Problem Set \#4 Solution
 Fall 2004

Problem 4.1

An automobile tire normally requires internal pressure from 24-36 psi. This pressure might be higher under certain situations. We will take an internal pressure as 32 psi for this problem. Let's say that a soda can have 3 inches diameter. We get that:

Problem 4.2

$$
\begin{aligned}
& \sigma_{a}=p_{i}\left(\frac{R}{2 t}\right) \\
& \sigma_{a}=32\left(\frac{1.5}{2 \cdot 0.0025}\right)=9600 \mathrm{psi} \\
& \sigma_{\theta}=p_{i}\left(\frac{R}{t}\right) \\
& \sigma_{\theta}=32\left(\frac{1.5}{0.0025}\right)=19200 \mathrm{psi}
\end{aligned}
$$

In this problem, you can solve it either using mathematic equation or drawing a Mohr's circle. I will provide the mathematic solution here (drawing a Mohr's circle is an acceptable method and relatively easy and quick to do as well).

$$
\begin{aligned}
& \sigma_{x}^{\prime}=\left[\frac{\sigma_{x}+\sigma_{y}}{2}\right]+\left[\frac{\sigma_{x}-\sigma_{y}}{2}\right] \cos 2 \phi+\sigma_{x y}(\sin 2 \phi) \\
& \sigma_{y}^{\prime}=\left[\frac{\sigma_{x}+\sigma_{y}}{2}\right]-\left[\frac{\sigma_{x}-\sigma_{y}}{2}\right] \cos 2 \phi-\sigma_{x y}(\sin 2 \phi) \\
& \sigma_{x y}^{\prime}=-\left[\frac{\sigma_{x}-\sigma_{y}}{2}\right] \sin 2 \phi+\sigma_{x y}(\cos 2 \phi)
\end{aligned}
$$

We get that, when $\phi=30$ degree,

$$
\begin{aligned}
& \sigma_{x}^{\prime}=\left[\frac{6+(-2)}{2}\right]+\left[\frac{6-(-2)}{2}\right] \cos 60+4(\sin 60)=7.464 \\
& \sigma_{y}^{\prime}=\left[\frac{6+(-2)}{2}\right]-\left[\frac{6-(-2)}{2}\right] \cos 60-4(\sin 60)=-3.464 \\
& \sigma_{x y}^{\prime}=-\left[\frac{6-(-2)}{2}\right] \sin 60+4(\cos 60)=-1.464
\end{aligned}
$$

Knowing that the shear stress component will vanish on planes that yield maximum and minimum normal stress components, we get that:

So $\phi=22.5$ degree .

$$
\begin{aligned}
& \sigma_{x y}^{\prime}=-\left[\frac{6-(-2)}{2}\right] \sin 2 \phi+4(\cos 2 \phi)=0 \\
& -4(\sin 2 \phi)+4(\cos 2 \phi)=0 \\
& \tan 2 \phi=1
\end{aligned}
$$

Problem 4.3

A thin walled glass tube of radius $R=1$ inch, and wall thickness $t=0.05$ inches, is closed at both ends and contains a fluid under pressure, $p=80$ psi. A torque, M_{t} of 300 inch-lbs, is applied about the axis of the tube.

Compute the stress components relative to a coordinate frame with its x axis in the direction of the tube's axis, its y axis circumferentially directed and tangent to the surface.
Determine the maximum tensile stress and the orientation of the plane upon which it acts.
For this problem, we know that $R=1$ inch, $t=0.05$ inches, $p_{i}=80 \mathrm{psi}$, and $M_{t}=300$ inch-lbs. Figure shows the sketch of the tube and an element subjected to the stresses caused by the internal pressure and the applied torque.

If we assume the torque produces a force per unit length, f_{R}, uniformly distributed around the circumference, we have, from moment equilibrium about the axis of the can: $M_{t}=2 \pi R \cdot f_{R} \cdot R$

Now if we also assume the force per unit length of the circumference is uniformly distributed across the thickness of the can we have

$$
\tau=\left(f_{R} / t\right)=\frac{M_{t}}{2 \pi R^{2} \cdot t}=\frac{300}{2 \pi 1^{2} \cdot 0.05}=955 \mathrm{psi}
$$

The axial stress and the hoop stress components are:
$\sigma_{a}=p_{i} \cdot\left(\frac{R}{2 t}\right)=80(10)=800 \mathrm{psi}$
$\sigma_{\theta}=p_{i} \cdot\left(\frac{R}{t}\right)=80(20)=1600 \mathrm{psi}$
From the stress transformation equations and the fact that the shear stress at the planes which have maximum and minimum normal stress is zero, we get that

$$
\begin{aligned}
& 0=-\left(\frac{800-1600}{2}\right) \sin 2 \phi+955 \cos 2 \phi \\
& \\
& \text { so } \quad \tan 2 \phi=\frac{-955}{400}=-2.4
\end{aligned} \text { so } 2 \phi=-67^{\circ}, \phi=-33.6^{\circ}
$$

The extreme values for the tensile stress is, substitut-
 ing into the transformation relationship for $\sigma_{\mathrm{x}}{ }^{\prime}$ and $\sigma_{\mathrm{y}}{ }^{\prime}$

$$
\begin{aligned}
& \left|\sigma_{x}^{\prime}\right|_{\text {extreme }}=\left[\frac{(800+1600)}{2}\right]+\left[\frac{(800-1600)}{2}\right] \cdot \cos 67+955 \sin (-67)=165 \mathrm{psi} \\
& \left|\sigma_{y}^{\prime}\right|_{\text {extreme }}=\left[\frac{(800+1600)}{2}\right]-\left[\frac{(800-1600)}{2}\right] \cdot \cos 67-955 \sin (-67)=2235 \mathrm{psi}
\end{aligned}
$$

Note the invariance of the sum of the normal stress components (their sum $=2400 \mathrm{psi}$).

Problem 4.4 (Potential Quiz Question).

Find the axial stress acting in member EF of the end-loaded truss if its cross-sectional area is $0.1 \mathrm{in}^{2}$ and $W=$ 1500 lb.

We can solve this problem with but one isolation, as shown at the right. We want the force in member EF so we take moments about pt. B and require the resultant moment to be zero. This gives (cw positive):

$$
f_{E F} \cdot(a / 2)+W \cdot(2 a)=0
$$

So

$$
f_{E F}=4 W
$$

and the axial stress is then: $4(1500) /(0.1)=60,000 \mathrm{psi}$.

