1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9)

Outline 1

Introduction / Design Criteria for Reinforced Concrete Structures

- Structural design
 - Definition of design:

Determination of the general shape and all specific dimensions of a particular structure so that it will perform the function for which it is created and will safely withstand the influences which will act on it throughout its useful life.

- → Principles of mechanics, structural analysis, behavioral knowledge in structures and materials.
- \rightarrow Engineering experience and intuition.
- → (a) Function, (b) strength with safety requirements will vary for structures.
- \rightarrow Influences and structural response:

• Structural mechanics:

A tool that permits one to predict the response (with a required level of accuracy, and a good degree of certainty) of a structure to defined influences.

- Role of the designer (engineer) of a structure
- Design criteria for concrete
 - Two schools of thoughts
 - 1. Base strength predictions on nonlinear theory using actual σ ε relation
 - 1897 M.R. von Thullie (flexural theory)
 - 1899 W. Ritter (parabolic stress distribution theory]
 - 2. Straight-line theory (elastic)
 - 1900 E. Coignet and N. de Tedesco (the straight-line (elastic) theory of concrete behavior)
 - Working Stress Design (WSD) Elastic theory
 - 1. Assess loads (service loads) (Building Code Requirements)
 - 2. Use linear elastic analysis techniques to obtain the resulting internal forces (load effects): bending, axial force, shear, torsion At service loads: $\sigma_{\max} \leq \sigma_{all}$

e.g. $\sigma_{all}^c = 0.45 f_c^{\prime}$ compression in bending

 $\sigma_{\text{all}}^{s} = 0.50 f_{y}$ flexure

- Ultimate Strength Design (USD)
 - The members are designed taking inelastic strain into account to reach ultimate strength when an ultimate load is applied to the structure.
 - The load effects at the ultimate load may be found by
 (a) assuming a linear-elastic behavior
 (b) taking into account the nonlinear redistribution of actions.
 - Sectional design is based on ultimate load conditions.
 - Some reasons for the trend towards USD are
 (a) Efficient distribution of stresses

1.054/1.541 Mechanics and Design of Concrete Structures

Prof. Oral Buyukozturk

(b) Allows a more rational selection of the load factors

- (c) Allows designer to assess the ductility of the structure in the post-elastic range
- o Limit State Design
 - Serviceability limit state:
 Deformation, fatigue, ductility.
 - Ultimate limit state:
 Strength, plastic collapse, brittle fracture, instability, etc.
 - It has been recognized that the design approach for reinforced concrete (RC) ideally should combine the best features of ultimate strength and working stress designs:
 - (a) strength at ultimate load
 - (b) deflections at service load
 - (c) crack widths at service load
- ACI (American Concrete Institute) Code emphasizes:
 - (a) strength provisions
 - (b) serviceability provisions (deflections, crack widths)
 - (c) ductility provisions (stress redistribution, ductile failure)
- Design factors
 - o 1956 A.L.L. Baker (simplified method of safety factor determination)
 - 1971 ACI Code (load factors and capacity (strength, resistance) reduction factors)
 - o 2002 ACI 318 Building Code
 - Design loads (U) are factored to ensure the safety and reliability of structural performance.
 - Structural capacities (\$\phi\$) of concrete material are reduced to account for inaccuracies in construction and variations in properties.

1.054/1.541 Mechanics and Design of Concrete Structures

- □ Safety
 - Semi-probabilistic design is achieved by introducing the use of load factors, γ_1 , and capacity reduction factors, ϕ .
 - o Load factors ACI 318 Building Code
 - Load combinations

U = 1.4(D + F) $U = 1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or } S \text{ or } R)$ $U = 1.2D + 1.6(L_r \text{ or } S \text{ or } R) + (1.0L \text{ or } 0.8W)$ $U = 1.2D + 1.6W + 0.5L + 1.0(L_r \text{ or } S \text{ or } R)$ U = 1.2D + 1.0E + 1.0L + 0.2S U = 0.9D + 1.6W + 1.6H U = 0.9D + 1.0E + 1.6Hwhere D = dead load; F = lateral fluid pressure; T = self-straining force (creep, shrinkage, and temperature effects); L = live load; H = load due to the weight and lateral pressure of soil and water in soil; L_r = roof load; S = snow load; R = rain load; W = wind load; E = earthquake load.

- ACI 318-02 also provides exceptions to the values in above expressions.
- Capacity reduction factors ACI 318 Building Code
 - Members subject to structural actions and their associated reduction factor (\$\otimes\$)
 Beam or slab in bending or flexure: 0.9
 Columns with ties: 0.65
 Columns with spirals: 0.70
 Columns carrying very small axial loads: 0.65~0.9 for tie stirrups and 0.7~0.9 for spiral stirrups.
 Beam in shear and torsion: 0.75

Prof. Oral Buyukozturk

Relation between resistance capacity and load effects

$$\phi R_n \ge \sum_{i=1}^m \gamma_i l_i \rightarrow \text{resistance} \ge \text{sum of load effects}$$

For a structure loaded by dead and live loads the overall safety factor is

$$s = \frac{1.2D + 1.6L}{D + L} \cdot \frac{1}{\phi}$$

- Making of concrete
 - o Cements
 - Portland cements
 - Non-portland cements
 - Aggregates Coarse and fine
 - o Water
 - Chemical admixtures
 - Accelerating admixtures
 - Air-entraining admixtures
 - Water-reducing and set-controlling admixtures
 - Finely divided admixtures
 - Polymers (for polymer-modified concrete)
 - Superplasticizers
 - Silica-fume admixture (for high-strength concrete)
 - Corrosion inhibitors

Raw material components of cement

- o Lime (CaO)
- o Silica (SiO₂)
- o Alumina (Al₂O₃)
- Properties of portland cement components

1.054/1.541 Mechanics and Design of Concrete Structures

Prof. Oral Buyukozturk

Component	Rate of reaction	Heat liberated	Ultimate cementing value
Tricalcium silicate, C ₃ S	Medium	Medium	Good
Dicalcium silicate, C_2S	Slow	Small	Good
Tricalcium aluminate, C ₃ A	Fast	Large	Poor
Tetracalium aluminoferrate, C₄AF	Slow	Small	Poor

u Types of portland cements

- o Type I: All-purpose cement
- Type II: Comparatively low heat liberation; used in large structures
- Type III: High strength in 3 days
- Type IV: Used in mass concrete dams
- Type V: Used in sewers and structure exposed to sulfates

• Mixture design methods of concrete

- ACI method of mixture design for normal strength concrete
- Portland Cement Association (PCA) method of mixture design

• Quality tests on concrete

- o Workability
- o Air content
- Compressive strength of hardened concrete
- o Flexural strength of plain concrete beams
- o Tensile strength from splitting tests
- Advantages and disadvantages of concrete
 - o Advantages
 - Ability to be cast
 - Economical

Durable

Prof. Oral Buyukozturk

- Fire resistant
- Energy efficient
- On-site fabrication
- Aesthetic properties
- o Disadvantages
 - Low tensile strength
 - Low ductility
 - Volume instability
 - Low strength-to-weight ratio
- Properties of steel reinforcement
 - Young's modulus, E_s
 - Yield strength, f_y
 - Ultimate strength, f_u
 - o Steel grade
 - Geometrical properties (diameter, surface treatment)
- Types of reinforced concrete structural systems
 - o Beam-column systems
 - o Slab and shell systems
 - o Wall systems
 - Foundation systems