MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Civil and Environmental Engineering

1.017 Computing and Data Analysis for Environmental Applications

Practice Quiz 3

December 5, 2001

Please answer all questions on a separate piece(s) of paper with your name clearly identified:

Problem 1 (15 points)

Provide a brief answer to each of the following questions:
a) Suppose that you have a choice of collecting a random sample of $20,40,80$, or 160 measurements of a random variable y. You will use the sample to compute the sample mean m_{y}, which you will use as an estimate of $E[y]$. Draw a sketch of the probability density of m_{y} for $n=20$ measurements and superimpose on it a sketch of the same density for $n=40$ measurements.
b) Plot the standard deviation of the sample mean vs. the number of measurements in the sample. How does the standard deviation at $n=160$ compare to the standard deviation at n $=20$?
c) Is the sample mean a consistent estimate of $E[y]$? Why?

Solution:

a) Plot should look normal. Standard deviation for $n=40$ should be 0.70 standard deviation for $n=20$, peak for $n=40$ should be 1.41 peak for $n=20$.
b) Standard deviation of sample mean should decrease as $n^{-1 / 2}$.
c) Yes, because $\operatorname{Lim}_{n \rightarrow \infty} \operatorname{Var}\left[m_{y}\right]=0$

Problem 2 (25 points)

You are studying the cadmium concentration (y) in trout tissue in a large lake. You catch ten trout and measure the following cadmium concentrations (mg / L):
$\begin{array}{llllllllll}0.106 & 0.040 & 0.128 & 0.225 & 0.167 & 0.024 & 0.317 & 0.072 & 0.099 & 0.029\end{array}$
a) Considering the possible values of the data, what would be a reasonable assumption for a probability distribution for the population and why?
b) Derive a two-sided 95% confidence interval (5% significance level) for the expected value of sediment concentration, using a large sample assumption. Do you think this
assumption is justified? Why? Note that the 2.5% lower and upper critical values for a unit normal probability distribution are -1.96 and +1.96 .
c) Carry out a two-sided large sample test of the hypothesis $H 0: E[y]=0.2$. Is $H 0$ accepted or rejected at a 5% significance level?

Solution:

a) A histogram of the data suggest that y is exponentially distributed.
b) Sample mean is $m_{y}=0.12$

Sample standard deviation is $s_{y}=0.094$
If we adopt a large sample approximation we assume that the sample mean is normally distributed with mean $E\left[m_{y}\right]=E[y]$ ((the unknown true mean) and standard deviation $S D\left[m_{y}\right]=s_{y} / n^{1 / 2}=0.094 /(10)^{1 / 2}=0.03$. The critical points for a two-sided 95% confidence interval are given by:

$$
\begin{aligned}
& m_{y l, 0.95}=m_{y}-S D\left[m_{y}\right](1.96)=0.12-(0.03)(1.96)=0.063 \\
& m_{y u, 0.95}=m_{y}+S D\left[m_{y}\right](1.96)=0.12+(0.03)(1.96)=0.18
\end{aligned}
$$

So we infer from the data that $E[y]$ probably lies in the interval between 0.063 and 0.18 .
Based on our experience with stochastic simulation of small exponential samples, the large sample approximation is reasonably good for samples as small as $n=10$ at significance levels of 0.05 or larger.
c) Find the two-sided large sample acceptance region for a significance level of 5% from:

$$
\begin{aligned}
& m_{y l, 0.95}=E[y \mid H 0]-S D\left[m_{y}\right](1.96)=0.2-(0.03)(1.96)=0.14 \\
& m_{y u, 0.95}=E[y \mid H 0]+S D\left[m_{y}\right](1.96)=0.2+(0.03)(1.96)=0.26
\end{aligned}
$$

Since the sample mean estimate $m_{y}=0.12$ lies outside the acceptance region we reject $H 0$.

