MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Civil and Environmental Engineering

1.017 Computing and Data Analysis for Environmental Applications

Quiz 2
Thursday, November 9, 2000

Please answer any 5 of the following 6 problems (maximum score $=100$ points):

Problem 1 (20 points)

Suppose that a remote sensing signal z (measured in watts $/ \mathrm{m}^{2}$) is the sum of two components x and y which represent emissions from two adjacent regions on the ground (i..e. $z=x+y$). The independent discrete random variables x and y can have the following values $x=\{1,2\}, y=\{1$, $2\}$, depending on land use. The probabilities of these x and y values are:
$p_{x}(1)=0.3 \quad p_{x}(2)=0.7$
$p_{y}(1)=0.8 \quad p_{y}(2)=0.2$
a) What are the possible values for z (present as a table)?
b) Derive the probability mass function $p_{z}(z)$, assuming that x and y are independent (i.e. $p_{X Y}(x, y)=$ $\left.p_{X}(x) p_{Y}(y)\right)$. Plot the probability mass function and cumulative distribution of z vs z.
c) What is the mean of z ?

Problem 2 (20 points)

Suppose that we want to have a representative set of air samples to evaluate air quality in a city. We suspect that ozone levels exceed air quality standards 20% of the days. These high ozone days are distributed randomly throughout the year. We collect 12 samples, one on the first of each month. Use a normal approximation to evaluate the probability that we obtain 4 or more samples that violate the standard (tables attached) if the ozone levels do, in fact, exceed the standard on 20% of the days?

Problem 3 (20 points)

a) A geological formation consists of 9 layers -- 4 shale layers, 3 sandstone layers, and 2 limestone layers. We presume that these layers were laid down at random. Now suppose that we drill a borehole through the top 3 layers. What is the probability that these sampled layers are all shale?
b) Write a MATLAB program which estimates the probability in Problem 3 using a Monte Carlo technique.

Problem 4 (20 points)

(Try to answer Part b for $1 / 2$ credit even if you cannot answer Part a)
a) Consider the following simple model of runoff production, where $Q=\operatorname{runoff}(\mathrm{mm} / \mathrm{hr}), R=$ rainfall ($\mathrm{mm} / \mathrm{hr}$), and $I=$ infiltration capacity:
$Q=0$ if $R<I$
$Q=R-I$ if $R \geq I$
Suppose that R has an exponential probability density function $f_{R}(\mathrm{R})=a \exp (-a R)$ with distributional parameter $a=0.2(\mathrm{~mm} / \mathrm{hr})^{-1}$. Plot the cumulative distribution function of Q when $I=$ $3 \mathrm{~mm} / \mathrm{hr}$. Make your plot as accurate as possible. \{HINT: The random variable Q is a mixed discrete/continuous random variable).
b) Write a MATLAB program which uses a Monte Carlo approach to evaluate the probability that $Q=0$. Assume that you have available the internal MATLAB function exprnd ($\mathrm{mu}, \mathrm{m}, \mathrm{n}$), which provides an m by n array of independent exponentially distributed random variables with parameter mu $=1 / a$.

Problem 5 (20 points)

A few days after a heavy rain storm a particular Boston harbor beach can be affected by combined sewer discharges at three points (A1, A2, and A3) with probabilities of overflowing of $0.2,0.5$, and 0.3 , respectively (one and only one of the points will discharge in any given storm). The probability that post-discharge coliform levels are high enough to require a beach closing is 0.3 , $0.4,0.2$, for a discharge from A1, A2, and A3, respectively. What is the probability that A1 discharged during a particular storm if the beach was subsequently required to close? What is the probability that the beach will have to be closed after a storm?

Problem 6 (20 points)

Find the mean and variance of a random variable x with the following probability density function:
$f_{X}(x)=6 x(1-x)$ for $0<x \leq 1$
Plot the density function and the cumulative distribution function of x.

