Tools for Project Evaluation

Nathaniel Osgood 1.040/1.401J

2/11/2004

Basic Compounding

- Suppose we invest \$x in a bank offering interest rate i
- If interest is compounded annually, asset will be worth
 - \blacksquare \$x(1+i) after 1 years
 - $$x(1+i)^2$ after 2 years$
 - $$x(1+i)^3$ after 3 years
 - $$x(1+i)^n$ after n years$

Opportunity Cost & The Time Value of Money

■ If we assume

- money can always be invested in the bank (or some other reliable source) now to gain a return with interest later
- That as rational actors, we will never make an investment which we know to offer less money than we could get in the bank

Then

- money in the present can be thought as of "equal worth" to a larger amount of money in the future
- Money in the future can be thought of as having an equal worth to a lesser "present value" of money

Notation

Cost Time Revenue Simple investment

Equivalence of Present Values

- Given a source of reliable investments, we are indifferent between any cash flows with the same present value they have "equal worth"
- This indifferences arises b/c we can convert one to the other with no extra expense

Future to Present Revenue

Given Future Revenue in year t...

■ Borrow a smaller amt now from reliable source

 Transforms future revenue to equivalent present revenue, at no additional cost burden

 $r/(1+i)^t$

Future to Present Cost

■ Given Future Cost in year t...

■ Invest a smaller amt now in reliable source c / c / c / (1+i)^t

Transforms future cost to equivalent present cost, with no additional cost burden

Present to Future Revenue

■ Given Present Revenue...

r

■ Invest all now in reliable source; withdraw at t

$$r(1+i)^t$$

r

Transforms present revenue to equivalent future revenue, at no additional cost burden

$$r(1+i)^t$$

Present to Future Cost

- Given a present cost...
 - С
- Borrow = amt now from source; pay back at t

$$c(1+i)^t$$

Transforms current cost to equivalent future,
 with no additional cost burden

Summary

- Given a reliable source offering annual return i we can shift costlessly between cash flow v at time 0 and v(1+i)^t at time t
- Because we can flexibly switch from one such value to another without cost, we can view these values as equivalent
- The present value of a cash flow v at time t is just $v/(1+i)^t$

Notion of Net Present Value

- Suppose we had
 - A collection (or *stream*) of costs and revenues in the future
 - A certain source of borrowing/saving (at same rate)
- The net present value (NPV) is the sum of the present values for all of these costs and revenues
 - Treat revenues as positive and costs as negative

Understanding Net Present Value

- NPV (and PV) is relative to a discount rate
 - In our case, this is the rate for the "reliable source"
- NPV specifies the
 - Value of the cash stream *beyond* what could be gained if the revenues were returns from investing the costs (at the appropriate times) in the "reliable source"
 - The "reliable source" captures the *opportunity cost* against which gains are measured
- Key point: NPV of "reliable source" is 0
 - PV(revenue from investment)=PV(investment cost)

Example: High-Yield Investment

- Assume reliable source with 10% annual interest
- Invest \$100 in high-risk venture at year 0
- Receive \$121 back at year 1
- What is the net present value of this investment?
- What is the net future value of this investment?
- What does this mean?

Example: Money in Mattress

- Assume reliable source with 10% annual interest
- Place \$100 in mattress at year 0
- Retrieve \$100 from mattress at year 1
- What is the net present value of this investment?
- What does this mean?

Discounted Cash Flow

- Computing Present Value (PV) of costs & benefits involves successively discounting members of a cash flow stream
 - This is because the value of borrowing or investment to/from the "reliable source" rises exponentially
- This notion is formalized through
 - Choice of a **discount rate r**
 - In the absence of risk or inflation, this is just the interest rate of the "reliable source" (gain through opportunity costs)
 - Applying discount factor $1/(1+r)^t$ to values at time t

Outline

- ✓ Session Objective
- ✓ Project Financing
 - ✓ Public
 - ✓ Private
 - ✓ Project
 - ✓ Contractor
 - ✓ Additional issues
- Financial Evaluation
 - ✓ Time value of money
 - ✓ Present value
 - ✓ NPV & Discounted cash flow
 - Simple Examples
 - Formulae
 - IRR
- Missing factors

Develop or not Develop

- Is any individual project worthwhile?
- Given a list of feasible projects, which one is the best?
- How does each project rank compared to the others on the list?
 - "Objective: Strive to secure the highest net dollar return on capital investments which is compatible with the risks incurred"

We can EITHER Use NPV to

- Evaluate a project against some opportunity cost
 - Use this opportunity to set the discount rate r

■ Use NPV to choose the best among a set of (mutually exclusive) alternative projects

Rates

- Discount Rate:
 - Worth of Money + risk
- Minimum Attractive Rate of Return (MARR)
 - Minimum discount rate accepted by the market corresponding to the risks of a project

Choice of Discount Rate

```
|\mathbf{r} = \mathbf{r_f} + \mathbf{r_i} + \mathbf{r_r}
```

Where:

- r is the discount rate.
- r_f the risk free interest rate. Normally government bond.
- r_i Rate of inflation. It is measured by either by consumer price index or GDP deflator.
- r_r Risk factor consisting of market risk, industry risk, firm specific risk and project risk.

