INTRODUCTION TO TRANSPORTATION SYSTEMS

Lectures 5/6:

Modeling/Equilibrium/Demand

OUTLINE

- 1. Conceptual view of TSA
- 2. Models: different roles and different types
- 3. Equilibrium
- 4. Demand Modeling

References:

Manheim, *Fundamentals of Transportation Systems Analysis*, Chapter 1 Gomez-Ibañez et al., *Essays in Transportation Economics and Policy*, Chapter 2

CONCEPTUAL VIEW OF TSA

- **3 elements in transport system problems:**
- Transport system, T
- Activity system, A
- Flow pattern, F

CONCEPTUAL VIEW OF TSA

3 types of inter-relationships:

- Type I: Direct interaction between *T* and *A* to produce *F* The short-run "equibrium" or outcome Many problems are dynamic rather than static
- Type II: Feedback from *F* to *A* A is continually in flux with some changes resulting from F
- Type III: Transport system changes as a result of *F* Transport operator adds service on a heavily-used route New highway link constructed

MODELS: DIFFERENT ROLES AND DIFFERENT TYPES

• Models represent real system to predict impacts if specific actions are taken

Key elements of a model:

- Control variables: the decision variables
- Indirect control variables: these are indirectly affected by decisions
- Exogenous variables: known a priori, not affected by interactions
- Relationships between variables
- Parameters or coefficients

MODELS: DIFFERENT ROLES AND DIFFERENT TYPES

Attributes of a model:

- Complexity
- Accuracy
- Data Requirements
- Computational Requirements
- Estimation Requirements

ROLES FOR MODELS IN TSA

- Performance models: predicts performance or service equality at different flow levels
- Demand models: predicts the flows that result at different levels of service quality and price
- Equilibrium models: predicts *F*, given *T* and *A*, or finds flow which simultaneously satisfies performance and demand relationships
- Activity shift models: predicts changes in A over time
- Competitor response models: predicts response by other operators to *F* and changes in *T*

PREDICTION REVISITED

TYPES OF MODELS

- Descriptive: typical models for performance and demand
 - simulation models
 - systems of linear or non-linear equations
 - cross-sectional vs time-series
- Optimization: used in designing some aspects of the transportation system
 - continuous or discrete variables
 - linear or non-linear functions

TRANSPORT DEMAND

Basic premise: transport is a derived demand

Classic simple demand function for a single O-D pair with fixed activity system

DEMAND AND SUPPLY: Classical Microeconomic View

Market demand function

• Represents behavior of users

Market supply function

• Represents congestion and behavior of service providers

Supply/Demand Interaction: Equilibrium

EQUILIBRIUM

SHIFTING CURVES

COMPARATIVE STATICS

- Create a model of market behavior:
 - Explain consumer and firm choices as a function of exogenous variables, such as income and government policy
- Develop scenarios:
 - Changes in exogenous variables
- Derive changes in the endogenous variables

COMPARATIVE STATICS EXAMPLE

The market for taxi service:

- Supply model: Q_s = -125 + 125P
- Demand model: Q_D = 1000 100P
- Where does the market clear?
- What happens if demand shifts such that now Q_D = 1450 100P ?

THE SOLUTION

TRANSPORTATION DEMAND ANALYSIS

- Use models to understand complex processes
 - Transit ridership
 - Sprawl
 - Congestion pricing
 - Traveler information systems
 - Jobs-housing balance
- Assist decision making

COMPLEXITY OF TRANSPORT DEMAND

- Valued as input to other activities (derived demand)
- Encompasses many interrelated decisions
 - Very long-term to very short-term
- Large number of distinct services differentiated by location and time
- Demographics & socioeconomic matter
- Sensitivity to service quality
- Supply and demand interact via congestion

Complexity and Variety → wide assortment of models to analyze transportation users' behavior.

