1.133 M.Eng. Concepts of Engineering Practice Fall 2007

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

October 1 2007

Some Observations from Chase an Engineer Reports

What a Project Manager is most concerned with:-

Financial Issues

a. Engineering Designb. Construction Schedulingc. Control of Revenue Flow

"Engineers don't make good financial decisions"

"Scheduling is very important"

"The faster you finish, the more you save on fixed costs and interests"

Fixed Costs

- Salary
- Overheads : Property Office Rental Equipment Utilities

Variable Costs

- Bank Loans
- Professional Liability Insurance
- Performance Bond
- Payment Bond

Activities – Logical Sequence

- 1. Instrumentation
- 2. Slurry wall installation
- 3. Jet grouting
- 4. Foundation installation
- 5. King posts and decking erection
 - 6a. Excavation
 - 6b. Strut installation + preloading
 - 6a. Excavation
 - 6b. Strut installation + preloading
 - 7a. Cutting off pileheads
 - 7b. Casting Pilecaps
 - 7c. Casting base slab
 - 8. Casting columns + intermediate floor slabs
 - 8. Casting columns + intermediate floor slabs
- 9. Casting ground floor slab

NETWORK SCHEDULING

Activity Network

A graphical representation describing connections between all activities in a project

Activity Path

A continuous string of activities within the network from beginning to end

Critical Path

The activity path with the longest duration, in which any delay of one activity causes a similar delay to the entire project completion

ACTIVITY RELATIONSHIPS

Finish-Start	$FS = \Delta$	Activity j may start Δ units of
		time after finishing activity <i>i</i>

NormalFS = 0Activity j may start immediatelyafter finishing activity i

Start-Start $SS = \Delta$

Activity \mathbf{j} may start Δ units of time after starting activity \mathbf{i}

Finish-Finish $\mathbf{FF} = \mathbf{\Lambda}$

Activity \boldsymbol{j} may finish Δ units of time after finishing activity \boldsymbol{i}

TIME TO START/FINISH

Activity Duration d_i The estimated duration of each activity

Earliest Start ES_i The earliest time that activity *i* may start

Earliest Finish **EF**

 LS_i

The earliest time that activity *i* may finish

 $EF_i = ES_i + d_i$

Latest Start

The latest time that activity *i* may start

Latest Finish LF_i The latest time that activity *i* may finish

 $LS_i = LF_i - d_i$

FLOAT TIME

Total FloattfiThe total time that activity i may bepostponed without delaying projectcompletion

$$tf_i = LS_i - ES_i$$
 or $LF_i - EF_i$

Free Float f_i The maximum time that activity i may
be postponed without delaying the
earliest start (ES_j) or earliest finish (EF_j)
of any following activity j

4		/17	ΓΥ	S١	M	BOLS	
	Activity i					Activity j	
ES _i	d _i	EFi			ES _j	d _j	EFj
LSi		LFi	Z		LSj		LFj
tf _i	CODE	ff i			tf j	CODE _j	ff _j
		Гуре	of Re	latior	nship		
	(FS, SS or FF)						

8 STEPS FOR NETWORK ANALYSIS

- 1. List all the activities
- 2. Assign duration for each activity
- 3. Set up Network Diagram
- 4. Carry out Forward Calculations for *ES* and *EF*
- 5. Determine Project Completion Time
- Carry out Backward Calculations for LS and LF
- 7. Determine Float available tf and ff
- 8. Identify Critical Path(s)

Schedule computation

Earliest Start (ES_j) and Earliest Finish (EF_j) of the subsequent activity \mathbf{j}

1. Calculate all possible ES times for activity j:-

FS relationship, $\mathbf{ES_j} = \mathbf{EF_i} + \Delta$ SS relationship, $\mathbf{ES_j} = \mathbf{ES_i} + \Delta$ FF relationship, $\mathbf{ES_j} = \{\mathbf{EF_i} + \Delta\} - \mathbf{d_j}$

2. Select the latest time for ES_i

3. Calculate $\mathbf{EF}_{j} = \mathbf{ES}_{j} + \mathbf{d}_{j}$

Latest Start (LS_i) and Latest Finish (LF_i) of the previous activity *i*

1. Calculate all possible LF times for activity i:-

FS relationship, $\mathbf{LF_i} = \mathbf{LS_j} - \Delta$ SS relationship, $\mathbf{LF_i} = \{\mathbf{LS_j} - \Delta\} + \mathbf{d_i}$ FF relationship, $\mathbf{LF_i} = \mathbf{LF_j} - \Delta$

2. Select the earliest time for LF_{i}

3. Calculate $LS_i = LF_i - d_i$

CALCULATIONS FOR FLOAT

TOTAL FLOAT

- 1. Need to know ES, EF, LS and LF for activity *i*
- 2. Calculate tf for activity i

 $tf_i = \{LS_i - ES_i\} \text{ or } \{LF_i - EF_i\}$

FREE FLOAT

- Calculate all possible *ff* between activity *i* and *j*:-
 - FS relationship, $f_i = \{ES_j EF_i\} \Delta$
 - SS relationship, $ff_i = \{ES_j ES_i\} \Delta$ FF relationship, $ff_i = \{EF_i - EF_i\} - \Delta$

2. Select the smallest time gap for f_{i}

Network Scheduling

Example Analysis

Carry out Forward Computation for Earliest Start and Earliest Finish

Carry out Forward Computation for Earliest Start and Earliest Finish