Project Evaluation Example

Warehouse A

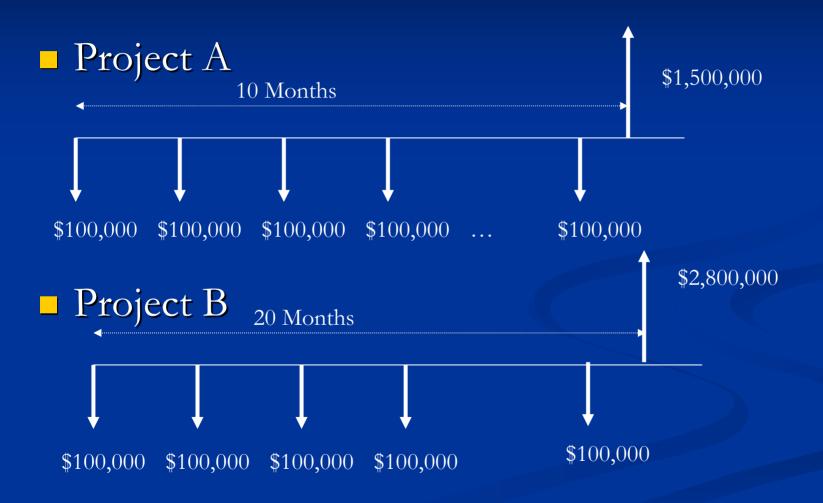
- Warehouse B
- Construction=10 months Construction=20 months
- Cost = \$100,000/month Cost = \$100,000/month

■ Sale Value=\$1.5M

■ Sale Value=\$2.8M

■ Total Cost?

■ Total Cost?


Profit?

Profit?

■ Better than B?

■ Better than A?

Drawing out the examples

Outline

- ✓ Session Objective
- ✓ Project Financing
 - ✓ Public
 - ✓ Private
 - ✓ Project
 - ✓ Contractor
 - ✓ Additional issues
- Financial Evaluation
 - ✓ Time value of money
 - ✓ Present value
 - ✓ NPV & Discounted cash flow
 - ✓ Simple Examples
 - Formulae
 - IRR
- Missing factors

Interest Formulas

- i = Effective interest rate per interest period (discount rate of MARR)
- t = Number of compounding periods
- PV = Present Value
- NPV = Net Present Value
- FV = Future Value
- A = Annuity

Interest Formulas: Payments

Single Payment Compound Amount Factor

$$\blacksquare$$
 (F/P, $i\%$, n) = $(1 + i)^n$

Single Payment Present Worth Factor

$$\blacksquare$$
 (P/F, $i\%$, n) = 1/(1 + i)ⁿ = 1/(F/P, $i\%$, n)

Uniform Series Compound amount Factor

$$(F/A, i\%, n) = (1 + i)^n - 1 / i$$

Uniform Series Sinking Fund Factor

■
$$(A/F, i\%, n) = i / (1 + i)^n - 1 = 1 / (F/A, i\%, n)$$

Pena-Mora 2003

Interest Formulas: Series

Uniform Series Present Worth Factor

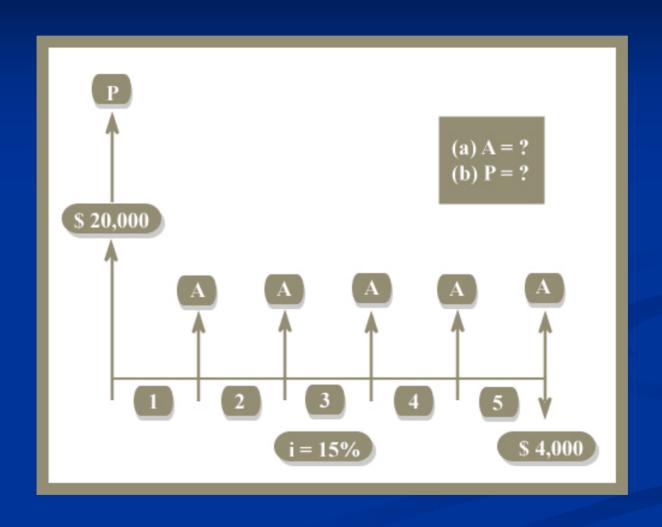
$$\blacksquare$$
 (P/A, i %, n) = 1/ i - 1/ i (1 + i)ⁿ

Uniform Series Capital Recovery Factor

•
$$(A/P, i\%, n) = [i(1+i)^n] / [(1+i)^n - 1] = 1 / (P/A, i\%, n)$$

Note on Continuous Compounding

- To this point, we have considered annual compounding of interest
- Consider more frequent compounding
 - Interest is in %/year
 - Fraction of interest gained over time Δt (measured in years)= $i\Delta t$
 - For n compounding periods/year, effective rate for entire year is


$$\left(1+\frac{i}{n}\right)^n$$

- As $n \to \infty$ we approach continuous compounding and quantity approaches e^i
- Over t years, we have eit

