PASSENGER TRANSPORT

OUTLINE

- Hierarchy of choices
- Level of service attributes
- Estimating the Transfer Penalty*
- Modeling issues
-- data availability
-- logit revisited
* Guo, Z and N.H.M. Wilson, "Assessment of the Transfer Penalty for Transit Trips: A GIS-based Disaggregate Modeling Approach." Transportation Research Record 1872, pp 10-18 (2004).

HIERARCHY OF CHOICES

A. Long-Term Decisions: made infrequently by any household

- where to live
- where to work

Transport is one component of these choices
B. Medium-Term Decisions

- household vehicle ownership
- mode for journey to work Transport is central to these choices
C. Short-Term Decisions
- daily activity and travel choices:

What, where, when, for how long, and in what order, by which mode and route Transport is important for these choices

LEVEL OF SERVICE ATTRIBUTES

A. Important but hard to quantify:

- flexibility
- privacy
- status
- enjoyment/happiness/well-being
- comfort
- safety and security
- reliability

LEVEL OF SERVICE ATTRIBUTES

B. Important but easier to quantify:

- travel time
- wait time
- in-vehicle time
- walk time
- transfers
- cost
- out of pocket

LEVEL OF SERVICE ATTRIBUTES

Difficulties:

- differences in values among individuals
- objective measures may differ from perceptions
- tendency to focus on what can be measured
- hard to appraise reactions to a very different alternative

ASSESSING THE TRANSFER PENALTY: A GIS-BASED DISAGGREGATE MODELING APPROACH

Outline

- Objectives
- Prior Research
- Modeling Approach
- Data Issues
- Model Specifications
- Analysis and Interpretation
- Conclusions

Source: Guo, Z and N.H.M. Wilson, "Assessment of the Transfer Penalty for Transit Trips: A GISbased Disaggregate Modeling Approach." Transportation Research Record 1872, pp 10-18 (2004).

OBJECTIVES

- Improve our understanding of how transfers affect behavior
- Estimate the impact of each variable characterizing a transfer
- Identify transfer attributes which can be improved cost-effectively

PREVIOUS TRANSFER PENALTY RESULTS

Previous Studies	Variables in the Utility Function	Transfer Types (Model Structure)	Transfer Penalty Equivalence
Alger et al, 1971 Stockholm	Walking time to stop Initial waiting time Transit in-vehicle time Transit cost	Subway-to-Subway Rail-to-Rail Bus-to-Rail Bus-to-Bus	4.4 minutes in-vehicle time 14.8 minutes in-vehicle time 23.0 minutes in-vehicle time 49.5 minutes in-vehicle time
Han, 1987 Taipei, Taiwan	Initial waiting time Walking time to stop In-vehicle time Bus fare Transfer constant	Bus-to-Bus (Path Choice)	30 minutes in-vehicle time 10 minutes initial wait time 5 minutes walk time
Hunt, 1990 Edmonton, Canada	Transfer Constant Walking distance Total in-vehicle time Waiting time Number of transfers	Bus-to-Light Rail (Path Choice)	17.9 minutes in-vehicle time

PREVIOUS TRANSFER PENALTY RESULTS (cont'd)

Previous Studies	Variables in the Utility Function	Transfer Types (Model Structure)	Transfer Penalty Equivalence
Liu, 1997 New Jersey, NJ	Transfer Constant In-vehicle time Out-of-vehicle time One way cost Number of transfers	Auto-to-Rail Rail-to-Rail (Modal Choice)	15 minutes in-vehicle time 1.4 minutes in-vehicle time
CTPS, 1997 Boston, MA	Transfer Constant In-vehicle time Walking time Initial waiting time Transfer waiting time Out-of-vehicle time Transit fare	All modes combined (Path and Mode Choice)	12 to 15 minutes in-vehicle time
Wardman, Hine and Stradling, 2001 Edinburgh, Glasgow, UK	Utility function not specified	Bus-to-Bus Auto-to-Bus Rail-to-Rail	4.5 minutes in-vehicle time 8.3 minutes in-vehicle time

PRIOR RESEARCH - A CRITIQUE

- Wide range of transfer penalty
- Incomplete information on path attributes
- Limited and variable information on transfer facility attributes
- Some potentially important attributes omitted

MODELING APPROACH

- Use standard on-board survey data including:
-- actual transit path including boarding and alighting locations
-- street addresses of origin and destination
-- demographic and trip characteristics
- Focus on respondents who:
-- travel to downtown Boston destinations by subway
-- have a credible transfer path to final destination

