MIT OpenCourseWare
http://ocw.mit.edu

5.80 Small-Molecule Spectroscopy and Dynamics

Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Chemistry 5.76
Spring 1976

Examination \#1 ANSWERS

March 12, 1976

Closed Book

Slide Rules and Calculators Permitted

Answer any THREE of the four questions. You may work a fourth problem for extra credit.
All work will be graded but no total grade will exceed 80 points.

1. A. (10 points) Give a concise statement of Hund's three rules.

First rule: The lowest energy state belonging to a configuration has maximum S.
Second Rule: Of the states of maximum spin, the lowest term has maximum L.
Third Rule: The lowest J-state of the lowest term is the one with maximum J for a more than half-filled shell and minimum J for less than half-filled shell.
None of the Hund's rules apply to any but the lowest energy term belonging to a configuration.
B. (10 points) State the definition of a vector operator.
\mathbf{B} is a vector with respect to \mathbf{A} if
$\left[\mathbf{A}_{i}, \mathbf{B}_{j}\right]=\epsilon_{i j k} i \hbar \mathbf{B}_{k}$
C. (10 points) If \mathbf{B} and \mathbf{C} are vector operators with respect to \mathbf{A}, then what do you know about matrix elements of $\mathbf{B} \cdot \mathbf{C}$ in the $\left|A M_{A}\right\rangle$ basis?
B.C is scalar with respect to \mathbf{A}, therefore
$\left\langle A^{\prime} M_{A}^{\prime}\right| \mathbf{B} \cdot \mathbf{C}\left|A M_{A}\right\rangle=\delta_{A^{\prime} A} \delta_{M_{A}^{\prime} M_{A}}\langle A\|\mathbf{B} \cdot \mathbf{C}\| A\rangle$
independent of M_{A}.
D. (5 points) The atomic spin-orbit Hamiltonian has the form

$$
\mathbf{H}^{\mathrm{SO}}=\sum_{i} \xi\left(r_{i}\right) \boldsymbol{\ell}_{i} \cdot \mathbf{s}_{i}
$$

Classify \mathbf{H}^{SO} as vector or scalar with respect to \mathbf{J}, \mathbf{L}, and \mathbf{S}. State whether \mathbf{H}^{SO} is diagonal in the $\left|J M_{J} L S\right\rangle$ or $\left|L M_{L} S M_{S}\right\rangle$ basis.
$\mathbf{H}^{\text {SO }}$ is scalar, vector, vector with respect to J, L, S. $\mathbf{H}^{\text {SO }}$ is diagonal with respect to J and M_{J} but not L and S in the $\left|J M_{J} L S\right\rangle$ basis but diagonal in nothing in the $\left|L M_{L} S M_{S}\right\rangle$ basis.
2. Consider the following multiplet transition array:

Lower State (L'", L")						
	J	?	?			?
Upper	?	(180)				(0)
		16934.63	48.15	16982.78		17046.98
				50.51		50.48
	?			(240)		(16)
				17033.29	64.17	17097.46
State						63.10
($\left.L^{\prime}, S^{\prime}\right)$						(310)
	?					17160.56

Intensities are in parentheses above transition frequencies in cm^{-1}; line separations in cm^{-1} are given between relevant transition frequencies.
A. (10 points) Use the Landé interval rule

$$
E(L, S, J)-E(L, S, J-1)=\zeta(n L S) J
$$

to determine J^{\prime} and $\mathrm{J}^{\prime \prime}$ values. Rather than list the J^{\prime} and $\mathrm{J}^{\prime \prime}$ assignments of each line, only list J^{\prime} and $\mathrm{J}^{\prime \prime}$ for the line observed to be most intense and for the line observed to be least intense.
Consider upper state term separations first

$$
\frac{E\left(J_{\mathrm{MAX}}\right)-E\left(J_{\mathrm{MAX}}-1\right)}{E\left(J_{\mathrm{MAX}}-1\right)-E\left(J_{\mathrm{MAX}}-2\right)}=\frac{J_{\mathrm{MAX}}}{J_{M A X}-1}=\frac{63.10}{50.50}=\frac{5}{4}
$$

