1.017/1.010 Class 7 Random Variables and Probability Distributions

Random Variables

A random variable is a function (or rule) $\boldsymbol{x}(\xi)$ that associates a real number \boldsymbol{x} with each outcome ξ in the sample space S of an experiment. Assignment of such rules enables us to quantify a wide range of real-world experimental outcomes.

Example:
Experiment: Toss of a coin
Outcome: Heads or tails
Random Variable: $\boldsymbol{x}(\xi)=1$ if outcome is heads, $\boldsymbol{x}(\xi)=0$ if outcome is tails
Event: $\boldsymbol{x}(\xi)$ greater than 0

Probability Distributions

Random variables are characterized/defined by their probability distributions.
Cumulative distribution function (CDF)
Consider events:

$$
\boldsymbol{x}(\xi) \text { less than } x: A=\{\boldsymbol{x}(\xi) \leq x\}
$$

$\boldsymbol{x}(\xi)$ lies in the interval $\left[x_{l}, x_{u}\right]: B=\left\{x_{l}<\boldsymbol{x}(\xi) \leq x_{u}\right\}$
For any random variable \boldsymbol{x}... the cumulative distribution function (CDF) gives the probability that $\boldsymbol{x}(\xi)$ is less than a specified value x :

$$
F_{x}(x)=P[\boldsymbol{x}(\xi) \leq x]=P(A)
$$

The probability that $\boldsymbol{x}(\xi)$ is greater than x :

$$
P[\boldsymbol{x}(\xi)>x]=1-F_{x}(x)
$$

The probability that $\boldsymbol{x}(\xi)$ lies in interval $\left[x_{l}, x_{u}\right]$ is:

$$
P\left[x_{l}<\boldsymbol{x}(\xi) \leq x_{u}\right]=F_{x}\left(x_{u}\right)-F_{\boldsymbol{x}}\left(x_{l}\right)=P(B)
$$

Example: Discrete uniform CDF

$$
\begin{array}{ll}
F_{x}(x)=0.0 & x<0 \\
F_{x}(x)=0.3 & 0<x \leq 1 \\
F_{x}(x)=0.7 & 1<x \leq 2 \\
F_{x}(x)=1.0 & x>2
\end{array}
$$

Example: Continuous uniform CDF

$$
F_{x}(x)=0.4 x \quad 0<x \leq 2.5, \quad 0 \text { otherwise }
$$

Probability mass function (PMF)
For a discrete x with possible outcomes $x_{1} \ldots x_{N}$, PMF is probability of x_{i} :

$$
p_{x}\left(x_{i}\right)=P\left[\boldsymbol{x}(\xi)=x_{i}\right]=F_{x}\left(x_{i}\right)-F_{x}\left(x_{i}^{-}\right)
$$

The probability that $\boldsymbol{x}(\xi)$ lies in the interval $\left[x_{l}, x_{u}\right]$ is:

$$
P\left[x_{l}<\boldsymbol{x}(\xi) \leq x_{u}\right]=\sum_{x_{l}<\boldsymbol{x}_{i} \leq x_{u}} p_{x}\left(x_{i}\right)=P(B)
$$

Example: Discrete uniform PMF:

$$
\begin{aligned}
& p_{x}(0)=0.3 \\
& p_{x}(1)=0.4 \\
& p_{x}(2)=0.3
\end{aligned}
$$

Probability density function (PDF)
For a continuous $\boldsymbol{x} \ldots$. . PDF is derivative of CDF:

$$
f_{x}(x)=\frac{d F_{x}(x)}{d x}
$$

The probability that $\boldsymbol{x}(\xi)$ lies in the interval $\left[x_{l}, x_{u}\right]$ is:

$$
P\left[x_{l}<\boldsymbol{x}(\xi) \leq x_{u}\right]=\int_{x_{l}}^{x_{u}} f_{x}(x) d x=P(B)
$$

Example: Continuous uniform PDF

$$
f_{x}(x)=.4 \quad 0<x \leq 2.5, \quad 0 \text { otherwise }
$$

Exercise: Constructing probability distributions from virtual experiments

Consider a sequence of 4 repeated independent trials, each with the outcome 0 or 1 . Suppose that $P(0)=0.3$ and $P(1)=0.7$. Define the discrete random variable $\boldsymbol{x}=$ sum of the 4 trial outcomes (varies from 0 to 4).

There are $2^{4}=16$ possible experimental outcomes, each giving a particular value of \boldsymbol{x}. In some cases, several different outcomes give the same value of \boldsymbol{x} (e.g. $C_{1,4}=4$ outcomes give $\boldsymbol{x}=1$). This experiment yields a binomial probability distribution.

Plot the PMF and CDF of \boldsymbol{x}, using the rules of probability to evaluate $F_{x}(x)$ and $p_{x}\left(x_{i}\right)$ for $x_{i}=0,1,2,3,4$.

Duplicate these results with a virtual experiment that generates many sequences of 4 trials each. Derive $F_{x}(x)$ and $p_{x}\left(x_{i}\right)$ by evaluating the fraction of replicates that yield $x_{i}=0,1,2,3,4$.

Generalize your pencil and paper analysis to give a general expression for $p_{x}\left(x_{i}\right)$ when there are 100 rather than 4 repeated independent trials and x_{i} $=0,1,2,3, \ldots 100$. Plot the CDF and PDF.

Confirm your results with a virtual experiment.

