PASSENGER TRANSPORT

<u>OUTLINE</u>

- Hierarchy of choices
- Level of service attributes
- Estimating the Transfer Penalty*
- Modeling issues
 - -- data availability
 - -- logit revisited
- * Guo, Z and N.H.M. Wilson, "Assessment of the Transfer Penalty for Transit Trips: A GIS-based Disaggregate Modeling Approach." Transportation Research Record 1872, pp 10-18 (2004).

HIERARCHY OF CHOICES

- A. Long-Term Decisions: made infrequently by any household
 - where to live
 - where to work

Transport is one component of these choices

- **B. Medium-Term Decisions**
 - household vehicle ownership
 - mode for journey to work

Transport is central to these choices

- **C. Short-Term Decisions**
 - daily activity and travel choices:
 What, where, when, for how long, and in what order, by which mode and route
 Transport is important for these choices

LEVEL OF SERVICE ATTRIBUTES

A. Important but hard to quantify:

- flexibility
- privacy
- status
- enjoyment/happiness/well-being
- comfort
- safety and security
- reliability

LEVEL OF SERVICE ATTRIBUTES

B. Important but easier to quantify:

- travel time
 - wait time
 - in-vehicle time
 - walk time
- transfers
- cost
 - out of pocket

LEVEL OF SERVICE ATTRIBUTES

Difficulties:

- differences in values among individuals
- objective measures may differ from perceptions
- tendency to focus on what can be measured
- hard to appraise reactions to a very different alternative

ASSESSING THE TRANSFER PENALTY: A GIS-BASED DISAGGREGATE MODELING APPROACH

<u>Outline</u>

- Objectives
- Prior Research
- Modeling Approach
- Data Issues
- Model Specifications
- Analysis and Interpretation
- Conclusions

Source: Guo, Z and N.H.M. Wilson, "Assessment of the Transfer Penalty for Transit Trips: A GISbased Disaggregate Modeling Approach." Transportation Research Record 1872, pp 10-18 (2004).

OBJECTIVES

- Improve our understanding of how transfers affect behavior
- Estimate the impact of each variable characterizing a transfer
- Identify transfer attributes which can be improved cost-effectively

PREVIOUS TRANSFER PENALTY RESULTS

Previous Studies	Variables in the Utility Function	Transfer Types (Model Structure)	Transfer Penalty Equivalence
Alger et <i>al,</i> 1971 Stockholm	Walking time to stop Initial waiting time Transit in-vehicle time Transit cost	Subway-to-Subway Rail-to-Rail Bus-to-Rail Bus-to-Bus	 4.4 minutes in-vehicle time 14.8 minutes in-vehicle time 23.0 minutes in-vehicle time 49.5 minutes in-vehicle time
Han, 1987 Taipei, Taiwan	Initial waiting time Walking time to stop In-vehicle time Bus fare Transfer constant	Bus-to-Bus (Path Choice)	30 minutes in-vehicle time 10 minutes initial wait time 5 minutes walk time
Hunt , 1990 Edmonton, Canada	Transfer Constant Walking distance Total in-vehicle time Waiting time Number of transfers	Bus-to-Light Rail (Path Choice)	17.9 minutes in-vehicle time

PREVIOUS TRANSFER PENALTY RESULTS (cont'd)

Previous Studies	Variables in the Utility Function	Transfer Types (Model Structure)	Transfer Penalty Equivalence
Liu, 1997 New Jersey, NJ	Transfer Constant In-vehicle time Out-of-vehicle time One way cost Number of transfers	Auto-to-Rail Rail-to-Rail (Modal Choice)	15 minutes in-vehicle time 1.4 minutes in-vehicle time
CTPS, 1997 Boston, MA	Transfer Constant In-vehicle time Walking time Initial waiting time Transfer waiting time Out-of-vehicle time Transit fare	All modes combined (Path and Mode Choice)	12 to 15 minutes in-vehicle time
Wardman, Hine and Stradling, 2001 Edinburgh, Glasgow, UK	Utility function not specified	Bus-to-Bus Auto-to-Bus Rail-to-Rail	4.5 minutes in-vehicle time 8.3 minutes in-vehicle time 8 minutes in-vehicle time

PRIOR RESEARCH – A CRITIQUE

- Wide range of transfer penalty
- Incomplete information on path attributes
- Limited and variable information on transfer facility attributes
- Some potentially important attributes omitted

