1.017/1.010 Class 17
 Testing Hypotheses about Two Populations

Tests of differences between two populations
To test if two populations \boldsymbol{x} and \boldsymbol{y} are different we can compare specified distributional properties a_{x} and a_{y} (means, variances, 90 percentiles, etc.).

Null hypothesis:

$$
H 0: a_{x}=a_{y}=a_{0} \text { or } a_{x}-a_{y}=0
$$

The hypothesis test may be based on "natural" (unbiased and consistent) estimators of a_{x} and a_{y}, derived from the independent random samples \boldsymbol{x}_{1}, $\boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N x}$ and $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{N y}$:

$$
\begin{aligned}
& \hat{\boldsymbol{a}}_{x}=\hat{\boldsymbol{a}}_{x}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N x}\right) \\
& \hat{\boldsymbol{a}}_{y}=\hat{\boldsymbol{a}}_{y}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{N y}\right)
\end{aligned}
$$

We can derive a two-sided rejection region $R_{a 0}$ written in terms of a standardized statistic z, following the same basic procedure as in the single population case (see Class 15):

$$
\begin{aligned}
& \boldsymbol{z}\left(\hat{\boldsymbol{a}}_{x}, \hat{\boldsymbol{a}}_{y}, a_{x}, a_{y}\right)=\frac{\left(\hat{\boldsymbol{a}}_{x}-\hat{\boldsymbol{a}}_{y}\right)-\left(a_{x}-a_{y}\right)}{S D\left[\hat{\boldsymbol{a}}_{x}-\hat{\boldsymbol{a}}_{y}\right]} \\
& \boldsymbol{z}\left(\hat{\boldsymbol{a}}_{x}, \hat{\boldsymbol{a}}_{y}, a_{0}, a_{0}\right)=\frac{\left(\hat{\boldsymbol{a}}_{x}-\hat{\boldsymbol{a}}_{y}\right)}{S D\left[\hat{\boldsymbol{a}}_{x}-\hat{\boldsymbol{a}}_{y}\right]} \\
& R_{z 0}: \boldsymbol{z}\left(\hat{\boldsymbol{a}}_{x}, \hat{\boldsymbol{a}}_{y}, a_{0}, a_{0}\right) \leq z_{L}=F_{z}^{-1}\left(\frac{\alpha}{2}\right) \\
& \quad \boldsymbol{z}\left(\hat{\boldsymbol{a}}_{x}, \hat{\boldsymbol{a}}_{y}, a_{0}, a_{0}\right) \geq z_{U}=F_{z}^{-1}\left(1-\frac{\alpha}{2}\right)
\end{aligned}
$$

For large samples $\boldsymbol{z}\left(\hat{\boldsymbol{a}}_{x}, \hat{\boldsymbol{a}}_{y}, a_{0}, a_{0}\right)$ has a unit normal distribution if $H 0$ is true $\left(a_{x}=a_{y}=a_{0}\right)$. Use norminv to compute z_{L} and z_{U} from α.

We can also define a rejection region $R_{a 0}$ written in terms of the nonstandardized estimates:

$$
\begin{aligned}
R_{a 0}: \hat{a}_{x}-\hat{a}_{y} \leq \Delta a_{L} & =F_{z}^{-1}\left(\frac{\alpha}{2}\right) S D\left[\hat{\boldsymbol{a}}_{x}-\hat{\boldsymbol{a}}_{y}\right] \\
\hat{a}_{x}-\hat{a}_{y} \geq \Delta a_{U} & =F_{z}^{-1}\left(1-\frac{\alpha}{2}\right) S D\left[\hat{\boldsymbol{a}}_{x}-\hat{\boldsymbol{a}}_{y}\right]
\end{aligned}
$$

The two-sided p-value is obtained from:

$$
\begin{aligned}
& 1-p / 2=F_{z}[z]=F_{z}\left[\frac{\left(\hat{a}_{x}-\hat{a}_{y}\right)}{S D(\hat{\boldsymbol{a}})}\right] \quad \hat{a}_{x}-\hat{a}_{y} \geq 0 \\
& p / 2=F_{z}[z]=F_{z}\left[\frac{\left(\hat{a}_{x}-\hat{a}_{y}\right)}{S D(\hat{\boldsymbol{a}})}\right] \quad \hat{a}_{x}-\hat{a}_{y} \leq 0
\end{aligned}
$$