CHOICES IMPACTING TRANSPORT DEMAND

- Decisions made by Organizations
 - Firm locates in Boston Firm locates in Waltham
 - Firm invests in home offices, high speed connections
 - Developer builds in suburbs Developer fills in in downtown
- Decisions made by Individual/Households
 - Live in mixed use area in Boston Live in residential suburb
 - Don't work Work (and where to work)
 - Own a car but not a bike Own a bike but not a car
 - Own an in-vehicle navigation system
 - Work Monday-Friday 9-5 Work evenings and weekends
 - Daily activity and travel choices: what, where, when, for how long, in what order, by which mode and route, using what telecommunications

ROLE OF DEMAND MODELS

- Forecasts, parameter estimates, elasticities, values of time, and consumer surplus measures obtained from demand models are used to improve understanding of the ramifications of alternative investment and policy decisions
- Many uncertainties affect transport demand and the models are about to do the impossible

UTILITY FUNCTION

- A function that represents the consumer's preferences ordering
- Utility functions give only an *ordinal* ranking:
 - Utility values have no inherent meaning
 - Utility function is not unique
 - Utility function is unaffected by monotonic transformation

UTILITY OF A TRANSPORTATION MODE

- Consumption bundles: auto, bus, train, etc.
- Utility function

$$U_{bus} = \beta_0 + \beta_1 W T_{bus} + \beta_2 T T_{bus} + \beta_3 C_{bus}$$

- WT_{bus} -- waiting time (minutes)
- TT_{bus} -- total travel time (minutes)
- $C_{bus} total cost of trip (dollars)$
- Parameters β represent tastes, and vary by education, gender, trip purpose, etc.

TIME BUDGETS AND VALUE OF TIME

• Along with *income constraint*, there is also a *time constraint* (e.g., 24 hours in a day)

 \rightarrow Gives time value.

• Value of time is the marginal rate of substitution between time and cost

$$U_{bus} = \beta_0 + \beta_1 W T_{bus} + \beta_2 T T_{bus} + \beta_3 C_{bus}$$
$$VOT = \frac{MU_{TT}}{MU_C} = \frac{\beta_2}{\beta_3} \, \frac{\$}{\text{min}}$$

VALUE OF TIME

The monetary value of a unit of time for a user.

Work Trips (San Francisco) In-vehicle time Walk access time Transfer wait time	Auto 140	Bus 76 273 195				Percentage of after tax wage
Vacation Trips (U.S.) Total travel time	Auto 6	Bus 79-87	Rail 54-69	Air 149		Percentage of pretax wage
Freight Total transit time			Rail 6-21		Truck 8-18	Percentage of daily shipment value

CONTINUOUS VS. DISCRETE OPTIONS

DISCRETE CHOICE ANALYSIS

- Method for modeling choices from among discrete alternatives
- Components
 - Decision-makers and their socio-economic characteristics
 - Alternatives and their attributes
- Example: Mode Choice to Work
 - Decision maker: Worker
 - Characteristics: Income, Age
 - Alternatives: Auto and Bus
 - Attributes: Travel Cost, Travel Time

DISCRETE CHOICE FRAMEWORK

• Decision-Maker

- Individual (person/household)
- Socio-economic characteristics (e.g. Age, gender,income, vehicle ownership)

Alternatives

- Decision-maker *n* selects one and only one alternative from a choice set $C_n = \{1, 2, ..., i, ..., J_n\}$ with J_n alternatives
- Attributes of alternatives (e.g.Travel time, cost)
- Decision Rule
 - Dominance, satisfaction, utility etc.

CHOICE: TRAVEL MODE TO WORK

- Decision maker: an individual worker
- Choice:
- Goods:
- Utility function:
- Consumption: bundles

- whether to drive to work or take the bus to work
- bus, auto
 - *U*(*X*) = *U*(bus, auto)
 - {1,0} (person takes bus)
 - {0,1} (person drives)

CONSUMER CHOICE

• Consumers maximize utility

Choose the alternative that has the maximum utility (and falls within the income constraint)

If *U*(bus) > *U*(auto) → choose bus

If *U*(bus) < *U*(auto) → choose auto

U(bus)=? U(auto)=?

CONSTRUCTING THE UTILITY FUNCTION

- Use attribute approach
- U(bus) = U(walk time, in-vehicle time, fare, ...)
 U(auto) = U(travel time, parking cost, ...)
- Assume linear (in the parameters) $U(bus) = \beta_1 \times (walk time) + \beta_2 \times (in-vehicle time) + ...$
- Parameters represent tastes, which may vary over people.
 Include socio-economic characteristics (e.g., age, gender, income)

-- U(bus) =
$$\beta_1 \times$$
(walk time) + $\beta_2 \times$ (in-vehicle time)
+ $\beta_3 \times$ (cost/income) + ...

DETERMINISTIC BINARY CHOICE

If *U*(bus) - *U*(auto) > 0 , Probability(bus) = 1

If *U*(bus) - *U*(auto) < 0 , Probability(bus) = 0

PROBABILISTIC CHOICE

- 'Random' utility
- Random utility model

U_i = V(attributes of *i*; parameters) + *epsilon*_i

• What is in the epsilon?

