Brief Notes #5 Functions of Random Variables and Vectors

(a) Functions of One Random Variable

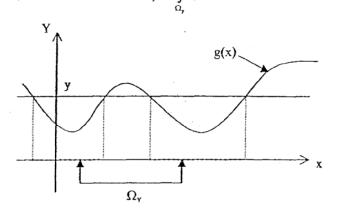
• Problem:

Given the CDF of the random variable X, $F_X(x)$, and a deterministic function Y = g(x), find the (derived) distribution of the random variable Y.

• General solution:

Let $\Omega_y = \{x: g(x) \le y\}$ Then:

$$F_{Y}(y) = P[Y \le y] = P[x \in \Omega_{y}] = \int f_{X}(x) dx$$



- Special cases:
 - Linear functions:

Y = g(x) = a + bx

If b > 0:

$$X(y) = \frac{y-a}{b}; \ \Omega_y = \{x : a+bx \le y\} = \left(-\infty, \frac{y-a}{b}\right)$$
$$F_y(y) = P[x \in \Omega_y] = F_x\left(\frac{y-a}{b}\right)$$
$$f_y(y) = \frac{d}{dy}F_y(y) = \frac{d}{dy}F_x\left(\frac{y-a}{b}\right) = \frac{1}{b}f_x\left(\frac{y-a}{b}\right)$$

ĩ

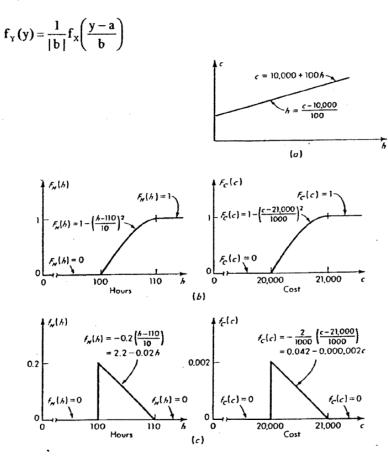
<u>If b < 0</u>:

$$\Omega_{y} = \left[\frac{y-a}{b}, \infty\right]$$

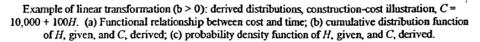
$$F_{Y}(y) = 1 - F_{X}\left(\frac{y-a}{b}\right)$$

$$f_{y}(y) = -\frac{1}{b}f_{X}\left(\frac{y-a}{b}\right) = \frac{1}{|b|}f_{X}\left(\frac{y-a}{b}\right)$$

For any $b \neq 0$:



.3-



2

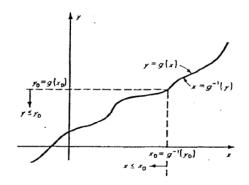
- General monotonic (one-to-one) functions
 - Monotonically increasing functions

$$\mathbf{F}_{\mathbf{Y}}(\mathbf{y}) = \mathbf{F}_{\mathbf{X}}[\mathbf{x}(\mathbf{y})]$$

$$\mathbf{f}_{\mathbf{y}}(\mathbf{y}) = \frac{\mathrm{d}F_{\mathbf{y}}(\mathbf{y})}{\mathrm{d}\mathbf{y}} = \frac{\mathrm{d}\mathbf{x}(\mathbf{y})}{\mathrm{d}\mathbf{y}} \cdot \mathbf{f}_{\mathbf{x}}[\mathbf{x}(\mathbf{y})]$$

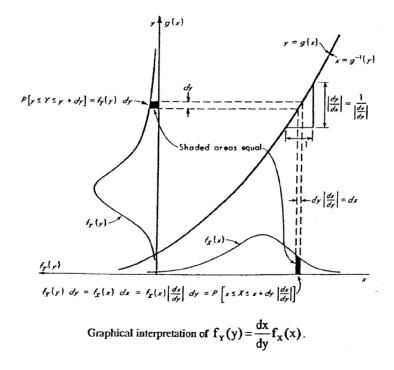
Monotonically decreasing functions

$$F_{Y}(y) = 1 - F_{X}[x(y)]$$
$$f_{Y}(y) = \frac{|dx(y)|}{dy} \cdot f_{X}[x(y)]$$



A monotonically increasing oneto-one function relating Y to X.

į



Examples of Monotonic Transformations

Consider an exponential variable $X \sim EX(\lambda)$ with cumulative distribution function $F_X(x) = 1 - e^{-\lambda x}$, $x \ge 0$.

Exponential, Power and Log Functions

Exponential Functions

Suppose $Y = e^X$, $\Rightarrow X = \ln Y$, $y \ge 0$. This is a monotonic increasing function, and $F_Y(y) = F_X(x(y)) = 1 - e^{-\lambda \ln y} = 1 - y^{-\lambda}$. This distribution is known as the (strict) Pareto Distribution.

Power Functions

Suppose $Y = X^{\alpha}$, $\alpha > 0 \implies X = \ln Y$, $y \ge 0$. This is a monotonic increasing function, and $F_Y(y) = F_X(x(y)) = 1 - e^{-\lambda y^{\alpha}}$. This distribution is known as the Weibull (Extreme Type III) Distribution.

Log Functions

Suppose $Y = -\ln X$, $\Rightarrow X = e^{-Y}$, $-\infty \le y \le \infty$. This is a monotonic decreasing function, and $F_Y(y) = 1 - F_X(x(y)) = e^{-\lambda e^{-y}}$. This distribution is known as the Gumbel (Extreme Type I) Distribution.

(b) Functions of Two or More Random Variables

• Problem:

Given the JCDF of the random vector $\begin{bmatrix} X \\ Y \end{bmatrix}$, $F_{X,Y}(x, y)$, and a deterministic function Z = g(x, y), find the (derived) distribution of the random variable Z.