MODELING APPROACH

- Use standard on-board survey data including:
 - -- actual transit path including boarding and alighting locations
 - -- street addresses of origin and destination
 - -- demographic and trip characteristics
- Focus on respondents who:
 - -- travel to downtown Boston destinations by subway
 - -- have a credible transfer path to final destination

MODELING APPROACH

- Define transfer and non-transfer paths to destination from subway line accessing downtown area
- For each path define attributes:
 - -- walk time -- transfer walk time
 - -- in-vehicle time -- transfer wait time
- Specify and estimate binary logit models for probability of selecting transfer path

TWO OPTIONS TO REACH THE DESTINATION

1.201, Fall 2006 Lecture 9

MBTA SUBWAY CHARACTERISTICS

- Three heavy rail transit lines (Red, Orange, and Blue)
- One light rail transit line (Green)
- Four major downtown subway transfer stations (Park, Downtown Crossing, Government Center, and State)
- 21 stations in downtown study area
- Daily subway ridership: 650,000
- Daily subway-subway transfers: 126,000

THE MBTA SUBWAY IN DOWNTOWN BOSTON

1.201, Fall 2006 Lecture 9

Figure by MIT OCW.

DATA ISSUES

- Data from 1994 MBTA on-board subway survey
- 38,888 trips in the dataset
- 15,000 geocodable destination points
- 6,500 in downtown area
- 3,741 trips with credible transfer option based on:
 - closest station is not on the subway line used to enter the downtown area
- 67% of trips with credible transfer option actually selected non-transfer path
- 3,140 trips used for model estimation

VARIABLES

A Transit Path Variables

- Walk time savings: based on shortest path and assume 4.5 km per hour walk speed
- Extra in-vehicle time: based on scheduled trip time

B Transfer Attributes

- Transfer walk time
- Transfer wait time: half the scheduled headway
- Assisted change in level: a binary variable with value 1 if there is an escalator

VARIABLES (continued)

C. Pedestrian Environment Variables

- Land use: difference in Pedestrian Friendly Parcel (PFP) densities
- Pedestrian Infrastructure Amenity: difference in average sidewalk width
- Open Space: a trinary variable reflecting walking across Boston Common
- Topology: a trinary variable reflecting walking through Beacon Hill
- **D.** Trip and Demographic Variables

THE SEQUENCE OF MODEL DEVELOPMENT

Figure by MIT OCW.

MODEL A: SIMPLEST MODEL

Specification

- Assume every transfer is perceived to be the same
- Only two variables
 - -- transfer constant
 - -- walk time savings

Findings

A transfer is perceived as equivalent to 9.5 minutes of walking time

MODEL A RESULTS

Variables	Coefficients	t statistics	
Transfer Constant Walk Time Savings (minutes)	-2.39 0.25	-28.57 20.78	
# of Observations		3140	
Final log-likelihood	-1501.9		
Adjusted ρ ²		0.309	

MODEL B: TRANSFER STATION SPECIFIC MODEL

Specification

- Assume each transfer station is perceived differently
- Variables are:
 - -- walk time savings
 - -- extra in-vehicle time
 - -- station-specific transfer dummies

Findings

- Improved explanatory power (over Model A)
- Transfer stations are perceived differently
- Park is the best (4.8 minutes of walk time equivalence)
- State is the worst (9.7 minutes of walk time equivalence)

MODEL B RESULTS

Variables	Model A		Mod	el B
	Coefficients	t statistics	Coefficients	t statistics
Transfer Constant Walk Time Savings Extra In-vehicle Time Government Center State Street Downtown Crossing	-2.39 0.25	-28.57 20.78	-1.39 0.29 -0.21 -1.21 -1.41 -1.09	-12.62 19.54 -10.68 -10.23 -7.44 -7.28
# of Observations	3140		314	10
Final log-likelihood	-1501.9		-1368.1	
Adjusted ρ ²	0.309		0.3	69

MODEL C: TRANSFER ATTRIBUTES MODEL

Specification

- Transfer attributes affect transfer perceptions:
 - -- transfer walk time
 - -- transfer wait time
 - -- assisted change in level

Findings

- Improved explanatory power (over Model B)
- Residual transfer penalty is equivalent to 3.5 minutes of walking time savings
- Transfer waiting time is least significant

