1.017/1.010 Class 7 Random Variables and Probability Distributions

Random Variables

A **random variable** is a function (or rule) $x(\xi)$ that associates a real number x with each outcome ξ in the sample space S of an experiment. Assignment of such rules enables us to quantify a wide range of real-world experimental outcomes.

Example:

Experiment: Toss of a coin Outcome: Heads or tails Random Variable: $x(\xi) = 1$ if outcome is heads, $x(\xi) = 0$ if outcome is tails Event: $x(\xi)$ greater than 0

Probability Distributions

Random variables are characterized/defined by their probability distributions.

Cumulative distribution function (CDF)

Consider events:

 $\mathbf{x}(\xi)$ less than x: $A = \{\mathbf{x}(\xi) \le x\}$

 $\boldsymbol{x}(\xi)$ lies in the interval $[x_l, x_u]$: $B = \{x_l < \boldsymbol{x}(\xi) \le x_u\}$

For **any** random variable $x \dots$ the **cumulative distribution function** (CDF) gives the probability that $x(\xi)$ is **less than** a specified value x:

 $F_{\boldsymbol{x}}(\boldsymbol{x}) = P[\boldsymbol{x}(\boldsymbol{\xi}) \le \boldsymbol{x}] = P(A)$

The probability that $x(\xi)$ is greater than *x*:

 $P[\mathbf{x}(\xi) > x] = 1 - F_{\mathbf{x}}(x)$

The probability that $x(\xi)$ lies in interval $[x_l, x_u]$ is:

$$P[x_{l} < \mathbf{x}(\xi) \le x_{u}] = F_{\mathbf{x}}(x_{u}) - F_{\mathbf{x}}(x_{l}) = P(B)$$

Example: Discrete uniform CDF

$F_x(x) = 0.0$	x < 0
$F_x(x) = 0.3$	$0 < x \le 1$
$F_x(x) = 0.7$	$1 < x \leq 2$
$F_x(x) = 1.0$	x > 2

Example: Continuous uniform CDF

 $F_x(x) = 0.4x$ $0 < x \le 2.5$, 0 otherwise

Probability mass function (PMF)

For a **discrete** *x* with possible outcomes $x_1...x_N$, PMF is probability of x_i :

$$p_x(x_i) = P[x(\xi) = x_i] = F_x(x_i) - F_x(x_i^{-})$$

The probability that $x(\xi)$ lies in the interval $[x_l, x_u]$ is:

$$P[x_l < \boldsymbol{x}(\xi) \le x_u] = \sum_{\substack{x_l < \boldsymbol{x}_i \le x_u}} p_x(x_i) = P(B)$$

Example: Discrete uniform PMF:

$$p_x(0) = 0.3$$

 $p_x(1) = 0.4$
 $p_x(2) = 0.3$

Probability density function (PDF)

For a **continuous** *x* . . . PDF is derivative of CDF:

$$f_x(x) = \frac{dF_x(x)}{dx}$$

The probability that $x(\xi)$ lies in the interval $[x_l, x_u]$ is:

$$P[x_l < \mathbf{x}(\xi) \le x_u] = \int_{x_l}^{x_u} f_x(x) dx = P(B)$$

Example: Continuous uniform PDF

$$f_x(x) = .4$$
 $0 < x \le 2.5$, 0 otherwise

Exercise: Constructing probability distributions from virtual experiments

Consider a sequence of 4 repeated independent trials, each with the outcome 0 or 1. Suppose that P(0) = 0.3 and P(1) = 0.7. Define the discrete random variable x =sum of the 4 trial outcomes (varies from 0 to 4).

There are 2^4 =16 possible experimental outcomes, each giving a particular value of *x*. In some cases, several different outcomes give the same value of *x* (e.g. $C_{1,4}$ = 4 outcomes give *x* = 1). This experiment yields a **binomial probability distribution**.

Plot the PMF and CDF of x, using the rules of probability to evaluate $F_x(x)$ and $p_x(x_i)$ for $x_i = 0, 1, 2, 3, 4$.

Duplicate these results with a virtual experiment that generates many sequences of 4 trials each. Derive $F_x(x)$ and $p_x(x_i)$ by evaluating the fraction of replicates that yield $x_i = 0, 1, 2, 3, 4$.

Generalize your pencil and paper analysis to give a general expression for $p_x(x_i)$ when there are 100 rather than 4 repeated independent trials and $x_i = 0, 1, 2, 3, ... 100$. Plot the CDF and PDF.

Confirm your results with a virtual experiment.

