MACRO DESIGN MODELS

FOR A SINGLE ROUTE

Outline

1. Introduction to analysis approach 2. Bus frequency model 3. Stop/station spacing model

Introduction to Analysis Approach

- Basic approach is to establish an aggregate total cost function including:
- operator cost as f(design parameters)
- user cost as g(design parameters)

Minimize total cost function to determine optimal design parameter (s.t. constraints)

Variants include:

- Maximize service quality s.t. budget constraint Maximize consumer surplus s.t. budget constraint

Bus Frequency Model: the Square Root Model

Problem: define bus service frequency on a route as a function of ridership

Total Cost = operator cost + user cost

$$
Z=c \bullet \frac{t}{h}+b \bullet r \bullet \frac{h}{2}
$$

where $\quad Z=$ total (operator + user) cost per unit time
$c=$ operating cost per unit time
$t=$ round trip time
$h=$ headway - the decision variable to be determined
$b=$ value of unit passenger waiting time
$r=$ ridership per unit time

Minimizing Z w.r.t. h yields :

$$
h=\sqrt{\frac{2 c t}{b r}} \text { or } \sqrt{2\left(\frac{c}{b}\right)\left(\frac{t}{r}\right)}
$$

Square Root Model (cont’d)

This is the Square Rule with the following implications:

- high frequency is appropriate where
(cost of wait time/cost of operations time) is high
frequency is proportional to the square root of ridership per unit time for routes of similar length

Frequency-Ridership Relationship

Square Root Model

(cont’d)

- load factor is proportional to the square root of the product of ridership and route length.

Bus Capacity-Ridership Relationship

Square Root Model

Critical Assumptions:

- bus capacity is never binding
- wait time savings are only frequency benefits
- ridership $\neq f$ (frequency)
- simple wait time model
- budget constraint is not binding

Possible Remedies:

- introduce bus capacity constraint
- modify objective function
- introduce $r=f(h)$ and re-define objective function
- modify objective function
- introduce budget constraint

Bus Frequency Example

If:
$c=\$ 90 / b u s$ hour,
$b=\$ 10 / p a s s e n g e r$ hour.
$t=90$ mins,
$r=1000$ passengers/hour,

Then: $\quad h_{\text {OPT }}=11$ mins

Stop/Station Spacing Model

Problem: determine optimal stop or station spacing

Trade-off is between walk access time (which increases with station spacing), and in-vehicle time (which decreases as station spacing increases) for the user, and operating cost (which decreases as station spacing increases)

Define $Z=$ total cost per unit distance along route and per headway
and $\quad T_{\text {st }}=$ time lost by vehicle making a stop
$c=$ vehicle operating cost per unit time
$s=$ station/stop spacing - the decision variable to be determined
$N=$ number of passengers on board vehicle
$v \quad=\quad$ value of passenger in-vehicle time
D = demand density in passenger per unit route length per headway
$v_{\text {acc }}=\quad$ value of passenger access time
$w=$ walk speed
$c_{s}=$ station/stop cost per headway

Stop/Station Spacing Model (cont'd)

$$
Z=\frac{T_{s t}}{s}(c+N \bullet v)+\frac{c_{s}}{s}+\frac{s}{4} \cdot D \cdot \frac{v_{a c c}}{w}
$$

Minimizing Z w.r.t. s gives :

$$
s_{O P T}=\left[\frac{4 w}{D v_{a c c}}\left[c_{s}+T_{s t}\left(c_{v}+N v\right)\right]\right]^{1 / 2}
$$

Yet another square root relationship, implying that station/stop spacing increases with:

- walk speed
- station/stop cost
- time lost per stop
- vehicle operating cost
- number of passengers on board vehicle
- value of in-vehicle time

and decreases with:

- demand density
- value of access time

Bus Stop Spacing

U.S. Practice

- 200 m between stops (8 per mile)
- shelters are rare
- little or no schedule information

European Practice

- 320 m between stops (5 per mile)
- named \& sheltered
- up to date schedule information
- scheduled time for every stop

Stop Spacing
 Tradeoffs

- Walking time
- Riding time
- Operating cost

Ride quality

Walk Access:

Block-Level Modeling

Figure by MIT OCW.

Results: MBTA Route 39*

Figure by MIT OCW.
Source: Furth, P.G. and A. B. Rahbee, "Optimal Bus Stop Spacing Using Dynamic Programming and Geographic Modeling." Transportation Research Record 1731, pp. 15-22, 2000.

AM Peak Inbound results

-Avg walking time up 40 s
-Avg riding time down 110 s
-Running time down 4.2 min
-Save 1, maybe 2 buses