MODEL C RESULTS

Variables	Model A		Model A Model B		el B	Model C	
	Coefficients	t statistics	Coefficients	t statistics	Coefficients	t statistics	
Transfer Constant Walk Time Savings Extra In-vehicle Time Government Center State Street Downtown Crossing Transfer walking time Transfer waiting time Assisted level change	-2.39 0.25	-28.57 20.78	-1.39 0.29 -0.21 -1.21 -1.41 -1.09	-12.62 19.54 -10.68 -10.23 -7.44 -7.28	-0.99 0.29 -0.20 -1.13 -0.16 0.27	-6.99 18.11 -8.35 -13.37 -1.98 2.24	
# of Observations	314	.0	314	10	31	40	
Final log-likelihood	-150 ⁻	1.9	-136	8.1	-133	4.32	
Adjusted ρ ²	0.30)9	0.369		0.385		

MODEL D: COMBINED ATTRIBUTE & STATION MODEL

Specification

- Combines the variables in Model B and C
- Estimates separate models for peak and off-peak periods

Findings

- Improved explanatory power (over Model C)
- Government Center is perceived as worse than other transfer stations
- Residual transfer penalty in off-peak period at other transfer stations vanishes
- In the peak period model the transfer waiting time is not significant

MODEL D RESULTS

Variables	Model A	Model B	Model C	Model D			
	Coefficients	Coefficients	Coefficients	Peak	Off-peak		
Transfer Constant Walk Time Savings Extra In-vehicle Time Government Center State Street Downtown Crossing Transfer walking time Transfer waiting time Assisted level change	-2.39*** 0.25***	-1.39*** 0.29*** -0.21*** -1.21*** -1.41*** -1.09***	-0.99*** 0.29*** -0.20*** -1.13*** -0.16** 0.27**	-1.08*** 0.32*** -0.24*** -1.28*** -1.39*** 0.39**	0.22*** -0.17*** -1.26* -1.22*** -0.29*** 0.48***		
# of Observations	3140	3140	3140	2173	967		
Final log-likelihood	-1501.9	-1368.1	-1334.32	-868.44	-418.99		
Adjusted ρ²	0.309	0.369	0.385	0.414	0.357		
Note, ***: P < 0.001; **: P < 0.05; *: P < 0.1							

MODEL E: PEDESTRIAN ENVIRONMENT MODEL

Specification

- Better pedestrian environment should lead to greater willingness to walk
- Add pedestrian environment variables to Model D

Findings

- Improved explanatory power (over Model D)
- Greater sensitivity to pedestrian environment in off-peak model
- Both Boston Common (positively) and Beacon Hill (negatively) affect transfer choices as expected
- Pedestrian environment variables can affect the transfer penalty by up to 6.2 minutes of walking time equivalence

MODEL E RESULTS

Variables	Model A	Model B	Model C	Model D		I D Model E	
				Peak Hour	Non-Peak Hour	Peak Hour	Non-Peak Hour
Transfer Constant Walking Time Savings Extra In-vehicle Time Transfer walking time Transfer waiting time Assisted level change Government Center State Street Downtown Crossing Extra PFP density Extra sidewalk width Boston Common Beacon Hill	-2.39*** 0.25***	-1.39*** 0.29*** -0.21*** -1.21*** -1.41*** -1.09***	-0.99*** 0.29*** -0.20*** -1.13*** -0.16** 0.27**	-1.08*** 0.32*** -0.24*** -1.39*** 0.39** -1.28***	0.22*** -0.17*** -1.22*** -0.29*** 0.48*** -1.26*	-1.39*** 0.29*** -0.24*** -1.28*** 0.39*** -1.20*** -1.20*** -0.03*** 0.73*** -0.73**	0.19*** -0.16*** -0.99*** -0.27*** 0.45* -1.28** -0.20** -0.03*** 0.79*** -1.07***
# of Observations	3140	3140	3140	2173	967	2173	967
Final log-likelihood	-1501.9	-1368.1	-1334.32	-868.44	-418.99	-852.472	-402.975
Adjusted ρ ²	0.309	0.369	0.385	0.414	0.357	0.425	0.376
Note, ***: P < 0.001; **: P < 0.05; *: P < 0.1							

