1.017/1.010 Class 4 Joint Probability, Independence, Repeated Trials

Joint Probabilities and Independence

Joint probability of 2 events A and B defined in the same sample space (probability that outcome lies in A and B):

$$
P(A B)=P(C) ; \text { where event } C=A \bigcap B=A B
$$

If A and B are independent then:

$$
P(A B)=P(A) P(B)
$$

Note that mutually exclusive events are not independent since if one occurs we know the other has not.

Example:

Consider the following events A and B defined from a die toss experiment with outcomes $\{1,2,3,4,5,6\}$

$$
A=\{2,4,6\} \quad B=\{1,2,3,4\}
$$

Then:

$$
P(A)=1 / 2, P(B)=2 / 3, \mathrm{P}(A B)=2 / 6=P(A) P(B)
$$

So A and B are independent.
Composite experiments
Related experiments are often conducted in a sequence.
For example, suppose we toss a fair coin (with 2 equally likely outcomes $\{H T\}$) and then throw a fair die (with 6 equally likely outcomes $\{1,2,3,4,5,6\}$). This process can be viewed as two separate experiments E_{1} and E_{2} with different sample spaces.

Or ... it can be viewed as a single composite experiment E (with 12 ordered equally likely outcomes $\{H 1, H 2, H 3, H 4, H 5, H 6, T 1, T 2, T 3, T 4, T 5, T 6\}$.

Events defined in E_{1} and E_{2} have equivalent events in E.
Example:

$$
A_{2}=\{2,3\} \text { in } E_{2} \text { corresponds to } A=\{H 2, H 3, T 2, T 3\} \text { in } E .
$$

A particular ordered sequence of events from E_{1} and E_{2} also has an equivalent event in E :

Example:

$$
A_{1}=\{H\} \text { in } E_{1} \text { then } A_{2}=\{2,3\} \text { in } E_{2} \text { corresponds to } A=\{H 2, H 3\} \text { in } E .
$$

Suppose that A is the composite experiment event that corresponds to event A_{1} from experiment E_{1} and then event A_{2} from experiment in E_{2}.
A_{1} and A_{2} are independent if:

$$
P_{E}(A)=P_{E 1}\left(A_{1}\right) P_{E 2}\left(\mathrm{~A}_{2}\right)
$$

The subscript on each probability identifies the corresponding experiment and sample space.

The events A_{1} and A_{2} defined in the above coin toss/die roll example satisfy the independence requirement.

Repeated trials

Repeated identical experiments are called repeated trials.

Example:

Consider a composite experiment composed of 3 successive fair coin tosses.

This experiment can yield $2^{3}=8$ equally likely ordered outcomes:
\{HHH, HHT, HTH, THH, HTT, THT, TTH, TTT\}
The probability of the event $A=$ \{exactly 2 heads in 3 tosses $\}$ is the fraction of total number of outcomes that yield exactly 2 heads:

$$
P(A)=3 / 8
$$

Now consider a particular composite experiment event:

$$
A_{1}=\{H\} \text { then } A_{2}=\{H\} \text { then } A_{3}=\{T\}
$$

Suppose the repeated trials are independent. Then the probability of this composite event is:
$P\left(A_{1}\right.$ then A_{2} then $\left.A_{3}\right)=P\left(A_{1}\right) P\left(A_{2}\right) P\left(A_{3}\right)=(1 / 2)(1 / 2)(1 / 2)=1 / 8$.
This is one of 3 mutually exclusive repeated trial event sequences that yield exactly 2 heads. It follows that the probability of exactly 2 heads is $3(1 / 8)=3 / 8$. Since this is equal to the probability obtained from the composite experiment the independence assumption is confirmed.

MIT Copyright 2003 Massachusetts Institute of Technology Last modified Oct. 8, 2003

