MACRO DESIGN MODELS FOR A SINGLE ROUTE

<u>Outline</u>

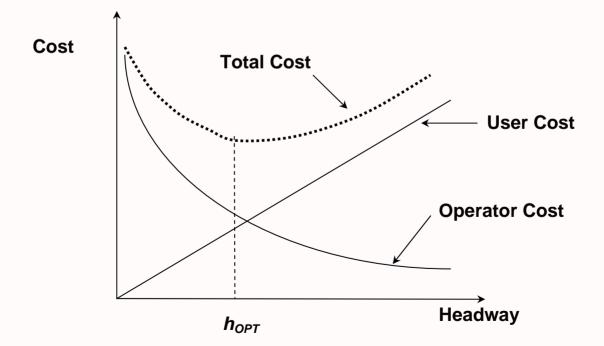
- 1. Introduction to analysis approach
- 2. Bus frequency model
- 3. Stop/station spacing model

Introduction to Analysis Approach

- Basic approach is to establish an aggregate total cost function including:
 - operator cost as *f*(design parameters)
 - user cost as g(design parameters)
- Minimize total cost function to determine optimal design parameter (s.t. constraints)

Variants include:

- Maximize service quality s.t. budget constraint
- Maximize consumer surplus s.t. budget constraint



Bus Frequency Model: the Square Root Model

Problem: define bus service frequency on a route as a function of ridership

Total Cost = operator cost + user cost

$$Z = c \bullet \frac{t}{h} + b \bullet r \bullet \frac{h}{2}$$

where Z = total (operator + user) cost per unit time

c =operating cost per unit time

t = round trip time

h = headway – the decision variable to be determined

b = value of unit passenger waiting time

r = ridership per unit time

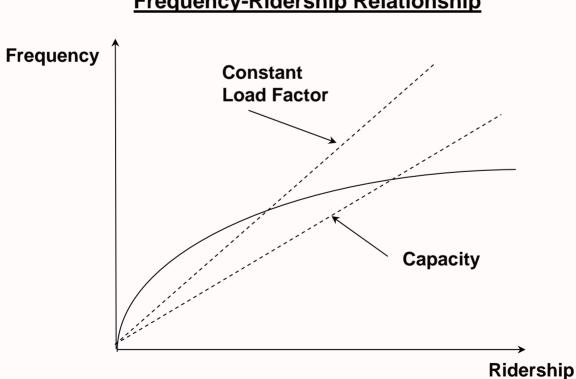
Minimizing Z w.r.t. h yields :

$$h = \sqrt{\frac{2ct}{br}} \text{ or } \sqrt{2\left(\frac{c}{b}\right)\left(\frac{t}{r}\right)}$$

Square Root Model (cont'd)

This is the Square Rule with the following implications:

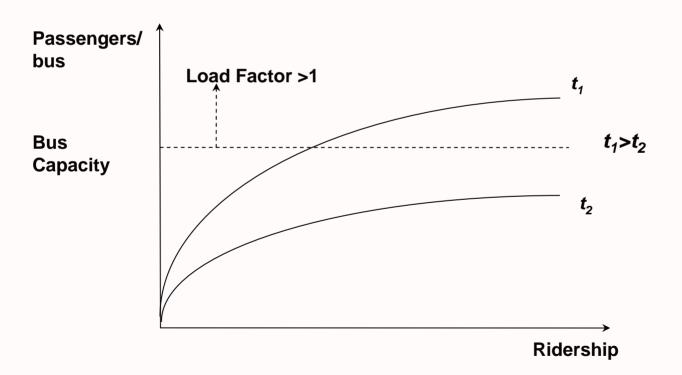
- high frequency is appropriate where (cost of wait time/cost of operations time) is high
- frequency is proportional to the square root of ridership per unit time for routes of similar length



Frequency-Ridership Relationship

Square Root Model (cont'd)

 load factor is proportional to the square root of the product of ridership and route length.



Bus Capacity-Ridership Relationship

Square Root Model (cont'd)

Critical Assumptions:

- bus capacity is never binding
- wait time savings are only frequency benefits
- ridership $\neq f$ (frequency)
- simple wait time model
- budget constraint is not binding

Possible Remedies:

- introduce bus capacity constraint
- modify objective function
- introduce r=f(h) and re-define objective function
- modify objective function
- introduce budget constraint

Bus Frequency Example

If: c =\$90/bus hour,

- *b* = \$10/passenger hour.
- *t* = 90 mins,
- r = 1000 passengers/hour,

Then: $h_{OPT} = 11 \text{ mins}$

Stop/Station Spacing Model

Problem: determine optimal stop or station spacing

Trade-off is between walk access time (which increases with station spacing), and in-vehicle time (which decreases as station spacing increases) for the user, and operating cost (which decreases as station spacing increases)