Upper state J ranges $5 \leftrightarrow 3$
Lower state:

$$
\frac{J_{\mathrm{MAX}}}{J_{M A X}-1}=\frac{64.18}{48.15}=\frac{4}{3}
$$

lower state J ranges $4 \leftrightarrow 2$
Most intense line $17160.56 \mathrm{~cm}^{-1}$ in $J^{\prime \prime}=4 \leftrightarrow J^{\prime}=5$
Least intense line $17046.98 \mathrm{~cm}^{-1}$ in $J^{\prime \prime}=4 \leftrightarrow J^{\prime}=3$
B. (10 points) Use the range of J^{\prime} and $\mathrm{J}^{\prime \prime}$ and the intensity distribution (i.e., that the most intense transition is not $\Delta J=0)$ to determine the term symbols $\left({ }^{2 S+1} L\right)$ for the upper and lower states. Assume $\Delta S=0$.
Range of J implies either $S=1, L^{\prime}=4, L^{\prime \prime}=3$ or $L=1, S^{\prime}=4, S^{\prime \prime}=3$
The second possibility is $\Delta S \neq 0$ forbidden.
Upper state is ${ }^{3} G$, Lower state is ${ }^{3} F$.
C. (5 points) Is the upper state regular (highest \mathbf{J} at highest term energy) or inverted (highest \mathbf{J} at lowest term energy)? Is the lower state regular or inverted? [Partial energy level diagrams might be helpful here.]

3. A. (5 points) List the L-S terms that arise from the $(n s)(n p)^{2}$ and $(n s)^{2}(n p)$ configurations. [HINT: $(n p)^{2}$ gives ${ }^{1} \mathrm{~S},{ }^{3} \mathrm{P},{ }^{1} \mathrm{D}$; to get $s p^{2}$ couple an s electron to these three states.]
$(n s)(n p)^{2} \rightarrow{ }^{2} \mathrm{~S},{ }^{2} \mathrm{P},{ }^{4} \mathrm{P},{ }^{2} \mathrm{D}$
$(n s)^{2}(n p) \rightarrow{ }^{2} \mathrm{P}^{\circ}$
B. (5 points) Which configuration gives rise to odd terms and which to even?
$(n s)(n p)^{2}$ is even because $\Sigma \ell_{i}=2$
$(n s)^{2}(n p)$ is odd because $\Sigma \ell_{i}=1$
C. (5 points) List the electric dipole allowed transitions between terms of the $s p^{2}$ and $s^{2} p$ configurations.
(Ignore fine-structure splitting of L-S terms into J-states.)
${ }^{2} \mathrm{~S}-{ }^{2} \mathrm{P}^{\circ}$
${ }^{2} \mathrm{P}-{ }^{2} \mathrm{P}^{\circ}$
${ }^{2} \mathrm{D}-{ }^{2} \mathrm{P}^{\circ}$ are the allowed transitions.
D. (10 points) Construct qualitative energy level diagrams on which you display all allowed $\mathrm{J}^{\prime \prime}-\mathrm{J}^{\prime}$ components of ${ }^{2} P^{\circ}-{ }^{2} S,{ }^{2} P^{\circ}-{ }^{2} P$, and ${ }^{2} P^{\circ}-{ }^{2} D$ transitions. Indicate which $\mathrm{J}^{\prime \prime}-\mathrm{J}^{\prime}$ line you would expect to be strongest for each of these three transitions.

4. (25 points) Calculate transition probabilities for the two transitions

$$
\begin{array}{|l|}
\hline n s n p{ }^{1} P_{10}^{\circ} \rightarrow(n p)^{2}{ }^{1} S_{00} \\
n s n p{ }^{1} P_{10}^{\circ} \rightarrow(n p)^{2}{ }^{1} D_{20} \\
\hline
\end{array}
$$

given the following information:

$$
\begin{aligned}
{ }^{1} P_{10}^{\circ} & =\left|J=1, M_{J}=0, L=1, S=0\right\rangle \\
& =\frac{1}{\sqrt{2}}\left|s 0^{-} p 0^{+}\right|-\frac{1}{\sqrt{2}}\left|s 0^{+} p 0^{-}\right| \\
{ }^{1} S_{00} & \equiv\left|J=0, M_{J}=0, L=0, S=0\right\rangle \\
& =\frac{1}{\sqrt{3}}\left|p 1^{-} p-1^{+}\right|-\frac{1}{\sqrt{3}}\left|p 1^{+} p-1^{-}\right|+\frac{1}{\sqrt{3}}\left|p 0^{+} p 0^{-}\right| \\
{ }^{1} D_{20} & \equiv \frac{1}{\sqrt{6}}\left|p 1^{+} p-1^{-}\right|-\frac{1}{\sqrt{6}}\left|p 1^{-} p-1^{+}\right|+\frac{2}{\sqrt{6}}\left|p 0^{+} p 0^{-}\right|
\end{aligned}
$$

