MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Civil and Environmental Engineering

1.017 Computing and Data Analysis for Environmental Applications

Quiz 2 (with solutions)
Thursday, November 8, 2001

Please answer all questions on a separate piece(s) of paper with your name clearly identified:

Problem 1 (15 points)

i) Plot a sample cumulative distribution function (CDF) for the following soil conductivity (in $\mathrm{cm} /$ day) samples on the attached piece of graph paper.
$2.72 \quad 1.44 \quad 24.28$
6.96
6.40
$16.30 \quad 11.72$
$8.63 \quad 2.94 \quad 10.52$
8.48
1.63
$\begin{array}{lll}12.77 & 1.50 & 0.14\end{array}$
ii) Use this sample CDF to estimate the probability that the soil conductivity at any given point lies between 5 and $10 \mathrm{~cm} /$ day.

Solution:

i) See quiz01_2sol.m for MATLAB program that plots CDF
ii) $\operatorname{Prob}(5<\mathrm{y} \leq 10)=0.67-.40=0.37$

Problem 2 (15 points)

Find the mean of the following probability density function:

Solution:

$$
E[y]=\int_{1}^{2} y(2 / 3) d y+\int_{3}^{4} y(1 / 3) d y=\left[\frac{y^{2}}{3}\right]_{1}^{2}+\left[\frac{y^{2}}{6}\right]_{3}^{4}=\frac{4}{3}-\frac{1}{3}+\frac{16}{6}-\frac{9}{6}=\frac{13}{6}
$$

Problem 3 (20 points)

The expression $z=y /\left(y+y_{\text {half }}\right)$ is frequently used to describe the relationship between algal growth rate z and nutrient concentration y. Suppose the "half saturation constant" $y_{\text {half }}=1$ and that y is uniformly distributed between 1 and 2. Write a MATLAB function that uses a stochastic simulation approach to plot the cumulative distribution function of z. Attached are descriptions of the MATLAB functions rand, hist, and cdfplot.

Solution:

See quiz01_2sol.m for MATLAB program that plots the histogram and CDF

Problem 4 (25 points)

The position y_{t} of a solute particle moving in a turbulent velocity field can be described as follows:

$$
y_{t}=y_{t-1}+\Delta v_{t}
$$

where t is a time index $(t=1,2, \ldots n), y_{0}=0, \Delta$ is a constant time step, and $v_{1}, v_{2}, \ldots v_{n}$ are random velocities. For example, if $\Delta=0.5 \mathrm{sec}$ and velocity is measured in $\mathrm{cm} / \mathrm{sec}$, the position after 5 time steps is:
$\mathrm{y}_{5}=0.5\left(v_{1}+v_{2}+v_{3}+v_{4}+v_{5}\right)$
This process is an example of a random walk (or Brownian motion). It is the basis for most models of solute dispersion.

Suppose that the velocities are independent random variables, each with mean $E\left[v_{i}\right]=0$ and variance $\operatorname{Var}\left[v_{i}\right]=1 \mathrm{~cm} / \mathrm{sec}$.
a) What are the mean and variance of the particle position y_{n} after n time steps?
b) Sketch the probability density function of y_{20}, clearly labeling the mean and standard deviation with appropriate numerical values.

Solution:

a) $E\left[y_{n}\right]=0, \quad \operatorname{Var}\left[y_{n}\right]=(0.5)^{2} n$
b) PDF is normal with mean $E\left[y_{20}\right]=0$ and $S D\left[y_{20}\right]=(0.5)(20)^{0.5}$

Problem 5 (25 points)

Suppose that the streamflow in a particular river on a given day is approximately an exponentially distributed random variable with a mean (parameter a) of $5 \mathrm{~m}^{3} / \mathrm{sec}$. Write a MATLAB code that uses a stochastic simulation approach to plot the histogram and cumulative probability distribution of the maximum daily streamflow observed over a 100 day period. Attached are descriptions of the MATLAB functions exprnd, max, hist, and cdfplot.

Solution:

See quiz01_2sol.m for MATLAB program that plots the histogram and CDF

