1.017/1.010 Class 19 Analysis of Variance

Concepts and Definitions

Objective: Identify factors responsible for variability in observed data

Specify one or more **factors** that could account for variability (e.g. location, time, etc.). Each factor is associated with a particular set of populations or **treatments** (e.g. particular sampling stations, sampling days, etc.). **One-way analysis of variance** (ANOVA) considers only a single factor.

Suppose a random sample $[x_{i1}, x_{i2}, ..., x_{iJ}]$ is obtained for treatment *i*. There are *i* =1,..., *I* treatments (e.g. each treatment may correspond to a different sampling location).

Arrange data in a table/array -- rows are treatments, columns are replicates:

$$\begin{bmatrix} x_{11}, x_{12}, ..., x_{1J} \\ [x_{21}, x_{22}, ..., x_{2J}] \\ \vdots \\ [x_{I1}, x_{I2}, ..., x_{IJ}] \end{bmatrix}$$

Here we assume each treatment has same number of replicates *J*. The ANOVA procedure may be generalized to allow different number of replicates for each treatment.

Each random sample has a CDF $F_{xi}(x_i)$. The different $F_{xi}(x_i)$ are assumed **identical** except for their means, which may differ. Classical ANOVA also assumes that all data are **normally distributed**.

Each random variable x_{ij} is decomposed into several parts, as specified by the following **one-factor model**:

$$\boldsymbol{x}_{ij} = \boldsymbol{\mu}_i + \boldsymbol{e}_{ij} = \boldsymbol{\mu} + \boldsymbol{a}_i + \boldsymbol{e}_{ij}$$

 $\mu_i = E[\mathbf{x}_{ij}]$ is unknown mean of \mathbf{x}_i (for all *j*). μ = unknown **grand mean** (average of $\mu_{i's}$). $a_i = \mu_i - \mu$ = unknown deviation of treatment mean from grand mean (often called an **effect**) e_{ij} = **random residual** for treatment *i*, replicate *j* $E[e_{ij}] = 0$, $Var[e_{ij}] = \sigma^2$, for all *i*, *j* Objective is to estimate/test values of a_i 's, which are the unknown distributional parameters of the $F_{xi}(x_i)$'s.

Formulating the Problem as a Hypothesis Test

If the factor does not affect variability in the data then all a_i 's = 0. Use hypothesis test:

H0:
$$a_1 = a_2 = \dots = a_I = 0$$

It is better to test all a_i simultaneously than individually or in pairs. Test that sum-of-squared a_i 's = 0.

H0:
$$\sum_{i=1}^{I} a_i^2 = 0$$

Derive a test statistic based on sums-of-squares of data.

Sums-of-Squares Computations

Define the sample treatment and grand means:

$$\boldsymbol{m}_{\boldsymbol{x}\boldsymbol{i}} = \frac{1}{J} \sum_{j=1}^{J} \boldsymbol{x}_{ij} = \overline{\boldsymbol{x}}_{i.}$$
$$\boldsymbol{m}_{\boldsymbol{x}} = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} \boldsymbol{x}_{ij} = \overline{\boldsymbol{x}}_{..}$$

The **total sum-of-squares** *SST* measures variability of *x*_{*ij*} around *m*_{*x*}:

$$SST = \sum_{i=1}^{I} \sum_{j=1}^{J} (x_{ij} - m_x)^2$$

= $\sum_{i=1}^{I} \sum_{j=1}^{J} (x_{ij} - m_{xi})^2 + \sum_{i=1}^{I} \sum_{j=1}^{J} (m_{xi} - m_x)^2$
= $SSE + SSTr$

SST can be divided into error sum-of-squares *SSE* and treatment sum-of-squares *SSTr*.

