MIT OpenCourseWare
http://ocw.mit.edu
1.133 M.Eng. Concepts of Engineering Practice

Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

October 12007

Some Observations from Chase an Engineer Reports

What a Project Manager is most concerned with H -
Financtal Issues
a. Engineering Design
b. Construction Scheduling
c. Control of Revenue Flow
"Engineers don't make good financial decisions"

"Scheduling is very important"

"The faster you finish, the more you save on fixed costs and interests"

Fixed Costs

- Salary
- Overheads: Propenty

Office Rental
Equipment
Utilities
Variable Costs

- Bank Loans
- Professional Liability Insurance
- Performance Bond
- Payment Bond

Activities - Logical Sequence

1. Instrumentation
2. Slurry wall installation
3. Jet grouting
4. Foundation installation
5. King posts and decking erection

6a. Excavation
6b. Strut installation + preloading
6a. Excavation
6b. Strut installation + preloading
7a. Cutting off pileheads
7b. Casting Pilecaps
7c. Casting base slab
8. Casting columns + intermediate floor slabs
8. Casting columns + intermediate floor slabs
9. Casting ground floor slab

NETWORK SCHEDULING

Activity Network

A graphical representation describing connections between all activities in a project

Activity Path

A continuous string of activities within the network from beginning to end

Critical Path

The activity path with the longest duration, in which any delay of one activity causes a similar delay to the entire project completion

ACTIVITY RELATIONSHIPS

Finish-Start $\quad F S=\Delta \quad$ Activity j may start Δ units of time after finishing activity i

Normal $\quad F S=0 \quad$ Activity j may start immediately after finishing activity i

Stant-Stant $\quad \mathrm{SS}=\triangle \quad$ Activity j may start Δ units of time after starting activity i

Finish-Finish $\quad F F=\triangle \quad$ Activity j may finish Δ units of time after finishing activity i

TIME TO START/FINISH

Activity Duration d_{i} The estimated duration of each activity

Earliest Start $E S_{i} \quad$ The earliest time that activity i may start

Earliest Finish $E F_{i}^{\prime} \quad$ The earliest time that activity i may finish

$$
E F_{i}=E S_{i}+d_{i}
$$

Latest Start LSS The latest time that activity i may start

Latest Finish $\quad L F_{i} \quad$ The latest time that activity i may finish

$$
L S_{i}=L F_{i}-d_{i}
$$

FLOAT TIME

Total Float the total time that activity i may be postponed without delaying project completion

$$
t f_{i}=L S_{i}-E S_{i} \text { or } L F_{i}^{\prime}-E E E_{i}^{\prime}
$$

Free Float $f_{i} \quad$ The maximum time that activity imay be postponed without delaying the earliest start ($E S_{j}$) or earliest finish ($E F_{j}$) of any following activity j

ACTIVITY SYMBOLS

8 STEPS FOR NETWORK ANALYSIS

1. List all the activities
2. Assign duration for each activity
3. Set up Network Diagram
4. Carry out Forward Calculations for ES and EF
5. Determine Project Completion Time
6. Carry out Backward Calculations for LS and $L F$
7. Determine Float available tf and ff
8. Identify Critical Path(s)

Schedule computation

Earliest Start (E_{j}) and Earliest Finish ($E F_{j}$) of the subsequent activity j

1. Calculate all possible ES times for activity j:-

$$
\begin{array}{ll}
\text { FS relationship, } & \mathbb{E S}_{\mathrm{j}}=\mathbb{E F}_{\mathrm{i}}+\Delta \\
\text { SS relationship, } & \mathbb{E S}_{\mathrm{j}}=\mathbb{E S}_{\mathrm{i}}+\Delta \\
\text { FF relationship, } & \mathbb{E S}_{\mathrm{j}}=\left\{\mathbb{E F}_{\mathrm{i}}+\Delta\right\}-\mathrm{d}_{\mathrm{j}}
\end{array}
$$

2. Select the latest time for $E S_{j}$
3. Calculate $\quad \mathrm{EF}_{\mathrm{j}}=\mathrm{ES}_{\mathrm{j}}+\mathrm{d}_{\mathrm{j}}$

Latest Start (LS ${ }_{\mathrm{i}}$) and Latest Finish $\left(\mathrm{LF}_{\mathrm{i}}\right)$ of the previous activity \boldsymbol{i}

1. Calculate all possible LF times for activity i:-

FS relationship, $\quad \mathrm{LF}_{\mathrm{i}}=\mathrm{LS}_{\mathrm{j}}-\Delta$
SS relationship, $\quad \mathrm{LF}_{\mathrm{i}}=\left\{\mathrm{LS}_{\mathrm{j}}-\Delta\right\}+\mathrm{d}_{\mathrm{i}}$
$F F$ relationship, $\quad \mathrm{LF}_{\mathrm{i}}=\mathrm{LF}_{\mathrm{j}}-\Delta$
2. Select the earliest time for $L F_{i}$
3. Calculate $\quad \mathrm{LS}_{\mathrm{i}}=\mathrm{LF}_{\mathrm{i}}-\mathrm{d}_{\mathrm{i}}$

CALCULATIONS FOR FLOAT

TOTAL FLOAT

1. Need to know ES, EF, LS and LF for activity i
2. Calculate tf for activity \boldsymbol{i}

$$
t f_{i}=\left\{L S_{i}-E S_{i}\right\} \text { or }\left\{L F_{i}-E F_{i}\right\}
$$

FREE FLOAT

1. Calculate all possible ff between activity i and j :-
FS relationship, ff $\mathrm{f}_{\mathrm{i}}=\left\{\mathrm{ES}_{\mathrm{j}}-\mathrm{EF}_{\mathrm{i}}\right\}-\Delta$
SS relationship, ff $f_{i}=\left\{E S_{j}-E S_{i}\right\}-\Delta$
FF relationship, $f f_{i}=\left\{E F_{j}-E F_{i}\right\}-\Delta$
2. Select the smallest time gap for f_{i}

Network Scheduling

Example Analysis

Set up Network Diagram

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Backward Computation for Latest Start and Latest Finish

Carry out Backward Computation for Latest Start and Latest Finish

Carry out Backward Computation for Latest Start and Latest Finish

Carry out Backward Computation for Latest Start and Latest Finish

Carry out Backward Computation for Latest Start and Latest Finish

Carry out Backward Computation for Latest Start and Latest Finish

Carry out Backward Computation for Latest Start and Latest Finish

Calculating Total Float

Calculating Free Float

P18

Identify Critical Path

