1.017/1.010 Class 6 Conditional Probability and Bayes Theorem

Conditional Probability

If two events A and B are not independent we can gain information about $P(A)$ if we know that an event in B has occurred. This is reflected in conditional probability of A given B, written as $P(A \mid B)$:

$$
P(A \mid B)=\frac{P(A B)}{P(B)}
$$

The unconditional probability $P(A)$ is often called the a priori probability while the conditional probability $P(A \mid B)$ is often called the a posteriori probability. Note that conditioning may take place in either direction:

$$
P(A B)=P(A \mid B) P(B)=P(B \mid A) P(A)
$$

Conditional probabilities are valid probability measures that satisfy all the fundamental axioms.

If A and B are independent:

$$
P(A \mid B)=P(A)
$$

Example:

$$
\begin{aligned}
& A=\{\text { Algae bloom occurs }\} \\
& B=\{\text { Daily average water temperature above } 25 \text { deg. C) }
\end{aligned}
$$

Obtain probabilities from long record of daily algae and temperature observations:

Suppose $P(A)=0.01, \quad P(B)=0.15, \quad P(A, B)=0.005$
Then:

$$
P(A \mid B)=\frac{P(A B)}{P(B)}=\frac{0.005}{0.15}=0.033
$$

Probability of a bloom increases significantly if we know that temperature is above 25 deg. C.

Bayes Theorem

Suppose that the sample space S is divided into a collection of n mutually exclusive events (sets) called a partition of S :

$$
\begin{aligned}
& S=\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right\} \\
& A_{i} A_{j}=0 \quad i \neq j
\end{aligned}
$$

Consider an arbitrary event B in S, as indicated in the diagram below:

The event B can be written as the union of the n disjoint (mutually exclusive) events $B A_{1}, B A_{2}, \ldots, B A_{\mathrm{n}}$:

$$
B=B A_{1}+B A_{2}+\ldots+B A_{\mathrm{n}}
$$

This implies total probability theorem:

$$
P(B)=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\ldots+P\left(B \mid A_{n}\right) P\left(A_{n}\right)
$$

The total probability theorem and the definition of the conditional probability may be used to derive Bayes theorem:

$$
P\left(A_{i} \mid B\right)=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P(B)}=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{P\left(B \mid A_{1}\right) P\left(A_{1}\right)(B)+\ldots+P\left(B \mid A_{n}\right) P\left(A_{n}\right)}
$$

Bayes rule updates $P\left(A_{\mathrm{i}}\right)$, given information on the probabilities of obtaining B when outcomes are $A_{1}, A_{2}, \ldots, A_{\mathrm{n}}$.

Example:

Consider a group of 10 water samples. Exactly 3 are contaminated. Define following events:

Event	Definition
C	Sample contaminated
C^{\prime}	Sample not contaminated

D	Contamination detected
D^{\prime}	Contamination not detected

$P(C)=0.3$ (based on 3 out of 10 samples contaminated)
Suppose sample analysis technique is imperfect. Based on calibration tests:

$$
\begin{array}{ll}
P(D \mid C)=0.9 & \text { Successful detection } \\
P\left(D \mid C^{\prime}\right)=0.4 & \text { False alarm }
\end{array}
$$

Bayes theorem (replace A_{1} with C, A_{2} with C^{\prime}, B with D):

$$
P(C \mid D)=\frac{P(D \mid C) P(C)}{P(D \mid C) P(C)+P\left(D \mid C^{\prime}\right) P\left(C^{\prime}\right)}=\frac{(0.9)(0.3)}{(0.9)(0.3)+(0.4)(0.7)}=0.5
$$