MODELING APPROACH

- Define transfer and non-transfer paths to destination from subway line accessing downtown area
- For each path define attributes:
-- walk time -- transfer walk time
-- in-vehicle time -- transfer wait time
- Specify and estimate binary logit models for probability of selecting transfer path

TWO OPTIONS TO REACH THE DESTINATION

MBTA SUBWAY CHARACTERISTICS

- Three heavy rail transit lines (Red, Orange, and Blue)
- One light rail transit line (Green)
- Four major downtown subway transfer stations (Park, Downtown Crossing, Government Center, and State)
- 21 stations in downtown study area
- Daily subway ridership: 650,000
- Daily subway-subway transfers: 126,000

THE MBTA SUBWAY IN DOWNTOWN BOSTON

DATA ISSUES

- Data from 1994 MBTA on-board subway survey
- 38,888 trips in the dataset
- 15,000 geocodable destination points
- 6,500 in downtown area
- 3,741 trips with credible transfer option based on:
- closest station is not on the subway line used to enter the downtown area
- 67% of trips with credible transfer option actually selected non-transfer path
- 3,140 trips used for model estimation

VARIABLES

A Transit Path Variables

- Walk time savings: based on shortest path and assume 4.5 km per hour walk speed
- Extra in-vehicle time: based on scheduled trip time

B Transfer Attributes

- Transfer walk time
- Transfer wait time: half the scheduled headway
- Assisted change in level: a binary variable with value 1 if there is an escalator

VARIABLES (continued)

C. Pedestrian Environment Variables

- Land use: difference in Pedestrian Friendly Parcel (PFP) densities
- Pedestrian Infrastructure Amenity: difference in average sidewalk width
- Open Space: a trinary variable reflecting walking across Boston Common
- Topology: a trinary variable reflecting walking through Beacon Hill
D. Trip and Demographic Variables

THE SEQUENCE OF MODEL DEVELOPMENT

Figure by MIT OCW.

MODEL A: SIMPLEST MODEL

Specification

- Assume every transfer is perceived to be the same
- Only two variables
-- transfer constant
-- walk time savings
Findings
- A transfer is perceived as equivalent to 9.5 minutes of walking time

MODEL A RESULTS

Variables	Coefficients	t statistics
Transfer Constant	-2.39	-28.57
Walk Time Savings	0.25	20.78
(minutes)		
\# of Observations	3140	
Final log-likelihood	-1501.9	
Adjusted ρ^{2}	0.309	

MODEL B: TRANSFER STATION SPECIFIC MODEL

Specification

- Assume each transfer station is perceived differently
- Variables are:
-- walk time savings
-- extra in-vehicle time
-- station-specific transfer dummies

Findings

- Improved explanatory power (over Model A)
- Transfer stations are perceived differently
- Park is the best (4.8 minutes of walk time equivalence)
- State is the worst (9.7 minutes of walk time equivalence)

MODEL B RESULTS

Variables	Model A		Model B	
	Coefficients	t statistics	Coefficients	t statistics
Transfer Constant Walk Time Savings Extra In-vehicle Time Government Center State Street Downtown Crossing	$\begin{gathered} -2.39 \\ 0.25 \end{gathered}$	$\begin{array}{r} -28.57 \\ 20.78 \end{array}$	$\begin{gathered} -1.39 \\ 0.29 \\ -0.21 \\ -1.21 \\ -1.41 \\ -1.09 \end{gathered}$	$\begin{gathered} -12.62 \\ 19.54 \\ -10.68 \\ -10.23 \\ -7.44 \\ -7.28 \end{gathered}$
\# of Observations	3140		3140	
Final log-likelihood	-1501.9		-1368.1	
Adjusted ${ }^{\text {² }}$	0.309		0.369	

MODEL C: TRANSFER ATTRIBUTES MODEL

Specification

- Transfer attributes affect transfer perceptions:
-- transfer walk time
-- transfer wait time
-- assisted change in level
Findings
- Improved explanatory power (over Model B)
- Residual transfer penalty is equivalent to 3.5 minutes of walking time savings
- Transfer waiting time is least significant