SSE measures variability of x_{ij} around m_{xi} , within treatments:

$$SSE = \sum_{i=1}^{I} \sum_{j=1}^{J} (x_{ij} - m_{xi})^2$$

SSTr measures variability of m_{xi} around m_x , across treatments:

$$SSTr = \sum_{i=1}^{I} \sum_{j=1}^{J} (m_{xi} - m_{x})^{2}$$

Error and treatment mean squared values:

$$MSE = \frac{SSE}{I(J-1)}$$
$$MSTr = \frac{SSTr}{I-1}$$
$$E[MSE] = \sigma^{2}$$
$$E[MSTr] = \sigma^{2} + \frac{J}{I-1} \sum_{i=1}^{I} a_{i}^{2}$$

MSE is an unbiased estimate of σ^2 , even if a_i 's are not zero. *MSTr* is an unbiased estimate of σ^2 , **only if** all a_i 's are zero.

Test Statistic

Use ratio *MSTr /MSE* as a test statistic:

$$\mathcal{F}(MSE, MSTr) = \frac{MSTr}{MSE}$$

When H0 is true and x_{ij} 's are **normally distributed** this statistic follows F **distribution** with $v_{Tr} = I - 1$ and $v_E = I(J-1)$ degrees of freedom. Check normality by plotting $(x_{ij} - m_{xi})$ with normplot.

One-sided rejection region (rejects only if *MSTr* is large):

$$R0: \mathcal{F}(MSE, MSTr) \geq F_{\mathcal{F}, v_{Tr}, v_{E}}^{-1}[\alpha]$$

One-sided *p*-value:

$$p = 1 - F_{\mathcal{F}, v_{Tr}, v_{F}} [\mathcal{F}(MSE, MStr)]$$

Unbalanced ANOVA problems with **different sample sizes for different treatments** can be handled by modifying formulas slightly (see Devore, Section 10.3).

Single Factor ANOVA Tables

Above calculations are typically summarized in an **ANOVA** table:

Source	SS	df	MS	F	р
Treatments	SSTr	$v_{Tr} = I-1$	$MSTr = \\SSTr/v_{Tr}$	$\mathcal{F} = MSTr/MSE$	$p = 1 - F_{\mathcal{F}, vTr, vE}(\mathcal{F})$
Error	SSE	$v_E = I(J-1)$	$MSE = \\SSE/v_E$		
Total	SST	$v_T = IJ-1$	$MST = \\SST/v_T$		

Example -- Effect of Season on Oxygen Level

Consider following set of dissolved oxygen concentration data (x_{ij}) obtained in 4 different seasons/treatments (rows), 6 replicates per season (columns):

5.62	6.12	6.62	6.21	7.08	5.36
7.70	8.31	8.80	8.24	7.87	7.44
2.52	5.44	4.94	2.99	4.39	4.44
6.77	6.65	6.01	6.26	7.09	6.05

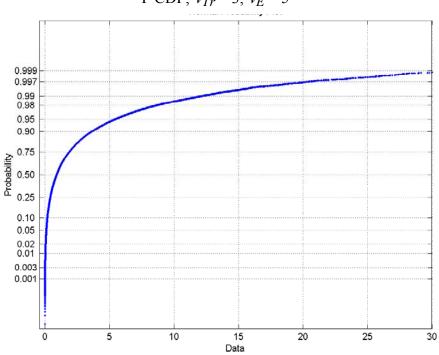
Use a single factor ANOVA to determine if season has a significant impact on oxygen variability.

The MATLAB anoval function derives the error and treatment sums of squares and computes *p* value. When using anoval be sure to transpose the data array (MATLAB requires treatments in columns and replicates in rows).

Results are presented in this standard single factor **ANOVA table**:

Source	SS	df	MS=SS/df	\mathcal{F}	p
Treatments	47.1642	3	15.7214	29.8	1.4E-7
Error	10.5518	20	0.5276		
Total	57.716	23			

The very low p value indicates that seasonality is **highly significant** in this case. Note that *MSTr*, which depends on the a_i 's, is much larger than *MSE*



F CDF, $v_{Tr} = 3$, $v_E = 5$

Copyright 2003 Massachusetts Institute of Technology Last modified Oct. 8, 2003