• General solution:

Let $\Omega_z = \{x, y: g(x, y) \le z\}$. Then:

$$F_{z}(z) = P[Z \le z] = P[(x, y) \in \Omega_{z}] = \iint_{\Omega_{z}} f_{X,Y}(x, y) dxdy$$

Special cases:

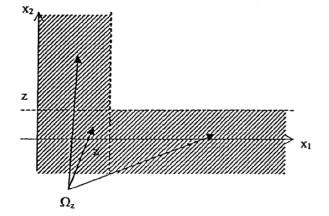
• <u>Minimum/maximum functions</u> i.e. Z = Min[X₁, X₂, ..., X_n] (e.g. minimum strength) or Z = Max[X₁, X₂, ..., X_n] (e.g. maximum load)

÷20

• $Z = Min[X_1, X_2, ..., X_n]$. For n = 2,

$$F_z(z) = P[Z \le z] = \iint_{\Omega_z} f_{x_1, x_2}(x_1, x_2) dx_1 dx_2$$
 with Ω_z shown in the figure

$$= 1 - \int_{z}^{\infty} dx_{1} \int_{z}^{\infty} f_{x_{1},x_{2}}(x_{1},x_{2}) dx_{2}$$



If X1 and X2 are independent:

$$\int_{z}^{\infty} dx_{1} \int_{z}^{\infty} f_{X_{1},X_{2}}(x_{1},x_{2}) dx_{2} = [1 - F_{X_{1}}(z)][1 - F_{X_{2}}(z)]$$

Therefore,

$$F_{z}(z) = 1 - [1 - F_{x_{1}}(z)][1 - F_{x_{2}}(z)]$$

For n iid variables:

$$F_{z}(z) = P[Z \le z] = 1 - P[(X_{1} > z) \cap ... \cap (X_{n} > z)]$$
$$= 1 - [1 - F_{x}(z)]^{n}$$

or, with $G_X(x) = 1 - F_X(x)$,

$$G_{Z}(z) = P[Z > z] = [G_{X}(z)]^{n}$$

$$f_{z}(z) = \frac{d}{dz}F_{z}(z) = -\frac{d}{dz}G_{z}(z) = n[G_{x}(z)]^{n-1}f_{x}(z)$$

•

j

$$Z = Max[X_1, X_2, ..., X_n]$$

$$F_z(z) = P\left[\bigcap_i (X_i \le z)\right] = F_{\underline{X}}\begin{bmatrix}z\\\vdots\\z\end{bmatrix}$$

$$= \prod_i F_{X_i}(z) \quad (\text{if } X_i \text{'s are independent})$$

$$= [F_x(z)]^n \quad \text{and} \quad f_z(z) = n[F_x(z)]^{n-1}f_x(z) \quad (\text{if } X_i \text{'s are iid})$$

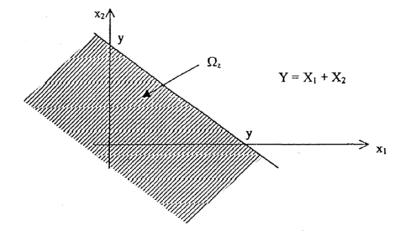
• Linear transformations

$$\mathbf{Y} = \sum_{i} \mathbf{a}_{i} \mathbf{x}_{i}$$

•

• Simplest case: $Y = X_1 + X_2$

$$F_{Y}(y) = P[Y \le y] = P[x_{1} + x_{2} \le y] = \iint_{x_{1} + x_{2} \le y} f_{x_{1}, x_{2}}(x_{1}, x_{2}) dx_{1} dx_{2}$$
$$= \int_{-\infty}^{\infty} dx_{2} \int_{-\infty}^{y - x_{2}} f_{x_{1}, x_{2}}(x_{1}, x_{2}) dx_{1}$$
$$f_{Y}(y) = \int_{-\infty}^{\infty} f_{x_{1}, x_{2}}(y - x_{2}, x_{2}) dx_{2}$$



If X_1 and X_2 are independent, then:

 $f_{y}(y) = \int_{-\infty}^{\infty} f_{x_{1}}(y - x_{2}) f_{x_{2}}(x_{2}) dx_{2}$ (convolution)

• Example: derivation of Gamma distribution

Consider $Y = X_1 + X_2$, where X_1 and X_2 are iid exponential, with density:

$$\mathbf{f}_{\mathbf{X}_{i}}(\mathbf{x}) = \begin{cases} \lambda e^{-\lambda \mathbf{x}}, \, \mathbf{x} \ge 0\\ 0, \, \mathbf{x} < 0 \end{cases}$$

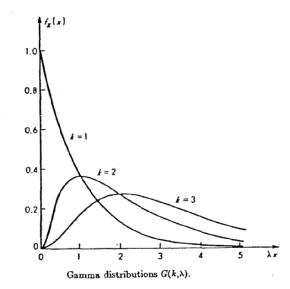
Then,

$$f_{Y}(y) = \int_{0}^{\infty} f_{X}(y - x_{1})f_{X}(x_{1})dx_{1}$$
$$= \lambda^{2}ye^{-\lambda y} \qquad (\text{Rayleigh or Gamma(2) distribution})$$

In general, for any n, the probability density of $Y = X_1 + X_2 + ... + X_n$, where the X_i are iid exponential, is:

$$\begin{split} f_{\gamma}(y) &= \frac{\lambda(\lambda y)^{n-1} e^{-\lambda y}}{\Gamma(n)}, \quad y \geq 0, \text{ where } \Gamma(n) = (n-1)! \\ (Gamma(n) \text{ distribution}) \end{split}$$

Note: for n = 1, the Gamma distribution reduces to the exponential distribution.



j