
1.017/1.010 Class 11 
 Multivariate Probability

 

Multiple Random Variables 

Recall the dart tossing experiment from Class 4.  Treat the 2 dart 
coordinates as two different scalar random variables x and y. 

In this experiment the experimental outcome is the location where the dart 
lands.  The random variables x and y both depend on this outcome (they 
are defined over the same sample space).  In this case we can define the 
following events:  
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x and y are independent if A and B are independent events for all x and y: 

P(C) = P(AB) = P(A)P(B) 

Another example … 

Consider a time series constructing from a sequence of random variables 
defined at different times (a series of n seismic observations or stream 
flows x1, x2, x3, …, xn.).  Each possible time series can be viewed as an 
outcome ξ of an underlying experiment.  Events can be defined as above: 
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xi and xj are independent if: 

P(Aij) = P(Ai Aj) = P(Ai)P(Aj) 

Multivariate Probability Distributions  

Multivariate cumulative distribution function (CDF), for  x, y continuous 
or discrete: 
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Multivariate probability mass function (PMF), for x, y discrete:  
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Multivariate probability density function (PDF), for x, y continuous: 
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If x and y are independent:  
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Computing Probabilities from Multivariate Density Functions 

Probability that (x, y)∈ the region D: 
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Covariance and Correlation  
 

Dependence between random variables x and y is frequently described with the 
covariance and correlation: 
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Uncorrelated x and y:  Cov(x, y) = Correl (x, y) = 0 
  
Independence  implies uncorrelated (but not necessarily vice versa) 

Examples 
 

Two independent exponential random variables (parameters ax and ay): 
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ax = E(x), ay = E(y),  Correl(x,y) = 0 
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Two dependent normally distributed random variables (parameters µx, µy, σx , 
σy, and ρ): 
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Z = vector of random variables = [x  y]′ 
 
µ = vector of means = [ E(x)  E(y) ] ′ 
 

C = covariance matrix =C  
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x = Std(x),   σy = Std(y),   ρ = Correl(x,y) 
 
|C| = determinant of C =  
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Multivariate probability distributions are rarely used except when: 

 
1.  The random variables are independent 
2.  The random variables are dependent but normally distributed 

Exercise: 

Use the MATLAB function mvnrnd to generate scatterplots of correlated 
bivariate normal samples.  This function takes as arguments the means of x and 
y and the covariance matrix defined above (called SIGMA in the MATLAB 
documentation).  
 
Assume E[x] = 0, E[y] = 0, σx = 1, σy = 0.  Use mvnrnd to generate 100 (x, y) 
realizations .  Use plot to plot each of these as a point on the (x,y) plane (do not 
connect the points).    Vary the correlation coefficient ρ to examine its effect on 
the scatter.  Consider  ρ = 0., 0.5, 0.9.  Use subplot to put plots for all 3 ρ values 
on one page. 
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