Analysts' imperfect knowledge:

- Unobserved attributes
- Unobserved taste variations
- Measurement errors
- Use of proxy variables
- $U(bus) = \beta_1 \times (walk time) + \beta_2 \times (in-vehicle time + \beta_3 \times (cost/income) + ... + epsilon_bus$

PROBABILISTIC BINARY CHOICE

A SIMPLE EXAMPLE: ROUTE CHOICE

- Sample size: *N* = 600
- Alternatives: Tolled, Free
- Income: Low, Medium, High

Route				
choice	Low (<i>k</i> =1)	Medium (<i>k</i> =2)	High (<i>k</i> =3)	
Tolled (<i>i</i> =1)	10	100	90	200
Free (<i>i</i> =2)	140	200	60	400
	150	300	150	600

ROUTE CHOICE EXAMPLE (cont'd)

Probabilities

• (Marginal) probability of choosing toll road P(i = 1)

$$\hat{P}(i=1) = 200 / 600 = 1/3$$

 (Joint) probability of choosing toll road and having medium income: P(i=1, k=2)

$$\hat{P}(i=1,k=2) = 100 / 600 = 1/6$$
$$\sum_{i=1}^{2} \sum_{k=1}^{3} P(i,k) = 1$$

CONDITIONAL PROBABILITY P(I|K)

$$P(i,k) = P(i) \cdot P(k \mid i)$$
$$= P(k) \cdot P(i \mid k)$$

Independence

$$P(i \mid k) = P(i)$$

$$P(k \mid i) = P(k)$$

$$P(i) = \sum_{k} P(i,k)$$

$$P(k) = \sum_{i} P(i,k)$$

$$P(k \mid i) = \frac{P(i,k)}{P(i)}, \qquad P(i) \neq 0$$

$$P(i \mid k) = \frac{P(i,k)}{P(k)}, \qquad P(k) \neq 0$$

1.201, Fall 2006 Lecture 5

MODEL : *P*(*i*|*k*)

- Behavioral Model~
 Probability (Route Choice|Income) = P(i|k)
- Unknown parameters

Estimated Values:

$$P(i=1 \mid k=1) = \pi_1$$
 $\pi_1 = 1/15 = 0.067$

$$P(i=1 \mid k=2) = \pi_2$$
 $\pi_2 = 1/3 = 0.333$

$$P(i=1 \mid k=3) = \pi_3$$
 $\pi_3 = 3/5 = 0.6$

EXAMPLE: FORECASTING

- Toll Road share under existing income distribution: 33%
- New income distribution

Route	Income				
choice	Low (<i>k</i> =1)	Medium (<i>k</i> =2)	High (<i>k</i> =3)		
Tolled (<i>i</i> =1)	1/15*45=3	1/3*300=100	3/5*255=153	256	43%
Free (<i>i</i> =2)	42	200	102	344	57%
New income distribution	45	300	255	6	00
Existing income distribution	150	300	150	6	00

• Toll road share: $33\% \rightarrow 43\%$

THE RANDOM UTILITY MODEL

- Decision rule: Utility maximization
 - Decision maker *n* selects the alternative *i* with the highest utility U_{in} among J_n alternatives in the choice set C_n .

$$\boldsymbol{U}_{in} = \boldsymbol{V}_{in} + \boldsymbol{\varepsilon}_{in}$$

 V_{in} =Systematic utility : function of observable variables

 ε_{in} =Random utility

THE RANDOM UTILITY MODEL (cont'd)

• Choice probability:

$$P(i|C_n) = P(U_{in} \ge U_{jn}, \forall j \in C_n)$$
$$= P(U_{in} - U_{jn} \ge 0, \forall j \in C_n)$$
$$= P(U_{in} = \max_j U_{jn}, \forall j \in C_n)$$

• For binary choice:

$$P_n(1) = P(U_{1n} \ge U_{2n})$$

= $P(U_{1n} - U_{2n} \ge 0)$

THE RANDOM UTILITY MODEL (contd.)