The electric dipole transition moment operator, $\boldsymbol{\mu}$, does not operate on spin coordinates, is a one-electron operator, and is a vector with respect to $\boldsymbol{\ell}_{i} . n s n p \rightarrow(n p)^{2}$ transitions are $\Delta \ell=+1$ processes. The relevant $\Delta \ell=+1$ matrix elements, as given by the Wigner-Eckart theorem for vector operators are

$$
\begin{aligned}
& \left\langle n, \ell=1, m_{\ell}=1\right| \frac{1}{2}\left(\boldsymbol{\mu}_{+}+\boldsymbol{\mu}_{-}\right)\left|n, \ell=0, m_{\ell}=0\right\rangle=-\frac{1}{\sqrt{2}} \mu_{+}(n s) \\
& \left\langle n, \ell=1, m_{\ell}=0\right| \boldsymbol{\mu}_{z}\left|n, \ell=0, m_{\ell}=0\right\rangle=\mu_{+}(n s) \\
& \left\langle n, \ell=1, m_{\ell}=-1\right| \frac{1}{2}\left(\mu_{+}+\mu_{-}\right)\left|n, \ell=0, m_{\ell}=0\right\rangle=+\frac{1}{\sqrt{2}} \mu_{+}(n s)
\end{aligned}
$$

where $\mu_{+}(n s)$ is the reduced matrix element $\langle n p\|\mu\| n s\rangle$.

Since $\boldsymbol{\mu}$ is a one electron operator, the two-electron Slaters must match for one spin-orbital and must have identical spin in the other. This means we need only consider part of ${ }^{1} \mathrm{~S}_{00}$ and ${ }^{1} \mathrm{D}_{20}$.

$$
\begin{aligned}
& { }^{1} \mathrm{~S}_{00} \rightarrow \frac{1}{\sqrt{3}}\left|p 0^{+} p 0^{-}\right| \\
& { }^{1} \mathrm{D}_{20} \rightarrow \frac{2}{\sqrt{6}}\left|p 0^{+} p 0^{-}\right|
\end{aligned}
$$

because the $\left|p 1^{+} p-1^{-}\right|$and $\left|p 1^{-} p-1^{+}\right|$Slaters differ from the $\left|s 0^{-} p 0^{+}\right|$and $\left|s 0^{+} p 0^{-}\right|$Slaters by two spin-orbitals. So we do not even need to evaluate matrix elements to get the ratio of transition probabilities

$$
\frac{{ }^{1} P_{10}^{\circ}-{ }^{1} S_{00}}{{ }^{1} P_{10}^{\circ}-{ }^{1} D_{20}}=\frac{\left(\frac{1}{\sqrt{3}}\right)^{2}}{\left(\frac{2}{\sqrt{6}}\right)^{2}}=\frac{1}{2}
$$

Actually evaluating matrix elements gives

$$
\begin{aligned}
{\left[\left\langle{ }^{1} P_{10}^{\circ}\right| \boldsymbol{\mu}\left|{ }^{1} S_{00}\right\rangle\right] } & =\frac{1}{\sqrt{6}}\left[\langle | s 0^{-} p 0^{+}|\boldsymbol{\mu}| p 0^{+} p 0^{-}| \rangle-\langle | s 0^{+} p 0^{-}|\boldsymbol{\mu}| p 0^{+} p 0^{-}| \rangle\right] \\
& =\frac{1}{\sqrt{6}}\left[-\mu_{+}(n s)-\mu_{+}(n s)\right]=-\frac{2}{\sqrt{6}} \mu_{+}(n s)
\end{aligned}
$$

$$
\text { Probability is }|\langle 1| \mu| 2\rangle\left.\right|^{2}=\frac{2}{3}\left|\mu_{+}(n s)\right|^{2} \quad \text { for } P^{\circ}-S
$$

$$
=\frac{4}{3}\left|\mu_{+}(n s)\right|^{2} \quad \text { for } P^{\circ}-D
$$

Show all your work including false starts. If you are unable to express the transition probabilities in terms of $\mu_{+}(n s)$, lavish partial credit will be given for the ratio of transition probabilities

$$
\frac{{ }^{1} P_{10}^{\circ}-{ }^{1} S_{00}}{{ }^{1} P_{10}^{\circ}-{ }^{1} D_{00}}
$$

