Design Exercise 6
 1.050 Solid Mechanics Fall 2004

You are to design a new experiment for 1.105 , one which will demonstrate the effect of an axial load on the bending stiffness of a beam constrained as shown in the appendix. The proposed experimental set-up is shown in the figure.

The beam is actually two (or four) identical "flexures" whose ends, firmly fixed to the rigid plate at some distance L above the "ground" may still move freely in the horizontal direction.

Specifications are:

- Maximum values for the weight P and the force F are limited to the maximum weights we used in our experiments this semester in 1.105.
- The horizontal deflection Δ should be visible, on the order of 0.1 inches. A dial gage will be used to obtain exact values.
- The apparatus should fit within the area available at a bay in the lab.
- A reduction in stiffness of at least 50% (from the $P=0$ value) should be possible.
- The flexures are to be made of a high strength steel and should not yield.

$$
\begin{aligned}
& \text { Tensile Strength }=140 \mathrm{E} 03 \mathrm{psi} \\
& \text { Yield Strength }=80 \mathrm{E} 03 \mathrm{psi}
\end{aligned}
$$

The attached catalogue sheet shows a range of stock sizes for flexure material. ${ }^{1}$

Appendix

In class last week, we set-up and solved the buckling problem of a beam fixed at one end - $x=0$ in the figure - and constrained, in what at first appears to be a very unlikely condition, at the other end $x=L$, namely, the transverse deflection is unrestrained while the slope of the deflected curve is constrained to be zero. The first of these conditions implies that the shear force is zero at $x=L$.

We solved the homogeneous differential equation

$$
\text { (EI) } \cdot \frac{d^{4} v}{d x^{4}}+P \cdot \frac{d^{2} v}{d x^{2}}=0
$$

with the homogeneous boundary conditions:

$$
\begin{array}{r}
v(0)=\left.0 \quad \frac{d v}{d x}\right|_{x=0}=0 \quad \text { at } x=0 \\
\text { and } \\
\left.\frac{d v}{d x}\right|_{x=L}=0 \\
(E I) \cdot \frac{d^{3} v}{d x^{3}}+P \cdot \frac{d v}{d x}=-V=0 \quad \text { at } x=L
\end{array}
$$

but, since the slope was zero at $\mathrm{x}=\mathrm{L}$, this last condition became $\frac{d^{3} v}{d x^{3}}=0 \quad$ at $x=L$.
The general solution to the differential equation is:

$$
v(x)=c_{1}+c_{2} x+c_{3} \sin \sqrt{\frac{P}{E I}} x+c_{4} \cos \sqrt{\frac{P}{E I}} x .
$$

and the boundary conditions gave four homogeneous equations for the four constants, the c's, namely:
at $x=0$.

$$
\begin{array}{rlllll}
v(0)=0: & c_{1} & & +c_{4} & =0 \\
d v / d x=0: & & c_{2} & \lambda c_{3} & & =0
\end{array}
$$

at $x=L$.

$$
\begin{gathered}
d v / d x=0 \\
d^{3} v / d x^{3}=0
\end{gathered}
$$

$$
\begin{array}{rll}
c_{2} \quad & +(\lambda \cos \lambda L) c_{3} & -(\lambda \sin \lambda L) c_{4}=0 \\
& +\left(\lambda^{3} \cos \lambda L\right) c_{3} & -\left(\lambda^{3} \sin \lambda L\right) c_{4}=0
\end{array}
$$

where we set

$$
\lambda=\sqrt{\frac{P}{E I}}
$$

For a non-trivial solution of this system, the determinant of the coeficients must vanish. This led to the condition

$$
\sin \lambda L=0
$$

which gave a lowest buckling load of $\lambda L=\pi$.
The corresponding buckling mode shape was obtained from the boundary conditions, attempting to solve for the c's. From the last condition, with $\sin \lambda L=0$, we obtained $c_{3}=0$; the third then gave $c_{2}=0$; leaving us with the first which required $c_{1}=-c_{4}$. and hence the mode shape

$$
\left.v\right|_{\text {mode }}(x)=c_{4} \cdot\left(1-\cos \frac{\pi x}{L}\right)
$$

We now consider the same structural system, but in addition to the axial load P , we apply a transverse force F at the end $\mathrm{x}=\mathrm{L}$. The figure below shows our new set-up.

