Problem 1.1

(a) Push the box up

(b) Support the box not to slide down

Figure 1.1 (a) and (b) shows the directions of forces acting on the box in both cases.
Case 1: Pushing the box up.

$$
\begin{aligned}
& \sum F_{x}=F-f(\cos 40)-\mathrm{N}(\sin 40)=0 \\
& \sum F_{y}=N(\cos 40)-W-f(\sin 40)=0 \\
& f=\mu N=0.35 \mathrm{~N} \\
& F=0.911 N \\
& N=1.848 W \\
& F=1.684 W
\end{aligned}
$$

Case 2: Support the box not to slide down

$$
\begin{aligned}
& \sum F_{x}=F+f(\cos 40)-\mathrm{N}(\sin 40)=0 \\
& \sum F_{y}=N(\cos 40)-W+f(\sin 40)=0 \\
& N=1.01 W
\end{aligned}
$$

$$
F=0.378 W
$$

Problem 1.2

See comments on your problem set and in the class.

Problem 1.3

Figure 3.1 shows the FBD of the beam
Let's consider a more generic situation where the load F_{A} is acting at a distance x from point B and acting at an angle of θ.

$$
\begin{aligned}
& \sum F_{x}=F_{A}(\cos \theta)-B_{x}=0 \\
& \sum F_{y}=F_{A}(\sin \theta)+B_{y}-P=0 \\
& \sum M_{B}=F_{A}(\cos \theta)(h)+F_{A}(\sin \theta)(x)-P L=0 \\
& F_{A}[h(\cos \theta)+x(\sin \theta)]=P L
\end{aligned}
$$

$$
\begin{aligned}
& F_{A}=\frac{P L}{[h(\cos \theta)+x(\sin \theta)]} \\
& B_{x}=\frac{P L(\cos \theta)}{[h(\cos \theta)+x(\sin \theta)]} \\
& B_{y}=P-\frac{P L(\sin \theta)}{[h(\cos \theta)+x(\sin \theta)]}
\end{aligned}
$$

Problem 1.4

This problem is similar to the one in the problem 1.3. We can use the equations we developed in the 1.3 to solve this problem. We get that $\mathrm{x}=9 l / 2, \mathrm{~h}=l / 2$, and $\theta=30$ degree.

We get that

$$
\begin{aligned}
F_{A} & =\frac{P L}{[h(\cos \theta)+x(\sin \theta)]}=\frac{7 P l}{2.683 l}=2.609 P \\
B_{x} & =\frac{P L(\cos \theta)}{[h(\cos \theta)+x(\sin \theta)]}=\frac{6.062 P l}{2.683 l}=2.259 P \\
B_{y} & =P-\frac{P L(\sin \theta)}{[h(\cos \theta)+x(\sin \theta)]}=P-\frac{3.5 P l}{2.683 l}=-0.305 P
\end{aligned}
$$

The negative sign of B_{y} means that the actual direction of the reaction B_{y} is opposite of the one we assumed in the figure 3.1.