MODEL C RESULTS

Variables	Model A		Model B		Model C	
	Coefficients	t statistics	Coefficients	t statistics	Coefficients	t statistics
Transfer Constant Walk Time Savings Extra In-vehicle Time Government Center State Street Downtown Crossing Transfer walking time Transfer waiting time Assisted level change	$\begin{gathered} -2.39 \\ 0.25 \end{gathered}$	$\begin{array}{r} -28.57 \\ 20.78 \end{array}$	$\begin{gathered} -1.39 \\ 0.29 \\ -0.21 \\ -1.21 \\ -1.41 \\ -1.09 \end{gathered}$	$\begin{gathered} \hline-12.62 \\ 19.54 \\ -10.68 \\ -10.23 \\ -7.44 \\ -7.28 \end{gathered}$	$\begin{gathered} -0.99 \\ 0.29 \\ -0.20 \\ \\ \\ -1.13 \\ -0.16 \\ 0.27 \end{gathered}$	$\begin{gathered} \hline-6.99 \\ 18.11 \\ -8.35 \\ \\ \\ -13.37 \\ -1.98 \\ 2.24 \end{gathered}$
\# of Observations	3140		3140		3140	
Final log-likelihood	-1501.9		-1368.1		-1334.32	
Adjusted ρ^{2}	0.309		0.369		0.385	

MODEL D: COMBINED ATTRIBUTE \& STATION MODEL

Specification

- Combines the variables in Model B and C
- Estimates separate models for peak and off-peak periods

Findings

- Improved explanatory power (over Model C)
- Government Center is perceived as worse than other transfer stations
- Residual transfer penalty in off-peak period at other transfer stations vanishes
- In the peak period model the transfer waiting time is not significant

MODEL D RESULTS

Variables	Model A	Model B	Model C	Model D	
	Coefficients	Coefficients	Coefficients	Peak	Off-peak
Transfer Constant Walk Time Savings Extra In-vehicle Time Government Center State Street Downtown Crossing Transfer walking time Transfer waiting time Assisted level change	$\begin{aligned} & -2.39^{* * *} \\ & 0.25^{* * *} \end{aligned}$	$\begin{gathered} -1.39^{* * *} \\ 0.29^{* * *} \\ -0.21^{* * *} \\ -1.21^{* * *} \\ -1.41^{* *} \\ -1.09^{* * *} \end{gathered}$	$\begin{gathered} -0.99^{* * *} \\ 0.29^{* * *} \\ -0.20^{* * *} \\ \\ -1.13^{* * *} \\ -0.16^{* *} \\ 0.27^{* *} \end{gathered}$	$\begin{gathered} -1.08^{* * *} \\ 0.32^{* * *} \\ -0.24^{* * *} \\ -1.28^{* * *} \\ \\ -1.39^{* * *} \\ 0.39^{* *} \end{gathered}$	$\begin{gathered} 0.22^{* * *} \\ -0.17^{* * *} \\ -1.26^{*} \\ \\ -1.22^{* * *} \\ -0.29^{* * *} \\ 0.48^{* * *} \end{gathered}$
\# of Observations	3140	3140	3140	2173	967
Final log-likelihood	-1501.9	-1368.1	-1334.32	-868.44	-418.99
Adjusted ρ^{2}	0.309	0.369	0.385	0.414	0.357
Note, ***: P < 0.001; **: P < 0.05; *: P < 0.1					

MODEL E: PEDESTRIAN ENVIRONMENT MODEL

Specification

- Better pedestrian environment should lead to greater willingness to walk
- Add pedestrian environment variables to Model D

Findings

- Improved explanatory power (over Model D)
- Greater sensitivity to pedestrian environment in off-peak model
- Both Boston Common (positively) and Beacon Hill (negatively) affect transfer choices as expected
- Pedestrian environment variables can affect the transfer penalty by up to 6.2 minutes of walking time equivalence

MODEL E RESULTS

ANALYSIS AND INTERPRETATION

- The transfer penalty has a range rather than a single value
- The attributes of the transfer explain most of the variation in the transfer penalty
- For the MBTA subway system the transfer penalty varies between the equivalent of 2.3 minutes and 21.4 minutes of walking time
- Model results are consistent with prior research findings

RANGE OF THE TRANSFER PENALTY

Model Number	Underlying Variables	Adjusted ρ^{2}	The Range of the Penalty (Equivalent Value of)
A	Transfer constant	0.309	9.5 minutes of walking time
B	Government Center Downtown Crossing State	0.369	4.8 ~ 9.7 minutes of walking time
C	Transfer constant - Transfer walk time - Transfer wait time - Assisted Level Change	0.385	$4.3 \sim 15.2$ minutes of walking time
D	Transfer constant - Transfer walk time - Transfer wait time - Assisted Level Change - Government Center	0.414 (Peak) 0.357 (Off-peak)	$4.4 \sim 19.4$ minutes of walking time (Peak) 2.3 ~ 21.4 minutes of walking time (Off-peak)

