Problem Set \#10 1.050 Solid Mechanics
 Fall 2004

(Due Friday, 19 November)

Problem 10.1

1.1 For the "W18x50" section shown at the right: Verify the values given for the mass/length, the crosssectional area, and the two moments of inertia. (Note that Moment of Inertia ($x x$) refers to the moment of inertia about the " x-x" axis, what we have labeled, "I"). That is

$$
\mathrm{I}=\mathrm{I}_{(\mathrm{xx})}=\int_{\mathrm{A}} \mathrm{y}^{2} \cdot \mathrm{dA}
$$

The (yy) refers to the moment of inertia about the " y - y " axis.

W18x50	,
Weigh'Length $=5.0 \mathrm{E}+1 \mathrm{lbift}$	$7.4 \not \subset 6 \text { in }$
Cross-sectional Area $=1.467 \mathrm{E}+1$	$\stackrel{4}{\stackrel{7407}{ }}$
in2	$\square \uparrow$
Moment of Inertia $(x x)=8.001 \mathrm{E}+2$ in4	0.355 in
Section Modulus $=8.93 \mathrm{E}+1 \mathrm{in} 3$	\longrightarrow
Moment of Inertia(y) $=4.0 \mathrm{E}+1$	18.006
in 4	
Section Modulus $=1.07 \mathrm{E}+1 \mathrm{in} 3$	$\xrightarrow{\sim}$
St Venant Torsion $=1.243 \mathrm{E}+0$ in 4	0.571 in

Problem 10.2

A steel wire, with a radius of 0.0625 in , with a yield strength of 120×10^{3} psi, is wound around a circular cylinder of radius $R=20 \mathrm{in}$. for storage. What if your boss, seeking to save money on storage costs, suggests reducing the radius of the cylinder to $R=12$ in. How do you respond?

Problem 10.3

1.1 A steel reinforced beam is to be made such that the steel and the concrete fail simultaneously.

$$
\begin{aligned}
& \text { If } \quad \mathrm{E}_{\mathrm{S}}=30 \mathrm{e} 06 \mathrm{psi} \text { steel } \\
& \quad \mathrm{E}_{\mathrm{c}}=3.6 \mathrm{e} 06 \mathrm{psi} \text { concrete } \\
& \text { and taking } \\
& \sigma_{\text {failure steel }}=40,000 \mathrm{psi} \\
& \sigma_{\text {failure concrete }}=4,000 \mathrm{psi} \text { (compression) }
\end{aligned}
$$

how must β be related to d / h for this to be the case?
Now, letting $\lambda=\frac{2 \cdot \mathrm{E}_{\mathrm{s}} \cdot \mathrm{nA}_{\mathrm{s}}}{\mathrm{E}_{\mathrm{c}} \cdot \mathrm{bh}}$ find d / h and β values for a range of "realistic" values for the area ratio, ($\mathrm{nAs} / \mathrm{bh}$), hence for a range of values for Λ.

Make a sketch of one possible composite cross-section showing the location of the reinforcing rod. Take the diameter of the rod as 0.5 inches.