The differential equation remains the same and three of the four boundary conditions remain the same. But the condition at $x=L$ on the shear changes for now we have, consistent with our usual sign convention:

$$
V=F .
$$

So our boundary conditions now are:

$$
\begin{array}{r}
v(0)=\left.0 \quad \frac{d v}{d x}\right|_{x=0}=0 \quad \text { at } x=0 \\
\text { and } \\
\left.\frac{d v}{d x}\right|_{x=L}=0 \quad(E I) \cdot \frac{d^{3} v}{d x^{3}}+P \cdot \frac{d v}{d x}=-F \quad \text { at } x=L
\end{array}
$$

and again, since the slope was zero at $\mathrm{x}=\mathrm{L}$, this last condition becomes $\frac{d^{3} v}{d x^{3}}=-\frac{F}{E I} \quad$ at $x=L$.
This is a significantly different problem now. It is no-longer an eigenvalue problem because we no longer are presented with a homogeneous system of equations. In fact, we can now solve explicitly for the c's from the boundary conditions:
at $x=0$.

$$
\begin{array}{rlllll}
v(0) & =0: & c_{1} & & & +c_{4} \\
d v / d x=0: & & c_{2} & \lambda c_{3} & & =0 \\
& & & &
\end{array}
$$

at $x=L$.

$$
\begin{array}{llrl}
d v / d x=0: & c_{2} & +(\lambda \cos \lambda L) c_{3} & -(\lambda \sin \lambda L) c_{4} \quad=0 \\
d^{3} v / d x^{3}=-F / E I: & & +\left(\lambda^{3} \cos \lambda L\right) c_{3} & -\left(\lambda^{3} \sin \lambda L\right) c_{4}
\end{array}=F / E I
$$

The solution to these, which you are to verify, is:

$$
c_{1}=\frac{F}{\lambda^{3} E I} \cdot \frac{(1-\cos \lambda L)}{\sin \lambda L} \quad c_{2}=-\frac{F}{\lambda^{2} E I} \quad c_{3}=\frac{F}{\lambda^{3} E I} \quad \text { and } \quad c_{4}=-\frac{F}{\lambda^{3} E I} \cdot \frac{(1-\cos \lambda L)}{\sin \lambda L}
$$

so the transverse displacement at any x is:

$$
v(x)=\frac{F}{\lambda^{3} E I} \cdot\left[\frac{(\cos \lambda L-1)}{\sin \lambda L} \cdot(\cos \lambda x-1)-\lambda x+\sin \lambda x\right] \text { and }
$$

at $\mathrm{x}=\mathrm{L}$, the displacement is $v(L)=\Delta=\frac{F}{\lambda^{3} E I} \cdot\left[\frac{2(1-\cos \lambda L)}{\sin \lambda L}-\lambda L\right]$ which you should also verify**.

$$
\text { If we let } \alpha \equiv \lambda L \text { we can write: } \Delta=\frac{F L^{3}}{\alpha^{3} E I} \cdot\left[\frac{2(1-\cos \alpha)}{\sin \alpha}-\alpha\right] * *
$$

which, for small alpha - which means for small axial load P - I can show that

$$
\Delta=\frac{F L^{3}}{12 E I} \cdot\left[1+\text { terms of order } \alpha^{2}\right]
$$

which should look familiar. (Recall Problem 11.1). For alpha not small we can write

$$
F=K \cdot \Delta \quad \text { where } \quad K=\frac{12 E I}{L^{3}} \cdot \frac{\alpha^{3}}{12}\left[\frac{\sin \alpha}{2(1-\cos \alpha)-\alpha \sin \alpha}\right] \quad * *
$$

So we see that the stiffness of the system, the K, depends upon the axial load P. If we let K_{0} be the stiffness with no axial load, $P=a=0$, i.e., $K_{0}=12 E I / L^{3}$ we can write

$$
K=K_{0} \cdot f(\alpha) \quad \text { where } \quad f(\alpha)=\frac{\alpha^{3}}{12}\left[\frac{\sin \alpha}{2(1-\cos \alpha)-\alpha \sin }\right] \quad * *
$$

and plot f as a function of alpha.

Note that when $\alpha=\pi$, the stiffness vanishes! This means that it requires no transverse force F to produce a transverse displacement! Note too that $\alpha=\pi$ means that the axial load is just equal to the buckling load of the system found previously.

The bending moment distribution along the flexure is obtained from the moment curvature relationship, knowing $v(x)$.

$$
M_{b}=E I \frac{d^{2} v}{d x^{2}}
$$

Verify that the bending moment distribution may be written

$$
M_{b}=F L \cdot\left[\frac{\cos \alpha\left(\frac{x}{L}\right)-\cos \alpha\left(1-\frac{x}{L}\right)}{\alpha \sin \alpha}\right]
$$

and that its maximum (in magnitude) is obtained at either end of the beam.