Define	Ζ	=	total cost per unit distance along route and per headway
and	T _{st}	=	time lost by vehicle making a stop
	C	=	vehicle operating cost per unit time
	S	=	station/stop spacing - the decision variable to be determined
	Ν	=	number of passengers on board vehicle
	V	=	value of passenger in-vehicle time
	D	=	demand density in passenger per unit route length per headway
	V _{acc}	=	value of passenger access time
	W	=	walk speed
	c _s	=	station/stop cost per headway

Stop/Station Spacing Model (cont'd)

$$Z = \frac{T_{st}}{s}(c + N \bullet v) + \frac{c_s}{s} + \frac{s}{4} \bullet D \bullet \frac{v_{acc}}{w}$$

Minimizing Z w.r.t. s gives :

$$s_{OPT} = \left[\frac{4w}{Dv_{acc}} \left[c_s + T_{st}(c_v + Nv)\right]\right]^{1/2}$$

Yet another square root relationship, implying that station/stop spacing increases with:

- walk speed
- station/stop cost
- time lost per stop
- vehicle operating cost
- number of passengers on board vehicle
- value of in-vehicle time

and decreases with:

- demand density
- value of access time

Bus Stop Spacing

U.S. Practice

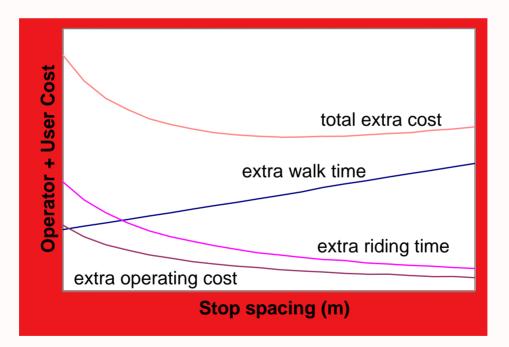
- 200 m between stops (8 per mile)
- shelters are rare
- little or no schedule information

European Practice

- 320 m between stops (5 per mile)
- named & sheltered
- up to date schedule information
- scheduled time for every stop

Stop Spacing Tradeoffs

- Walking time
- Riding time
- Operating cost
- Ride quality



Walk Access: Block-Level Modeling

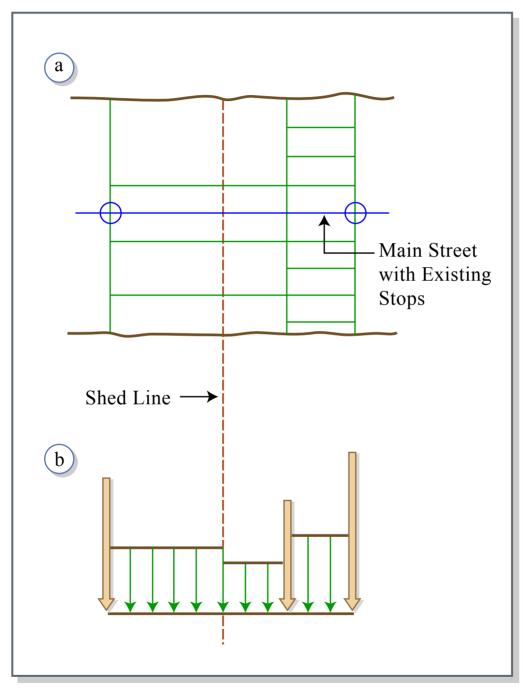


Figure by MIT OCW.

Results: MBTA Route 39*

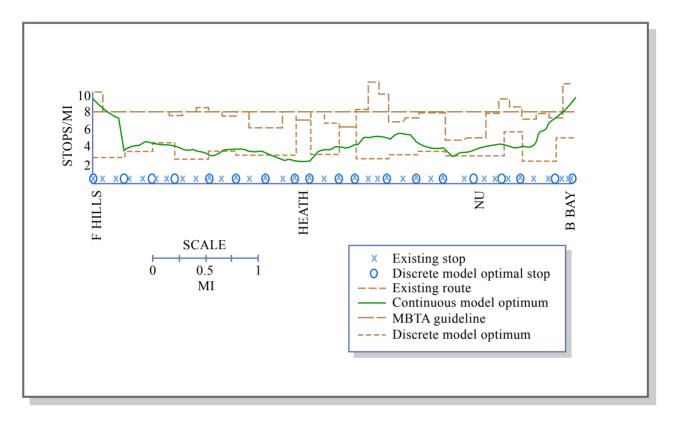


Figure by MIT OCW.

Source: Furth, P.G. and A. B. Rahbee, "Optimal Bus Stop Spacing Using Dynamic Programming and Geographic Modeling." Transportation Research Record 1731, pp. 15-22, 2000.

AM Peak Inbound results

- •Avg walking time up 40 s
- •Avg riding time down 110 s
- •Running time down 4.2 min
- •Save 1, maybe 2 buses