COMPARISON OF THE TRANSFER PENALTY WITH PRIOR FINDINGS

Studies	Alger et al 1971		Liu 1997	Wardman et al 2001	CTPS 1997	This Research
City	Stockholm		New Jersey	Edinburgh	Boston	Boston
Transfer Type	Subway	Rail	Subway	Rail	All modes	Subway
Value of the Transfer Penalty*	4.4	14.8	1.4	8	12 to 18	$1.6 \sim 31.8$

* Minutes of in-vehicle time

LIMITATIONS OF RESEARCH

- Findings relate only to current transit riders
- Only subway-subway transfer studied
-- no transfer payment involved
-- transfers are protected from weather
-- headways are very low
- Weather variable not included

SOURCES OF DATA ON USER BEHAVIOR

- Revealed Preference Data
- Travel Diaries
- Field Tests
- Stated Preference Data
- Surveys
- Simulators

STATED PREFERENCES I CONJOINT EXPERIMENTS

- Used for product design and pricing
-- For products with significantly different attributes
-- When attributes are strongly correlated in real markets
-- Where market tests are expensive or infeasible
Uses data from survey "trade-off" experiments in which attributes of the product are systematically varied

Applied in transportation studies since the early 1980s

AGGREGATION AND FORECASTING

- Objective is to make aggregate predictions from
-- A disaggregate model, $P\left(i \mid X_{n}\right)$
-- Which is based on individual attributes and characteristics, X_{n}
-- Having only limited information about the explanatory variables

THE AGGREGATE FORECASTING PROBLEM

- The fraction of population T choosing alt. i is:

$$
\begin{aligned}
W(i) & =\int_{X} P(i \mid X) p(X) d X & & , \boldsymbol{p}(\boldsymbol{X}) \text { is the density function of } \boldsymbol{X} \\
& =\frac{1}{N_{T}} \sum_{n=1}^{N_{T}} P\left(i \mid X_{n}\right) & & , \boldsymbol{N}_{\boldsymbol{T}} \text { is the \# in the population of interest }
\end{aligned}
$$

- Not feasible to calculate because:
-- We never know each individual's complete vector of relevant attributes
-- $p(X)$ is generally unknown
- The problem is to reduce the required data

SAMPLE ENUMERATION

- Use a sample to represent the entire population
- For a random sample:

$$
\hat{W}(i)=\frac{1}{N_{s}} \sum_{n=1}^{N_{s}} \hat{P}\left(i \mid x_{n}\right) \quad \text { where } N_{s} \text { is the \# of obs. in sample }
$$

- For a weighted sample:

$$
\hat{W}(i)=\sum_{n=1}^{N_{s}} \frac{w_{n}}{\sum_{n} w_{n}} \hat{p}\left(i \mid x_{n}\right) \text {, where } \frac{1}{w_{n}} \text { is } x_{n}{ }^{\prime} \text { 's selection prob. }
$$

- No aggregation bias, but there is sampling error

DISAGGREGATE PREDICTION

GENERATING DISAGGREGATE POPULATIONS

LOGIT MODEL PROPERTY AND EXTENSION

- Independence from Irrelevant Alternatives (IIA) property -Motivation for Nested Logit
- Nested Logit - specification and an example

INDEPENDENCE FROM IRRELEVANT ALTERNATIVES (IIA)

- Property of the Multinomial Logit Model
$-\varepsilon_{j n}$ independent identically distributed (i.i.d.)
$-\varepsilon_{j n} \sim \operatorname{ExtremeValue}(0, \mu) \quad \forall j$

$$
\begin{array}{ll}
- & \mathrm{P}_{n}\left(i \mid C_{n}\right)= \\
\sum_{j \in C_{n}} e^{\mu V_{j n}} \\
\text { so } \quad & \frac{e^{\mu V_{j n}}}{\mathrm{P}\left(j \mid C_{1}\right)} \\
& =\frac{\mathrm{P}\left(i \mid C_{2}\right)}{\mathrm{P}\left(j \mid C_{2}\right)} \quad \forall i, j, c_{1}, c_{2}
\end{array}
$$

such that $i, j \in C_{1}, i, j \in C_{2}, C_{1} \subseteq C_{n}$ and $C_{2} \subseteq C_{n}$

EXAMPLES OF IIA

- Route choice with an overlapping segment

$$
P(1 \mid\{1,2 a, 2 b\})=P(2 a \mid\{1,2 a, 2 b\})=P(2 b \mid\{1,2 a, 2 b\})=\frac{e^{\mu T}}{\sum_{j \in\{1,2 a, 2 b\}} e^{\mu T}}=\frac{1}{3}
$$