For large samples use normcdf to compute p from $\frac{\hat{a}_{x}-\hat{a}_{y}}{S D[\hat{\boldsymbol{a}}]}$.
Special Case: Large sample test of the difference between two means If the property of interest is the mean then:

$$
H 0: a_{x}=E[\boldsymbol{x}]=a_{y}=E[\boldsymbol{y}] \text { or } E[\boldsymbol{x}]-E[\boldsymbol{y}]=0
$$

Natural estimator of $E[\boldsymbol{x}]-E[\boldsymbol{y}]$ is $\boldsymbol{m}_{x^{-}} \boldsymbol{m}_{y}$.
In large sample case $\boldsymbol{m}_{x}-\boldsymbol{m}_{y}$ is normal with mean and variance:

$$
\begin{aligned}
& E\left[\boldsymbol{m}_{x}-\boldsymbol{m}_{y}\right]=E[\boldsymbol{x}]-E[\boldsymbol{y}] \quad \text { (unbiased) } \\
& \operatorname{Var}\left[\left(\boldsymbol{m}_{x}-\boldsymbol{m}_{y}\right)=\operatorname{Var}\left[\boldsymbol{m}_{x}\right]+\operatorname{Var}\left[\boldsymbol{m}_{y}\right]=\frac{\sigma_{x}^{2}}{N_{x}}+\frac{\sigma_{y}^{2}}{N_{y}} \quad\right. \text { (consistent) }
\end{aligned}
$$

Construct a large sample test statistic $z \sim N(0,1)$:

$$
\boldsymbol{z}=\frac{\boldsymbol{m}_{x}-\boldsymbol{m}_{y}}{\sqrt{\frac{\sigma_{x}^{2}}{N_{x}}+\frac{\sigma_{y}^{2}}{N_{y}}}} \approx \frac{\boldsymbol{m}_{x}-\boldsymbol{m}_{y}}{\sqrt{\frac{s_{x}^{2}}{N_{x}}+\frac{s_{y}^{2}}{N_{y}}}}
$$

Two-sided rejection region written in terms of m_{x} and m_{y} :

$$
\begin{aligned}
R_{a 0}: m_{x}-m_{y} & \leq \Delta a_{L}
\end{aligned}=F_{z}^{-1}\left(\frac{\alpha}{2}\right) S D\left[\boldsymbol{m}_{x}-\boldsymbol{m}_{y}\right] \quad \text { ma } \quad \begin{aligned}
& m_{z}\left(1-\frac{\alpha}{2}\right) S D\left[\boldsymbol{m}_{x}-\boldsymbol{m}_{y}\right]
\end{aligned}
$$

The two-sided p-value is obtained from:

$$
\begin{aligned}
1-p / 2 & =F_{z}(z)=F_{z}\left[\left(m_{x}-m_{y}\right)\left(\frac{s_{x}^{2}}{N_{x}}+\frac{s_{y}^{2}}{N_{y}}\right)^{-1 / 2}\right] m_{x} \geq m_{y} \\
p / 2 & =F_{z}(z)=F_{z}\left[\left(m_{x}-m_{y}\right)\left(\frac{s_{x}^{2}}{N_{x}}+\frac{s_{y}^{2}}{N_{y}}\right)^{-1 / 2}\right] \quad m_{x} \leq m_{y}
\end{aligned}
$$

Example: Comparing crop yields with and without fertilizer application

Consider two agricultural fields, one that is fertilized and one that is not. Yield samples (kg/ha) from the two fields are as follows:

| Fertilized $(x):$ | 66 | 41 | 77 | 80 | 52 | 98 | 99 | 74 | 81 | 78 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Not fertilized (y): | 65 | 88 | 55 | 124 | 66 | 72 | 96 | 71 | | |

Test the hypothesis $H 0$: Mean yields are the same with and without fertilizer

$$
\begin{array}{lll}
m_{x}= & s_{x}= & N_{x}= \\
m_{y}= & s_{y}= & N_{y}= \\
& & \\
z= & p= &
\end{array}
$$