ANALYSIS AND INTERPRETATION

- The transfer penalty has a range rather than a single value
- The attributes of the transfer explain most of the variation in the transfer penalty
- For the MBTA subway system the transfer penalty varies between the equivalent of 2.3 minutes and 21.4 minutes of walking time
- Model results are consistent with prior research findings

RANGE OF THE TRANSFER PENALTY

Model Number	Underlying Variables	Adjusted ρ ²	The Range of the Penalty (Equivalent Value of)
Α	Transfer constant	0.309	9.5 minutes of walking time
В	Government Center Downtown Crossing State	0.369	4.8 ~ 9.7 minutes of walking time
С	Transfer constant Transfer walk time Transfer wait time Assisted Level Change 	0.385	4.3 ~ 15.2 minutes of walking time
D	Transfer constant Transfer walk time Transfer wait time Assisted Level Change Government Center 	0.414 (Peak) 0.357 (Off-peak)	4.4 ~ 19.4 minutes of walking time (Peak) 2.3 ~ 21.4 minutes of walking time (Off-peak)

COMPARISON OF THE TRANSFER PENALTY WITH PRIOR FINDINGS

Studies	Alger e 1971	t al	Liu 1997	Wardman <i>et al</i> 2001	CTPS 1997	This Research
City	Stockho	olm	New Jersey	Edinburgh	Boston	Boston
Transfer Type	Subway	Rail	Subway	Rail	All modes	Subway
Value of the Transfer Penalty*	4.4	14.8	1.4	8	12 to 18	1.6 ~ 31.8

* Minutes of in-vehicle time

LIMITATIONS OF RESEARCH

- Findings relate only to current transit riders
- Only subway-subway transfer studied
 - -- no transfer payment involved
 - -- transfers are protected from weather
 - -- headways are very low
- Weather variable not included

SOURCES OF DATA ON USER BEHAVIOR

- Revealed Preference Data
 - Travel Diaries
 - Field Tests
- Stated Preference Data
 - Surveys
 - Simulators

STATED PREFERENCES / CONJOINT EXPERIMENTS

- Used for product design and pricing
 - -- For products with significantly different attributes
 - -- When attributes are strongly correlated in real markets
 - -- Where market tests are expensive or infeasible

Uses data from survey "trade-off" experiments in which attributes of the product are systematically varied

Applied in transportation studies since the early 1980s

AGGREGATION AND FORECASTING

- Objective is to make aggregate predictions from
 - -- A disaggregate model, $P(i | X_n)$
 - -- Which is based on individual attributes and characteristics, X_n
 - -- Having only limited information about the explanatory variables

THE AGGREGATE FORECASTING PROBLEM

- The fraction of population *T* choosing alt. *i* is:
 - $W(i) = \int P(i \mid X) p(X) dX \quad , p(X) \text{ is the density function of } X$

$$=\frac{1}{N_T}\sum_{n=1}^{N_T}P(i\mid X_n)$$

, N_T is the # in the population of interest

- Not feasible to calculate because:
 - -- We never know each individual's complete vector of relevant attributes
 - -- p(X) is generally unknown
- The problem is to reduce the required data

SAMPLE ENUMERATION

- Use a sample to represent the entire population
- For a random sample:

$$\hat{W}(i) = \frac{1}{N_s} \sum_{n=1}^{N_s} \hat{P}(i \mid x_n) \quad \text{where } N_s \text{ is the # of obs. in sample}$$

• For a weighted sample:

$$\hat{W}(i) = \sum_{n=1}^{N_s} \frac{w_n}{\sum_n w_n} \hat{p}(i \mid x_n) \text{, where } \frac{1}{w_n} \text{ is } x_n \text{ 's selection prob.}$$

• No aggregation bias, but there is sampling error

DISAGGREGATE PREDICTION

GENERATING DISAGGREGATE POPULATIONS

1.201, Fall 2006 Lecture 9

LOGIT MODEL PROPERTY AND EXTENSION

- Independence from Irrelevant Alternatives (IIA) property --Motivation for Nested Logit
- Nested Logit specification and an example

INDEPENDENCE FROM IRRELEVANT ALTERNATIVES (IIA)

- Property of the Multinomial Logit Model
 - ε_{in} independent identically distributed (i.i.d.)

