and in addition a selection rule governing the values of Δ*M* becomes important. The dipole-moment operators for transitions involving *M* are *cee*<sub>||</sub> and *c'ee*<sub>⊥</sub> cos *φ*. The coefficients *c* and *c'* are non-zero constants (for the purposes of this problem); *e* is the charge on the electron; and *e*<sub>||</sub> and *e*<sub>⊥</sub> are the components of the electric field of the radiation parallel and perpendicular to *B*. Derive the selection rules for Δ*M* for radiation polarized parallel and perpendicular to *B*.

ANSWER:  
Electric field of radiation || to B field  
dipole moment operator = 
$$ce\epsilon_{\parallel}$$
 (*c* is a constant)  
 $\therefore \int_{0}^{2\pi} e^{-iM'\phi} ce\epsilon_{\parallel} e^{iM\phi} d\phi = ce\epsilon_{\parallel} \int_{0}^{2\pi} e^{i(M-M')\phi} d\phi$   
 $= ce\epsilon_{\parallel}\delta_{M,M'}$   
 $\therefore \Delta M = 0$   
Electric field  $\perp$  to B field applied:  
dipole moment operator =  $c'e\epsilon \cos \phi$   
 $\therefore \int_{0}^{2\pi} e^{-iM'\phi} c'e\epsilon_{\perp} \cos \phi e^{iM\phi} d\phi = \frac{1}{2}c'e\epsilon_{\perp} \left[ \int_{0}^{2\pi} e^{i(M-M'+1)\phi} d\phi + \int_{0}^{2\pi} e^{i(M-M'-1)\phi} d\phi \right]$   
 $= \frac{1}{2}c'e\epsilon_{\perp} \left[ \delta_{M',M+1} + \delta_{M',M-1} \right]$   
 $\therefore$  transition allowed for  $M' = M \pm 1$  (or  $\Delta M = \pm 1$ )

- 3. Calculate the Zeeman pattern to be expected for the sodium *D*-lines at 10,000 Gauss (*G*). You may neglect nuclear hyperfine interactions. Indicate the polarization of each Zeeman line, that is, whether the electric vector of the emitted radiation is parallel to the applied magnetic field ( $\pi$ -component) or perpendicular to it ( $\sigma$ -component).
  - (a) Show qualitatively the Stark effect to be expected for the sodium *D*–lines. The splittings are proportional to what power of the electric field strength?

ANSWER: B = 10kG  

$$E_{\text{Zeeman}}^{(1)} = \frac{d_{n}}{2m^{2}} BM_{J} \left( 1 + \frac{J(J+1)+S(S+1)-J(J+1)}{2J(J+1)} \right)$$
Na D lines  $\rightarrow {}^{2}S_{1/2} - {}^{2}P_{1/2}$   
 ${}^{2}S_{1/2} - {}^{2}P_{3/2}$ 

$$E_{\text{Zeeman}}^{(1)} ({}^{2}S_{1/2}) \rightarrow |JSLM_{J}\rangle = \left| \frac{1}{2} \frac{1}{2} 0 \pm \frac{1}{2} \right\rangle$$

$$M_{J} = \frac{1}{2} \rightarrow E_{\text{Zeeman}}^{(1)} ({}^{2}S_{1/2}, M_{J} = +1/2) = (4.76 \times 10^{-5} \text{cm}^{-1}/\text{Gauss})(10kG)(1/2)(2) = 0.467 \text{ cm}^{-1}$$

$$M_{J} = -\frac{1}{2} \rightarrow E_{\text{Zeeman}}^{(1)} ({}^{2}S_{1/2}, M_{J} = +1/2) = (0.467 \text{ cm}^{-1})$$

$$^{2}P_{1/2} \rightarrow \left| \frac{1}{2} \frac{1}{2} 1 \pm \frac{1}{2} \right\rangle$$

$$E_{\text{Zeeman}}^{(1)} ({}^{2}P_{1/2}, M_{J} = +1/2) = (0.467 \text{ cm}^{-1})(1/3) = +0.156 \text{ cm}^{-1}$$