RED BUS / BLUE BUS PARADOX

- Consider that initially auto and bus have the same utility
$-C_{n}=\{$ auto, bus $\}$ and $V_{\text {auto }}=V_{\text {bus }}=V$
- $P($ auto $)=P($ bus $)=1 / 2$
- Now suppose that a new bus service is introduced that is identical to the existing bus service, except the buses are painted differently (red vs. blue)
$-C_{n}=\{$ auto, red bus, blue bus $\} ; V_{\text {red bus }}=V_{\text {blue bus }}=V$
- MNL now predicts $P($ auto $)=P($ red bus $)=P($ blue bus $)=1 / 3$
- We'd expect $P($ auto $)=1 / 2, P($ red bus $)=P($ blue bus $)=1 / 4$

IIA AND AGGREGATION

- Divide the population into two equally-sized groups: those who prefer autos, and those who prefer transit
- Mode shares before introducing blue bus:

Population	Auto Share	Red Bus Share	
Auto people	$\mathbf{9 0 \%}$	$\mathbf{1 0 \%}$	P (auto)/P(red bus) $=\mathbf{9}$
Transit people	$\mathbf{1 0 \%}$	$\mathbf{9 0 \%}$	P (auto)/P(red bus) $=\mathbf{1 / 9}$
Total	50%	50%	

- Auto and red bus share ratios remain constant for each group after introducing blue bus:

Population	Auto Share	Red Bus Share	Blue Bus Share
Auto people	$\mathbf{8 1 . 8 \%}$	$\mathbf{9 . 1 \%}$	$\mathbf{9 . 1 \%}$
Transit people	5.2%	47.4%	$\mathbf{4 7 . 4 \%}$
Total	43.5%	28.25%	28.25%

MOTIVATION FOR NESTED LOGIT

- Overcome the IIA Problem of Multinomial Logit when
-- Alternatives are correlated (e.g., red bus and blue bus)
-- Multidimensional choices are considered (e.g., departure time and route)

TREE REPRESENTATION OF NESTED LOGIT

- Example: Mode Choice (Correlated Alternatives)

TREE REPRESENTATION OF NESTED LOGIT

- Example: Route and Departure Time Choice (Multidimensional Choice)

NESTED MODEL ESTIMATION

- Logit at each node
- Utilities at lower level enter at the node as the inclusive value

- The inclusive value is often referred to as logsum

NESTED MODEL - EXAMPLE

$$
\begin{gathered}
\mathrm{P}(i \mid N M)=\frac{e^{V_{i}}}{e^{V_{\text {waik }}}+e^{V_{\text {Bike }}}} \quad i=\text { Walk, Bike } \\
I_{N M}=\ln \left(e^{V_{\text {Walk }}}+e^{V_{\text {Bkee }}}\right)
\end{gathered}
$$

NESTED MODEL - EXAMPLE

$$
\begin{gathered}
\text { Walk Bike }(i \mid M)=\frac{e^{V_{i}}}{e^{V_{C a r}}+e^{V_{T a x i}}+e^{V_{B u s}}} \quad i=\text { Car, Taxi, Bus } \\
I_{M}=\ln \left(e^{V_{C a r}}+e^{V_{T a x i}}+e^{V_{\text {Bus }}}\right)
\end{gathered}
$$

NESTED MODEL - EXAMPLE

$$
\begin{gathered}
\mathrm{P}(N M)=\frac{e^{a_{N M}+\gamma I_{N M}}}{e^{a_{N M}+\gamma I_{N M}}+e^{\gamma I_{M}}} \\
\mathrm{P}(M)=\frac{e^{\gamma I_{M}}}{e^{a_{N M}+\gamma I_{N M}}+e^{\gamma I_{M}}}
\end{gathered}
$$

NESTED MODEL - EXAMPLE

- Calculation of choice probabilities

$$
\begin{aligned}
& \mathrm{P}(\text { Bus })=P(B u s \mid M) \cdot P(M) \\
& =\left[\frac{e^{V_{B M S}}}{e^{V_{C a I}}+e^{V_{\text {Tax }}}+e^{V_{B M S}}}\right] \cdot\left[\frac{e^{\gamma_{I M}}}{e^{a_{\text {MM }}+\gamma_{M M}}+e^{\gamma_{I_{M}}}}\right]
\end{aligned}
$$

