Homework Set \#8

A plain concrete column is subjected to a random axial load W with lognormal distribution, mean value $\mathrm{m}_{\mathrm{W}}=3000 \mathrm{kN}[\mathrm{kN}=$ Kilo Newton, a unit of force] and coefficient of variation $\mathrm{V}_{\mathrm{W}}=0.2$. The resulting compressive stress σ is given by $\sigma=\frac{\mathrm{W}}{\mathrm{A}}$, where A is the cross-sectional area of the column. The crushing strength of concrete f_{c} also has lognormal distribution, with mean value $m_{f_{c}}=35,000 \mathrm{kN} / \mathrm{m}^{2}(\mathrm{~m}=$ meter) and coefficient of variation $\mathrm{V}_{\mathrm{f}_{\mathrm{c}}}=0.2$.
(a) Obtain the probability density function (PDF) of the applied stress σ (which depends on A).
(b) If the column has a $0.40 \mathrm{~m} \times 0.40 \mathrm{~m}$ square cross-section, what is the probability P_{F} that it fails i.e. $P_{F}=P\left[\sigma>f_{c}\right]$? Assume W and f_{c} are independent.

Hint: $\mathrm{f}_{\mathrm{C}}<\sigma \Leftrightarrow \frac{\mathrm{f}_{\mathrm{C}}}{\sigma}<1 \Leftrightarrow \ln \left(\frac{\mathrm{f}_{\mathrm{C}}}{\sigma}\right)<0$
(c) Determine the required cross-sectional area of the column for a target failure probability of 10^{-3}.
(d) Find the mean stress $m_{\sigma}=\frac{m_{W}}{A}$ as a function of the failure probability P_{F}. Plot $\mathrm{m}_{\sigma}\left(\mathrm{P}_{\mathrm{F}}\right)$ against $\log \left(\mathrm{P}_{\mathrm{F}}\right)$ for P_{F} between 10^{-4} and 10^{-1}.