Equipment Example

- \$ 20,000 equipment expected to last 5 years
- \$ 4,000 salvage value
- Minimum attractive rate of return 15%
- What are the?
 - A Annual Equivalent
 - B Present Equivalent

Equipment Example

Outline

- ✓ Session Objective
- ✓ Project Financing
 - ✓ Public
 - ✓ Private
 - ✓ Project
 - ✓ Contractor
 - ✓ Additional issues
- Financial Evaluation
 - ✓ Time value of money
 - ✓ Present value
 - ✓ NPV & Discounted cash flow
 - ✓ Simple Examples
 - ✓ Formulae
 - IRR
- Missing factors

Internal Rate of Return (IRR)

- Identifies the rate of return on an investment
 - Example: Geometrically rising series of values
- Typical means of computing: Identify the discount rate that sets NPV to 0

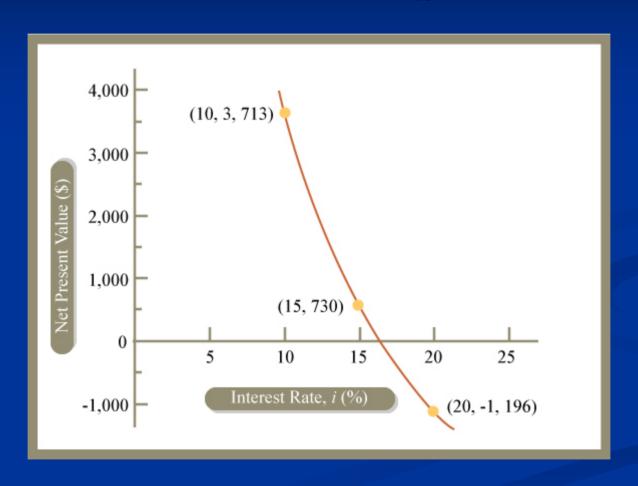
IRR Investment Rule

"Accept a project with IRR larger than the discount rate."

Alternatively,

"Maximize IRR across mutually exclusive projects."

Pena-Mora 2003


Internal Rate-of-Return Method (IRR) Example

	MACHINE A
Initial cost	\$ 20,000
Life	5 years
Salvage value	\$ 4,000
Annual receipts	\$ 10,000
Annual disbursements	\$ 4,400

0(r%) = -20,000 + 5,600 (P/A, r%, 5) + 4,000 (P/F, r%, 5)

= i = +/- 16.9% > 15% then the project is justified

Internal Rate-of-Return Method (IRR) Graph

IRR vs. NPV

- Most times, IRR and NPV give the same decision / ranking among projects.
- IRR does not require to assume (or compute) discount rate.
- IRR only looks at *rate* of gain not *size* of gain
- IRR ignores capacity to reinvest
- IRR may not be unique (payments in lifecycle):

Trust NPV: It is the *only* criterion that ensures wealth maximization

Pena-Mora 2003

Other Methods I

- Benefit-Cost ratio (benefits/costs) or reciprocal
 - Discounting still generally applied
 - Accept if <1
 - Common for public projects
 - Does not consider the absolute *size* of the benefits
 - Can be difficult to determine whether something counts as a "benefit" or a "negative cost"
- Cost-effectiveness
 - Looking at non-economic factors
 - Discounting still often applied for non-economic
 - \$/Life saved
 - \$/QALY

Other Methods II

- Payback period ("Time to return")
 - Minimal length of time over which benefits repay costs
 - Typically only used as secondary assessment
 - Drawbacks
 - Ignores what happens after payback period
 - Does not take discounting into account
 - Discounted version called "capital recovery period"
- Adjusted internal rate of return (AIRR)

Outline

- ✓ Session Objective
- ✓ Project Financing
 - ✓ Public
 - ✓ Private
 - ✓ Project
 - ✓ Contractor
 - ✓ Additional issues
- Financial Evaluation
 - ✓ Time value of money
 - ✓ Present value
 - ✓ NPV & Discounted cash flow
 - ✓ Simple Examples
 - ✓ Formulae
 - ✓ IRR
- Missing factors

What are we Assuming Here?

- That only quantifiable monetary benefits matter
- Certain knowledge of future cash flows
- Present value (discounting) using equal rates of borrowing/lending

Money is not Everything

- Social Benefits
 - Hospital
 - School
 - Employment opportunities
- Intangible Benefits
 - New cafeteria
- Strategic benefits
 - Partnering with firm for long-term relationship

We are missing critical uncertainties

- Revenue
 - Level of occupancy
 - Elasticity and Level of cost
 - Duration of project
 - **■** Post-construction revenue
 - Sale of building
- Costs
 - **■** Construction costs
 - Environmental conditions
 - Labor costs
 - Size of lowest bid
 - Variable interest rates
 - Maintenance costs
 - Energy costs
 - How quickly items wear out
 - Labor costs