Problem 3 (30 points)

Consider the following 4 values of the independent variable (time) and the dependent variable (change in total dry biomass relative to long-term average) in a temperate forest:

Time (months): $\quad \begin{array}{lllll}2.0 & 2.5 & 4.0 & 8.0\end{array}$
Biomass (Kg/m2): $2.7 \quad 3.3-1.6 \quad 9.0$
Compare the following two regression models by following the indicated steps:
$\bar{y}_{L}\left(x, a_{2}\right)=a_{2} x$
$\bar{y}_{S}\left(x, a_{2}\right)=a_{2} \operatorname{Sin}(x)$
a) For each model, derive the least-squares estimate for a_{2}. You can do this by minimizing the sum-of-squares error directly or by using the following expression:

$$
\boldsymbol{H}^{\prime} \boldsymbol{H}_{\hat{a}_{2}}=\boldsymbol{H}^{\prime} \boldsymbol{y}
$$

where:

$$
\begin{aligned}
& \boldsymbol{H}=\left[x_{1}, \ldots, x_{4}\right]=\left[\begin{array}{llll}
2.0 & 2.5 & 4.0 & 8.0
\end{array}\right] \quad \text { for the first model } \\
& \boldsymbol{H}=\left[\sin \left(x_{1}\right), \ldots, \sin \left(x_{4}\right)\right]=\left[\begin{array}{llll}
0.91 & 0.60 & -0.76 & 0.99
\end{array}\right] \text { for the second model }
\end{aligned}
$$

b) Plot the regression line over the range of measurement x values and calculate the sum-ofsquared errors or SSE (the easiest way to do this is to read the error values directly off your plot). Which line gives a smaller SSE?
c) Which regression model do you prefer? Why?

Solution:

```
% Quiz 3, Solution to Problem 4
function quiz01_3sol4
% generate data
xmeas=[2, 2. 5, 4, 8]
ymeas=xmeas.*sin(xmeas) +2*normrnd (0,1,1,4)
hL=xmeas'
hS=sin(xmeas)'
a2Lhat=inv(hL'*hL)*(hL'*ymeas')
a2Lhat=(hL'*hL)\(hL'*ymeas')
a2Shat=(hS'*hS)\(hS'*ymeas')
SSEL=(ymeas-a2Lhat*xmeas)* (ymeas-a2Lhat*xmeas)'
SSES=(ymeas-a2Shat*sin(xmeas))*(ymeas-a2Shat*sin(xmeas))'
x=[1:.01:9];
yL=a2Lhat*x;
yS=a2Shat*sin(x);
close all
figure
plot(xmeas,ymeas,'*')
hold on
plot(x,yL,'r')
hold on
plot(x,yS,'b')
return
```

```
a2Lhat =
    0.8781
a2Shat =
    5.3151
SSEL =
    32.1493
SSES =
    24.4308
```


Problem 4 (30 points)

Consider the following random sample of 6 measurements of a random variable y distributed uniformly between 0 and c :

$$
\begin{array}{llllll}
0.8775 & 0.0319 & 0.8537 & 0.7946 & 0.3409 & 0.0080
\end{array}
$$

a) Use this sample to derive an appropriate estimate of c, the upper bound of the random variable y.
b) Write a stochastic simulation program that evaluates and plots on a normal probability scale the cumulative distribution function of the estimator you used to compute c.
c) Suppose that your program produces the following plot when a value of $c=1.5$ is used in the uniform random number generator used to generate the replicates. Indicate on the plot (with lines and arrows) how you would derive the p value for a two sided test of the hypothesis $H 0: c=1.5$ when your estimate of c is obtained from the above sample. What is the p value? Would you reject the hypothesis? Why?
d) Do you think a large sample approximation is valid for this hypothesis testing problem? Why?

Solution

```
zeta = 0.9689
% Quiz 3, Solution to Problem 5
function quiz01_3sol5
% specify sample data and compute sample estimate
```



```
zeta=2*mean (samp)
n=6
nrep=10000
close all
c=1.5
% replicate loop
for i=1:nrep
    ymc=unifrnd(0, c,1,n);
    cmc(i)=2*mean(ymc);
end
% construct CDF for hypothesized c
normplot(cmc)
return
```