Routes	Attril	Utility	
	Travel time (t) Travel cost (c)		(utils)
Tolled (<i>i</i> =1)	<i>t</i> ₁	C ₁	U ₁
Free (<i>i</i> =2)	t ₂	<i>C</i> ₂	U ₂

$$U_1 = -\beta_1 t_1 - \beta_2 c_1 + \varepsilon_1$$
$$U_2 = -\beta_1 t_2 - \beta_2 c_2 + \varepsilon_2$$
$$\beta_1, \beta_2 > 0$$

THE RANDOM UTILITY MODEL (cont'd)

- Ordinal utility
 - Decisions are based on utility differences
 - Unique up to order preserving transformation

$$U_1 = (-\beta_1 t_1 - \beta_2 c_1 + \varepsilon_1 + K)\lambda$$
$$U_2 = (-\beta_1 t_2 - \beta_2 c_2 + \varepsilon_2 + K)\lambda$$
$$\beta_1, \beta_2, \lambda > 0$$

THE RANDOM UTILITY MODEL (contd.)

THE SYSTEMATIC UTILITY

- Attributes: describing the alternative
 - Generic vs. Specific
 - Examples: travel time, travel cost, frequency
 - Quantitative vs. Qualitative
 - Examples: comfort, reliability, level of service
 - Perception
 - Data availability
- Characteristics: describing the decision-maker
 - Socio-economic variables
 - Examples: income,gender,education

RANDOM TERMS

- Capture imperfectness of information
- Distribution of *epsilons*
- Typical models
 - Logit model (i.i.d. "Extreme Value" error terms, a.k.a. Gumbel)
 - Probit model (Normal error terms)

BINARY CHOICE

1.201, Fall 2006 Lecture 5

BINARY LOGIT MODEL

• "Logit" name comes from *Logistic* Probability Unit

$$\varepsilon_{1n} \sim ExtremeValue (0,\mu) \quad F_{\varepsilon}(\varepsilon_{1n}) = \exp\left[-e^{-\mu\varepsilon_{1n}}\right]$$

$$\varepsilon_{2n} \sim Extreme Value (0, \mu) \quad F_{\varepsilon}(\varepsilon_{2n}) = \exp\left[-e^{-\mu\varepsilon_{2n}}\right]$$

$$\varepsilon_n \sim \text{Logistic (0, \mu)} \qquad F_{\varepsilon}(\varepsilon_n) = \frac{1}{1 + e^{-\mu \varepsilon_n}}$$

$$P_n(1) = F_{\varepsilon}(V_n) = \frac{1}{1 + e^{-\mu V_n}}$$

WHY LOGIT?

- Probit does not have a closed form the choice probability is an integral.
- The logistic distribution is used because:
 - It approximates a normal distribution quite well.
 - It is analytically convenient

LIMITING CASES

• Recall:
$$P_n(1) = P(V_n \ge \varepsilon_n)$$

= $F_{\varepsilon}(V_{1n} - V_{2n})$
• With logit, $F_{\varepsilon}(V_n) = \frac{1}{1 + e^{-\mu V_n}} = \frac{e^{\mu V_{1n}}}{e^{\mu V_{1n}} + e^{\mu V_{2n}}}$

- What happens as $\mu \rightarrow \infty$?
- What happens as $\mu \rightarrow 0$?

RE-FORMULATION

• $P_n(i) = P(U_{in} \ge U_{jn})$

$$= \frac{1}{1 + e^{-\mu(V_{in} - V_{jn})}} \\ = \frac{e^{\mu V_{in}}}{e^{\mu V_{in}} + e^{\mu V_{jn}}}$$

• If V_{in} and V_{in} are linear in their parameters:

$$P_n(i) = \frac{e^{\mu\beta' x_{in}}}{e^{\mu\beta' x_{in}} + e^{\mu\beta' x_{jn}}}$$

MULTIPLE CHOICE

• Choice set C_n : J_n alternatives, $J_n \ge 2$

$$P(i | C_n) = P[V_{in} + \varepsilon_{in} \ge V_{jn} + \varepsilon_{jn}, \forall j \in C_n]$$

=
$$P[(V_{in} + \varepsilon_{in}) = \max_{j \in C_n} (V_{jn} + \varepsilon_{jn})]$$

=
$$P[\varepsilon_{jn} - \varepsilon_{in} \le V_{in} - V_{jn}, \forall j \in C_n]$$

MULTIPLE CHOICE (cont.)