$$^{2}P_{3/2} \rightarrow \left| \frac{1}{2} \frac{1}{2} 1 \pm \frac{3}{2} \pm \frac{1}{2} \right\rangle$$

$$E_{\text{Zeeman}}^{(1)} ({}^{2}P_{1/2}, M_{J} = +3/2) = (0.467 \text{ cm}^{-1})(4/3)(3/2) = +0.934 \text{ cm}^{-1}$$

$$E_{\text{Zeeman}}^{(1)} ({}^{2}P_{3/2}, M_{J} = +3/2) = (0.467 \text{ cm}^{-1})(4/3)(3/2) = +0.934 \text{ cm}^{-1}$$

$$E_{\text{Zeeman}}^{(1)} ({}^{2}P_{3/2}, M_{J} = +3/2) = (0.467 \text{ cm}^{-1})(4/3)(1/2) = +0.311 \text{ cm}^{-1}$$
Allowed Transitions:  $\Delta M_{J} = 0, \pm 1$ 

$$\Delta M_{J} = 0 \text{ for Radiation E field } \parallel \vec{B} \text{ applied}$$





(b) What do you think might happen to a beam of ground-state sodium atoms passing through a strong inhomogeneous magnetic field? a strong inhomogeneous electric field?

Answer: Ground State Na Atoms  $\Rightarrow {}^{2}S_{1/2}$ Strong Inhomogeneous Magnetic Field  $\Rightarrow$  Splits Atoms into 2 Beams:  $M_{J} = \pm \frac{1}{2}$ Strong Inhomogeneous Electric Field  $\Rightarrow$  1 Beam that is bent by field.

- 4. An atom is in a  $(3d)^2 {}^3P_0$  state.
  - (a) List all L–S–J terms to which an electric dipole allowed transition might occur.

Answer:  $(3d)^{2} {}^{3}P_{0} \text{ state} \rightarrow ?$ Selection rules: even $\leftrightarrow$ odd,  $\Delta S = 0$ ,  $\Delta L = 0, \pm 1, \Delta J = 0, \pm 1 (0 \leftrightarrow 0)$   $\therefore$  State must be of opposite parity  $\Rightarrow$  must have ° superscript (3*dnp* or 3*dnf*), must be triplet state  $\Rightarrow {}^{3}P_{1}^{\circ}, {}^{3}D_{1}^{\circ}$ 

(b) List all two-electron configurations into which electric dipole allowed transitions can occur from  $(3d)^2 {}^{3}P_0$ .

Answer:  $(3d)^2 \rightarrow (3d)(np)$  n > 3 $(3d)^2 \rightarrow (3d)(nf)$   $n \ge 4$  5. The "transition moment," or the probability of transition, between two rotational levels in a linear molecule may be assumed to depend only on the permanent electric dipole moment of the molecule and thus to be the same for all allowed pure-rotational transitions. In the pure-rotational *emission spectrum* of H<sup>35</sup>Cl gas, lines at 106.0 cm<sup>-1</sup> and 233.2 cm<sup>-1</sup> are observed to have equal intensities. What is the temperature of the gas? The rotational constant *B* for H<sup>35</sup>Cl is known to be 10.6 cm<sup>-1</sup>, and the ratio hc/k has the value 1.44 cm·K.

# Answer: For emission: v = B(J'(J' + 1) - J'(J' - 1)] = 2BJ' $\therefore$ from v = 106 cm<sup>-1</sup> and 233.2 cm<sup>-1</sup> we have J' = 5 and J' = 11 $I_5 = (2J' + 1)e^{-1.44(30B)/T}$ $I_{11} = (2J' + 1)e^{-1.44(132B)/T}$ $11e^{-1.44(30B)/T} = 23e^{-1.44(132B)/T}$ $\therefore T = 2110$ K

6. What would happen to the Birge-Sponer extrapolation scheme for a molecular potential that correlates with ionic states of the separated atoms?

### Answer:

The Birge-Sponer extrapolation would underestimate  $D_0$  because the electrostatic interaction between the two atoms would cause the actual curve to approach zero much more slowly than the linear Birge-Sponer extrapolation.