Homework Set #8

A plain concrete column is subjected to a random axial load W with lognormal distribution, mean value $m_W = 3000 \text{ kN}$ [kN = Kilo Newton, a unit of force] and coefficient of variation $V_W = 0.2$. The resulting compressive stress σ is given by $\sigma = \frac{W}{A}$, where A is the cross-sectional area of the column. The crushing strength of concrete f_c also has lognormal distribution, with mean value $m_{f_c} = 35,000 \text{ kN/m}^2$ (m = meter) and coefficient of variation $V_{f_c} = 0.2$.

- (a) Obtain the probability density function (PDF) of the applied stress σ (which depends on A).
- (b) If the column has a 0.40 m x 0.40 m square cross-section, what is the probability P_F that it fails i.e. $P_F = P[\sigma > f_c]$? Assume W and f_c are independent.

Hint:
$$f_c < \sigma \iff \frac{f_c}{\sigma} < 1 \iff \ln\left(\frac{f_c}{\sigma}\right) < 0$$

- (c) Determine the required cross-sectional area of the column for a target failure probability of 10^{-3} .
- (d) Find the mean stress $m_{\sigma} = \frac{m_W}{A}$ as a function of the failure probability P_F. Plot $m_{\sigma}(P_F)$ against $\log(P_F)$ for P_F between 10⁻⁴ and 10⁻¹.