$$- \varepsilon_{jn} \sim ExtremeValue(0,\mu) \forall j$$

-
$$P_n(i | C_n) = \frac{e^{\mu V_{in}}}{\sum_{j \in C_n} e^{\mu V_{jn}}}$$
so
$$\frac{P(i | C_1)}{P(j | C_1)} = \frac{P(i | C_2)}{P(j | C_2)} \quad \forall i, j, C_1, C_2$$

such that *i*, *j* \in C₁, *i*, *j* \in C₂, C₁ \subseteq C_n and C₂ \subseteq C_n

EXAMPLES OF IIA

• Route choice with an overlapping segment

Nigel H.M. Wilson

1.201, Fall 2006 Lecture 9

RED BUS / BLUE BUS PARADOX

• Consider that initially auto and bus have the same utility

-
$$C_n = \{auto, bus\}$$
 and $V_{auto} = V_{bus} = V$

- P(auto) = P(bus) = 1/2
- Now suppose that a new bus service is introduced that is identical to the existing bus service, except the buses are painted differently (red vs. blue)

-
$$C_n = \{auto, red bus, blue bus\}; V_{red bus} = V_{blue bus} = V$$

- MNL now predicts
 P(auto) = P(red bus) = P(blue bus) = 1/3
- We'd expect P(auto) =1/2, P(red bus) = P(blue bus) =1/4

IIA AND AGGREGATION

- Divide the population into two equally-sized groups: those who prefer autos, and those who prefer transit
- Mode shares before introducing blue bus:

Population	Auto Share	Red Bus Share	
Auto people	90%	10%	P(auto)/P(red bus) = 9
Transit people	10%	90%	P(auto)/P(red bus) = 1/9
Total	50%	50%	

• Auto and red bus share ratios remain constant for each group after introducing blue bus:

Population	Auto Share	Red Bus Share	Blue Bus Share
Auto people	81.8%	9.1%	9.1%
Transit people	5.2%	47.4%	47.4%
Total	43.5%	28.25%	28.25%

MOTIVATION FOR NESTED LOGIT

- Overcome the IIA Problem of Multinomial Logit when
 - Alternatives are correlated (e.g., red bus and blue bus)
 - -- Multidimensional choices are considered (e.g., departure time and route)

TREE REPRESENTATION OF NESTED LOGIT

• Example: Mode Choice (Correlated Alternatives)

TREE REPRESENTATION OF NESTED LOGIT

• Example: Route and Departure Time Choice (Multidimensional Choice)

NESTED MODEL ESTIMATION

- Logit at each node
- Utilities at lower level enter at the node as the *inclusive* value

• The inclusive value is often referred to as logsum

$$P(i \mid NM) = \frac{e^{V_i}}{e^{V_{Walk}} + e^{V_{Bike}}} \qquad i = Walk, Bike$$

$$I_{NM} = \ln(e^{V_{Walk}} + e^{V_{Bike}})$$

$$P(i \mid M) = \frac{e^{V_i}}{e^{V_{Car}} + e^{V_{Taxi}} + e^{V_{Bus}}} \qquad i = Car, Taxi, Bus$$

$$I_M = \ln(e^{V_{Car}} + e^{V_{Taxi}} + e^{V_{Bus}})$$

$$P(NM) = \frac{e^{a_{NM} + \gamma I_{NM}}}{e^{a_{NM} + \gamma I_{NM}} + e^{\gamma I_M}}$$
$$P(M) = \frac{e^{\gamma I_M}}{e^{a_{NM} + \gamma I_{NM}} + e^{\gamma I_M}}$$

Calculation of choice probabilities

$$P(Bus) = P(Bus | M) \cdot P(M)$$

$$= \left[\frac{e^{V_{Bus}}}{e^{V_{Car}} + e^{V_{Taxi}} + e^{V_{Bus}}}\right] \cdot \left[\frac{e^{\gamma I_M}}{e^{a_{NM} + \gamma I_{NM}} + e^{\gamma I_M}}\right]$$

$$= \left[\frac{e^{V_{Bus}}}{e^{V_{Car}} + e^{V_{Taxi}} + e^{V_{Bus}}}\right] \cdot \left[\frac{e^{\gamma \ln(e^{V_{Car}} + e^{V_{Taxi}} + e^{V_{Bus}})}}{e^{a_{NM} + \gamma \ln(e^{V_{Walk}} + e^{V_{Bike}})} + e^{\gamma \ln(e^{V_{Car}} + e^{V_{Taxi}} + e^{V_{Bus}})}\right]$$