Homework Set \#10

Problem 1

Suppose that hurricanes occur according to a Poisson Point Process with unknown parameter λ. Given that 5 hurricanes occurred during a two-month period, estimate λ by:
(a) The Method of Moments
(b) The Method of Maximum Likelihood, and plot the Likelihood function
[In this case, you should consider the random variable $\mathrm{N}=$ number of hurricanes in a two-month period. Notice that N has Poisson distribution with mean value 2λ, where λ is in units of $1 /$ month]

Problem 2

Consider a random variable Y with probability density function:
$f_{Y}(y)= \begin{cases}\frac{2}{b}\left(1-\frac{y}{b}\right), & 0 \leq y \leq b \\ 0, & \text { otherwise }\end{cases}$
where b is an unknown parameter.

The mean value of Y is $\mathrm{m}_{\mathrm{Y}}=\frac{1}{3} \mathrm{~b}$.

Given the following sample $\underline{Y}=\{2,3,5\}$ from the distribution of Y :
(a) Estimate b by the method of moments .
(b) Find and plot the likelihood function $\ell(\mathrm{b} \mid \underline{\mathrm{Y}})$
(c) Find the maximum likelihood estimate of b and compare with the result from (a).

Problem 3

The strength of concrete cylinders, X , is known to have normal distribution with unknown mean value m and known variance $\sigma^{2}=(1000 \mathrm{psi})^{2}$.

Suppose that the prior distribution of the mean value m is Normal, with mean value $m_{m}=7500 \mathrm{psi}$, and $\sigma_{m}^{2}=(300 \mathrm{psi})^{2}$. From crushing tests, you collect the following sample of X (in psi):
$\{6500,7000,8000,4000\}$.
Using Bayesian Analysis:
(a) Plot the prior distribution of m
(b) Plot the Likelihood function, normalized to have unit area
(c) Plot the posterior distribution of m

Problem 4

The compressive strength of concrete cylinders, X , is known to have normal distribution with mean value m and variance σ^{2} that depends on the batch considered. In order to estimate m and σ^{2} for a specific batch, a laboratory test is performed in which the value of X is measured for n cylinders. Let the resulting statistical sample be $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$. You need to estimate m and σ^{2} with a certain accuracy, which you set as follows:
(1) $\sqrt{\operatorname{var}\left(\frac{\bar{X}-m}{m}\right)}<0.1$
(2) $\sqrt{\operatorname{var}\left(\frac{\mathrm{s}^{2}}{\sigma^{2}}\right)}<0.1$
(a) Determine the minimum value of n that satisfies each objective (notice that such minimum value may depend on the actual parameters m and σ^{2}).
(b) In practice, which of the two conditions do you believe is more restrictive for n ?
(c) Based on your response to (b), can you set n without prior knowledge of m and σ^{2} ?