- Multinomial Logit Model
 - ε_{jn} independent and identically distributed (i.i.d.)
 - $\varepsilon_{jn} \sim Extreme Value(0,\mu) \forall j \quad f(\varepsilon) = \mu e^{-\mu \varepsilon} \exp\left[-e^{-\mu \varepsilon}\right]$

$$f(\varepsilon) = \mu e^{-\mu\varepsilon} \exp\left[-e^{-\mu\varepsilon}\right]$$

- Variance:
$$\pi^2/6\mu^2$$
 $P(i \mid C_n) = \frac{e^{\mu V_{in}}}{\sum_{j \in C_n} e^{\mu V_{jn}}}$

MULTIPLE CHOICE – AN EXAMPLE

• Choice Set $C_n = \{1, 2, 3\} \forall n$

$$P(1 | C_n) = \frac{e^{\mu V_{1n}}}{e^{\mu V_{1n}} + e^{\mu V_{2n}} + e^{\mu V_{3n}}}$$

SPECIFICATION OF SYSTEMATIC COMPONENTS

- Types of Variables
 - Attributes of alternatives: Z_{in}, e.g., travel time, travel cost
 - Characteristics of decision-makers: S_n , e.g., age, gender, income, occupation
 - Therefore: $X_{in} = h(Z_{in}, S_n)$
- Examples:
 - $X_{in1} = Z_{in1}$ = travel cost
 - $X_{in2} = log(Z_{in2}) = log (travel time)$
 - $X_{in3} = Z_{in1}/S_{n1}$ = travel cost / income
- Functional Form: Linear in the Parameters

$$V_{in} = \beta_1 X_{in1} + \beta_2 X_{in2} + \dots + \beta_k X_{inK}$$
$$V_{jn} = \beta_1 X_{jn1} + \beta_2 X_{jn2} + \dots + \beta_k X_{jnK}$$

DATA COLLECTION

- Data collection for each individual in the sample:
 - Choice set: available alternatives
 - Socio-economic characteristics
 - Attributes of available alternatives
 - Actual choice

n	Age	Auto Time	Transit Time	Choice
1	35	15.4	58.2	Auto
2	45	14.2	31.0	Transit
3	37	19.6	43.6	Auto
4	42	50.8	59.9	Auto
5	32	55.5	33.8	Transit
6	15	N/A	48.4	Transit

MODEL SPECIFICATION EXAMPLE

$$V_{auto} = \beta_0 + \beta_1 TT_{auto} + \beta_2 age_1 + \beta_3 age_2$$

$$V_{transit} = \beta_1 TT_{transit}$$

where $age_1 = 1$ if $age \le 20$, 0 otherwise $age_2 = 1$ if age > 40, 0 otherwise

	β_0	β_1	β_2	β_3
Auto	1	TT _{auto}	age ₁	age ₂
Transit	0	TT _{transit}	0	0

PROBABILITIES OF OBSERVED CHOICES

• Individual 1:

 $V_{auto} = \beta_0 + \beta_1 \ 15.4 + \beta_2 \ 0 + \beta_3 \ 0$ $V_{transit} = \beta_1 \ 58.2$ $P(Auto) = \frac{e^{\beta_0 + 15.4 \beta_1}}{e^{\beta_0 + 15.4 \beta_1} + e^{58.2 \beta_1}}$

• Individual 2:

 $V_{auto} = \beta_0 + \beta_1 \ 14.2 + \beta_2 \ 0 + \beta_3 \ 1$ $V_{transit} = \beta_1 \ 31.0$ $P(Transit) = \frac{e^{31.0\beta_1}}{e^{\beta_0 + 14.2\beta_1 + \beta_3} + e^{31.0\beta_1}}$

MAXIMUM LIKELIHOOD ESTIMATION

- Find the values of β that are most likely to result in the choices observed in the sample:
 - max $L^*(\beta) = P_1(Auto)P_2(Transit)...P_6(Transit)$

• If
$$y_{in} = \begin{cases} 1, \text{ if person } n \text{ chose alternative } i \\ 0, \text{ if person } n \text{ chose alternative } j \end{cases}$$

• Then we maximize, over choices of $\{\beta_1, \beta_2, ..., \beta_k\}$, the following expression:

$$L^{*}(\beta_{1},\beta_{2},...,\beta_{k}) = \prod_{n=1}^{N} P_{n}(i)^{y_{in}} P_{n}(j)^{y_{jn}}$$

•
$$\beta^* = \arg \max_{\beta} L^* (\beta_1, \beta_2 ..., \beta_k)$$

= $\arg \max_{\beta} \log L^* (\beta_1, \beta_2 ..., \beta_k)$